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Abstract

Pre-trained vision-language models, such as CLIP,
are driving advancements in person re-identification
by mining semantic information. Current approaches
utilize globally learnable textual prompts to generate
coarse-level, holistic yet ambiguous descriptions of in-
dividuals, which are then served as constraints for the
fine-tuning of CLIP to learn visual representations of the
pedestrians. However, relying exclusively on this type
of prompt learning for the text encoder of CLIP over-
looks the crucial fine-grained details of individuals and
fails to model the necessary downstream adaptation ca-
pacity for the image encoder of CLIP. To address these
limitations, we propose a novel Multi-Granularity and
Multi-Modal Prompt Learning (MMPL) for person re-
identification to fully unleash the substantial potential
inherent in CLIP for acquiring discriminative represen-
tations. The MMPL encompasses a two-stage training
procedure. In the first training stage, MMPL metic-
ulously orchestrates the Hierarchical Prompt Learning
(HPL) to refine crucial and distinctive information from
hierarchical patch-level visual features. Aligning tex-
tual prompts with these subtle visual cues across di-
verse granularities, this process establishes patch-to-
token level correspondences, ultimately yielding the cre-
ation of high-fidelity multi-granularity textual prompts.
In the second training stage, MMPL integrates Col-
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laborative Prompt Learning (CPL), generating supple-
mentary visual prompts and fostering multi-modal in-
teractive learning to aid CLIP’s image encoder in nar-
rowing the semantic gap between modalities, leverag-
ing CLIP’s extensive multi-modal knowledge to en-
hance feature representation. Comprehensive experi-
mental evaluation across four widely recognized person
re-identification benchmarks substantiates the effective-
ness of our MMPL.

Keywords: Person re-identification, Prompt learning,
Multi-granularity, Vision-language model.

1. Introduction

Person re-identification (Person ReID) entails retriev-
ing a particular individual of interest across diverse cam-
era views within a vast gallery database, which involves ad-
dressing the issues like cluttered backgrounds [37], illumi-
nation variations [52], pose differences [30] and occlusions
[21]. The field has garnered considerable interest from both
academic and industrial sectors owing to its vital role in en-
hancing intelligent video surveillance systems.

The predominant approaches in person ReID methods
hinge on the construction and training of convolutional neu-
ral networks (CNNs). Employing CNNs, these methods ef-
fectively translate pedestrian imagery into the embedding
space under the guidance of typical metric learning loss
functions [29]. The overarching goal is to diminish the dis-
tance among feature vectors corresponding to identical in-
dividuals and concurrently amplify the separation between
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Figure 1. Contrasting CLIP-ReID with our MMPL. (a) CLIP-ReID
focuses on fine-tuning a single global learnable textual prompt
to guide the image encoder. (b) In stage 1, our MMPL metic-
ulously fine-tunes multi-granularity textual prompts through the
ingenious application of information selector agent and patch-to-
token alignment, enabling accurate and comprehensive person de-
scriptions. Stage 2 further enhances this process by integrating
visual prompts, establishing a multi-modal joint prompt learning,
and enhancing the image encoder in utilizing rich multi-modal se-
mantic knowledge in CLIP to learn discriminative representations.

vectors of different identities. However, CNN-based meth-
ods often focus on less relevant regions due to the Gaussian
distribution of effective receptive fields in CNN [10]. In
contrast, vision transformers, such as ViT [6], have demon-
strated superior performance in person ReID. Due to the
integration of multi-head self-attention mechanisms, ViT
is adept at capturing long-range dependencies and exhibits
enhanced effectiveness in focusing on various segments of
the human body, offering a distinct advantage over CNNs
in person re-identification. Although CNN-based and ViT-
based methods for person ReID have demonstrated promis-
ing results on established person re-identification datasets,
their true potential remains constrained by the limited scope
of these datasets. Furthermore, these methods commonly
rely on pre-trained weights on the ImageNet dataset, which
utilizes manually assigned one-hot labels. Consequently,
these methods can lead to an oversight of visual content
with rich semantics that falls outside the predefined cate-
gory set, thereby hindering the capture and incorporation
of valuable information from such visual elements and ulti-
mately limiting their re-identification performance.

Recently, pre-trained vision-language models have made
substantial progress in capturing semantically rich visual
concepts, attributed to the incorporation of natural language
supervision. The Contrastive Language-Image Pre-training
(CLIP) [33] represents a significant milestone of these ad-
vancements, effectively bridging the gap between visual
content and their corresponding high-level textual descrip-

tions, and aligning the two modalities in a harmonious man-
ner. CLIP-ReID [20], a pioneer exploration inspired by re-
cent advancements in vision-language models, stands out
for its innovative approach to utilizing textual information
to describe visual concepts that extend beyond mere appear-
ance. As depicted in Fig. 1, CLIP-ReID provides a broader
scope of supervision for the image encoder by introducing
and fine-tuning global textual prompts with a robust text
encoder, thereby enhancing the extraction of discriminative
features from pedestrian images. Nevertheless, this type of
prompt learning for the text encoder of CLIP has inherent
limitations in capturing fine-grained details that are crucial
for person ReID, and it is also susceptible to the influence
of noises and occlusions. Furthermore, relying exclusively
on single-modality textual prompts as constraints is rudi-
mentary and inefficient, as it does not adequately model the
necessary downstream adaptation of CLIP’s image encoder.

To surmount these challenges, we propose a novel Multi-
Granularity and Multi-Modal Prompt Learning frame-
work (MMPL) for person re-identification, to learn robust
and discriminative representations of pedestrians by fully
exploiting the capabilities of pre-trained vision-language
models like CLIP. The MMPL framework is constructed
around a two-stage training procedure. Specifically, 1) in
the first training stage, MMPL implements Hierarchical
Prompt Learning (HPL) to distill information from hier-
archical patch-level visual features and synchronize them
with textual prompts across various granularities at the
patch-to-token level. HPL is meticulously designed to gen-
erate comprehensive and nuanced textual prompts, facilitat-
ing a detailed and thorough depiction of pedestrian charac-
teristics. Specifically, our approach begins by segmenting
the image feature map into a multitude of patches of equal
length, each representing a different granularity level. Sub-
sequently, we train an information selector agent to identify
patches that significantly contribute to the person ReID se-
lectively. The agent operates within an environment that
offers feedback in the form of rewards and updates its state
based on the patch features and the similarity matrix it per-
ceives. Its overarching goal is to optimize the cumula-
tive expected reward by strategically selecting a fixed num-
ber of patches that contain discriminative cues. As a re-
sult, this process yields refined patch-level visual features
across various granularities. Thereafter, we devise an opti-
mal transport strategy to align these nuanced visual features
with the learnable, multi-granularity textual prompts at the
patch-to-token level. Such alignment augments the textual
prompts’ comprehensiveness, facilitating accurate and intri-
cate representations of pedestrians and substantially dimin-
ishing the effects of noise and occlusions. 2) In the second
training stage, we construct supplementary visual prompts
and establish explicit constraints based on the text features
extracted from the fine-tuned textual prompts through the



text encoder, facilitating the gradual assimilation of abun-
dant information from the fine-tuned textual prompts into
the image encoder of CLIP. Leveraging both visual and tex-
tual prompts, we construct Collaborative Prompt Learning
(CPL), which effectively bridges the modality gap through
multi-modal joint interactive learning, enabling the image
encoder to harness CLIP’s extensive multi-modal semantic
knowledge. This results in the acquisition of more discrim-
inative representations of pedestrians.

In summary, the principal contributions of this work are
as follows: (1) We propose a novel MMPL framework,
which employs a two-stage training process to fully har-
ness the substantial capacity of CLIP for acquiring dis-
criminative representations of pedestrians. (2) We archi-
tect the Hierarchical Prompt Learning to meticulously re-
fine and synchronize essential and discernible information
extracted from patch-level visual features, aligning them
with corresponding textual prompts at the patch-to-token
level. This methodically calibrated process across diverse
granularities culminates in the production of high-quality,
multi-granularity textual prompts. (3) We develop Collab-
orative Prompt Learning that integrates visual and textual
prompts to facilitate multi-modal interactive learning, effec-
tively aiding the CLIP image encoder in bridging the modal
gap. This enables the image encoder to fully exploit the
rich multi-modal semantic knowledge inherent in CLIP for
learning more discriminative representations.

2. Related Work

2.1. Person Re-Identification

In the realm of computer vision, person ReID is a critical
task that aims to identify and match individuals across var-
ious non-overlapping cameras. Previous research focuses
on designing sophisticated hand-crafted descriptors to ex-
tract low-level features for pedestrians [5, 7, 22, 36]. For
example, Gheissari et al. [7] introduced a spatiotemporal
segmentation algorithm to generate normalized color and
salient edgel histograms, which are robust to variations in
person’s appearance clothing. However, the design of so-
phisticated hand-crafted descriptors is time-consuming and
challenging. CNN [15] has liberated the field from the te-
dious task of manual feature design. Methods that utilize
CNNs for the automatic extraction of features from personal
images have garnered substantial success [9, 12, 25, 26, 31].
For example, Qian et al. [32] developed a multi-scale
deep representation learning model to capture discrimina-
tive cues at various scales. Considering that fine-grained lo-
cal clues are useful for distinguishing different pedestrians,
Sun et al. [38] partitioned the feature map of pedestrians
into horizontal stripes, which serves to augment the model’s
capacity for local region representation. Subsequently, har-
nessing the capabilities of the Vision Transformer architec-

ture, a variety of Transformer-based approaches for person
ReID have come to the forefront. Such as, He et al. [10]
proposed a pure transformer-based object ReID framework
which generates robust features with improved discrimina-
tion ability. Zhu et al. [60] proposed the auto-aligned trans-
former to automatically locate both human and non-human
parts at the patch level. Due to the limited scale of person
ReID datasets, Transformer-based and CNN-based methods
frequently encounter the problem of overfitting.

Recently, Li et al. [20] proposed CLIP-ReID, which
introduces the concept of the large pre-trained visual-
language model into the realm of person ReID, surmounting
the limitations of traditional CNN and Transformer models
hampered by the compact scale of person ReID datasets.
Remarkable performance was been achieved with only min-
imal fine-tuning. Furthermore, Zhai et al. [47] introduced
MP-ReID, which leveraged the generated multiple person
attributes as prompts with CLIP, enhancing the accuracy of
retrieval results. Additionally, Li et al. [18] directly fine-
tuned the image encoder of CLIP by introducing a pro-
totypical contrastive learning loss. However, the single-
perspective, single-modality prompts employed by them are
too coarse to fully and meticulously describe pedestrians
and to effectively harness the multi-modal semantic knowl-
edge inherent in CLIP. It also lacks sufficient robustness,
particularly when addressing common challenges in person
ReID, such as occlusions and misalignments. In contrast
to the aforementioned methods, our MMPL successfully
achieves multi-level descriptions of pedestrians and syner-
gizes high-level semantic information to extract robust fea-
tures from images through the proposed multi-granularity
and multi-modal prompts.

2.2. Vision-Language Pre-training

The integration of language supervision with natural im-
ages has garnered significant interest in the computer vision
community [2, 16, 23, 50]. In contrast to models trained
with image supervision alone, vision-language models en-
code abundant multi-modal representations. These vision-
language pre-trained models aim to explore the semantic
correspondence between the vision and language modali-
ties through large-scale pre-training. For example, Radford
et al. [33] proposed CLIP, a pioneering model that syner-
gistically pre-trains image and text encoders on a vast array
of text-image pairs sourced from the Internet, which effi-
ciently aligns the representations of images and text using
a contrastive loss function. Moreover, Li et al. [19] pro-
posed Bootstrapping Language-Image Pre-training, which
employs the multi-modal mixture of encoder-decoder to
achieve cross-modal information flow for effective multi-
task pre-training and flexible transfer learning. In addition,
Chen et al. [24] proposed Language and Vision Assistant,
which connects a vision encoder and large language mod-



els to facilitate general-purpose visual and language under-
standing. Building on this success, we envision harnessing
the extensive multi-modal knowledge embedded in vision-
language models to propel the field of person ReID forward.

2.3. Prompt Learning

Complementing the vision-language model is the con-
cept of prompt learning, a paradigm that adapts the large
vision-language models to downstream tasks [2, 14, 27, 44,
57]. This innovation allows models to engage in zero-shot
or few-shot learning, applying their pre-trained knowledge
to novel tasks with minimal additional training.

Traditional prompt learning methods typically involve
manually designing a prompt. For example, Zhang et al.
[51] proposed Contrastive Learning of Medical Visual Rep-
resentations for generating candidate prompts through text
mining and paraphrasing, subsequently selecting the most
effective prompts based on the highest training accuracy.
Nevertheless, the design of a prompting function is intricate
and relies on heuristics. Zhou et al. [56] introduced the
notion of learnable textual prompt, which have been shown
to significantly outperform manually designed prompts in
adapting the CLIP model to a variety of tasks. Building
on this foundation, Zhou et al. [55] proposed Conditional
Context Optimization which utilizes dynamic prompts that
adapt to each instance and are thus more robust to class
shift. The integration of CLIP with prompt learning sig-
nifies a notable advancement in domains such as zero-shot
recognition [41], object detection [28], and image segmen-
tation [42], showcasing the potential of embedding rich lin-
guistic contexts into visual models to enhance their inter-
pretative prowess.

3. Method

In this section, we first provide an overview of the CLIP-
ReID, as detailed in Section 3.1. Subsequently, we elab-
orate on our proposed MMPL framework. As illustrated
in Fig. 2, MMPL encompasses a two-stage training proce-
dure, which consists of Hierarchical Prompt Learning and
Collaborative Prompt Learning.

3.1. Preliminaries

CLIP-ReID incorporates a two-stage training strategy
designed to adapt the CLIP to the person ReID. We define
the pre-trained text and image encoders of CLIP as T (·) and
I(·), respectively.

In the first training stage, the focus is on optimizing
global learnable tokens under the guidance of CLIP-style
supervision. The global textual prompt P t is formulated as
”A photo of [X1][X2]···[XN ] person”. Here, [X] is a learn-
able text token with the same dimension as word embed-
ding, designed to capture discriminative information corre-
sponding to pedestrian identities, and N denotes the total

number of learnable tokens. We acquire image embedding
V yi and text embedding T yi using an image Ii with an ID
label yi and the corresponding global textual prompt P ti

through a frozen image encoder I(·) and a frozen text en-
coder T (·) as follows:

V yi = I(Ii); T yi = T (P ti) (1)

In the first training stage, only the text tokens [X]
are learned by optimizing the contrastive learning losses
Li2t and Lt2i as detailed below:

Lt2i(yi) = − 1

|D(yi)|
∑

d∈D(yi)

log
exp(s(V p,T yi))∑B
a=1 exp(s(V a,T yi

))

(2)

Li2t(yi) = − 1

|D(yi)|
∑

d∈D(yi)

log
exp(s(T yi ,V d))∑B
a=1 exp(s(T yi

,V a))

(3)

Lstage1 = Li2t + Lt2i (4)

where D(yi) = {d | yd = yi, d ∈ {1, 2, . . . , B}} is the set
of indices corresponding to positives for T yi

within a batch
of size B and s(·, ·) represents the cosine similarity.

During the second training stage, updates are restricted
to the parameters within the image encoder I(·). CLIP-
ReID employs the ID loss Lid and triplet loss Ltri [29]
with label smoothing for optimization that are widely used
in supervised person ReID. Furthermore, an image-to-text
cross-entropy loss Li2tce is implemented by capitalizing the
global fine-tuned textual prompts as follows:

Li2tce =

L∑
l=1

−ql log

(
exp(s(V i · T yl

))∑L
ya=1 exp(s(V i · T ya

))

)
(5)

Lstage2 = Lid + Ltri + Li2tce (6)

where ql is the smoothed label, L is the number of identities
and i denotes the person image index.

3.2. Hierarchical Prompt Learning

However, the global textual prompt in CLIP-ReID is
inherently limited in capturing the subtleties of individ-
ual characteristics, which restricts its broader application in
person ReID. Accordingly, we propose Hierarchical Prompt
Learning to obtain a comprehensive and discriminative text
representation of pedestrians, furnishing effective supervi-
sion for the image encoder in CLIP. In the first training
stage, we integrate learnable tokens to encapsulate multi-
granularity fine-grained textual descriptions of pedestri-
ans. These are formulated as hierarchical textual prompts
{P k

t }Kk=1, with K represents the total number of granular-
ity levels. And P k

t is the textual prompt at the granularity



Figure 2. The overall architecture of the proposed MMPL. To describe pedestrians with precision and detail, in the first training stage, we
meticulously designed Hierarchical Prompt Learning to generate detailed multi-granularity textual prompts, facilitated by the Information
Selector Agent and Patch-to-Token Alignment. Subsequently, in the second stage, we introduce Collaborative Prompt Learning to foster
multi-modal interactive learning, which assists CLIP’s image encoder in bridging the modal gap and leveraging multi-modal knowledge to
develop discriminative pedestrian representations.

level k, which is designed as ”A photo of [Xk
1 ][X

k
2 ]···[Xk

N ]
person”. Here, N is the number of learnable tokens, which
varies depending on the granularity level k.

Information Selector Agent. In contrast to global tex-
tual prompts, our hierarchical textual prompts provide a de-
tailed and comprehensive description of pedestrians across
multiple levels. To effectively update these prompts, the
initial requirement is to capture key pedestrian features at
various hierarchical levels. We meticulously engineer a
deep reinforcement learning module to facilitate the extrac-
tion of multi-level salient information at the patch level.
Firstly, the feature map F extracted from the image en-
coder is segmented into Mc non-overlapping, equal-sized
patches, denoted as {f j}

Mc
j=1, with varying granularity lev-

els k corresponding to different Mc, enabling the extrac-
tion of multi-level salient information via multi-granularity
categorization. By segmenting the feature map into a col-
lection of patches at hierarchical levels, we capture intri-
cate details and maximally retain the structural integrity
of the human body. Subsequently, we harness a deep re-
inforcement learning agent to identify patches that encap-
sulate salient discriminative information, offering accurate
and efficacious guidance for the cultivation of our hierar-
chical textual prompts. We formulate the process of mining
key patches as a one-step Markov Decision Process (MDP)
and train an information selector agent. Specifically, the
agent interacts with the environment, receiving rewards and
updating its state to maximize the cumulative expected re-



ward by learning an optimal patch selection strategy for ac-
quiring as many discriminative clues as possible, all within
the constraint of a fixed number of patches.

The MDP comprises states, actions, and rewards, which
are detailed as follows (for clarity, the granularity level k is
omitted in the subsequent discussion):

State. The state {sj} comprises two components:
(sfj , s

e
j). Here, sfj is the feature of single patch fj at various

granularity levels. sej is the similarity score, which assesses
the unity between the global feature map F and the individ-
ual patch by calculating the Euclidean distance. We utilize
sej as the weighting factor for updating the reward.

Agent. We employ a Bidirectional Long Short-Term
Memory network (Bi-LSTM) as the patch selection A(·),
with a fully connected layer and sigmoid function on top for
predicting the patch selection probability pj for each patch,
which is formulated as follows:

pj = A(sfj ) (7)

Action. The action corresponds to the selection of each
patch. Our information selector agent A(·) sequentially as-
signs a binary label, either 1 or 0, to each patch according
to a Bernoulli distribution F(·).

aj = F(pj) (8)

Here, aj ∈ {0, 1} denotes the selection status of the patch,
with 1 indicating retained and 0 indicating discarded.

Reward. The reward quantifies the utility of the agent’s
action with respect to the current state. We define the reward
as follows:

reward =
p− p0
1− p0

(9)

p0 =
1

Mc

Mc∑
m=1

sej , p =

∑Mc

m=1 aj · sej∑Mc

m=1 aj
(10)

where p0 denotes the scores of all patches, and p represents
the scores of the patches chosen by the agent. By maxi-
mizing the reward, the information selector agent is able to
select patches that contain more prominent clues.

We train the information selector agent employing the
Policy Gradient [45], aiming to the identify optimal param-
eter set θ that defines the policy function, thereby maxi-
mizing the expected cumulative reward of πθ. The reward
function is formally denoted as Rn =

∑
j r(sj , aj), which

corresponds to the reward computed at the zth episode. The
gradient is approximated by conducting Z episodes with the
agent on a consistent image set. We aim to minimize Em

to guide the agent in selecting M patches and define the
optimization goals as O(θ):

∇θO(θ) ≈ 1

Z

Z∑
u=1

Mc∑
j=1

∇θ log πθ(a
(z)
j |s(z)j )Rn (11)

Em = γ||1
1

Mc

Mc∑
j=1

pj −
M

Mc
||1 (12)

where a
(z)
j is the action taken by the information selector

agent and s
(z)
j is the state for the patch j in zth episode.

Patch-to-Token Alignment. Previous methods that ex-
clusively depend on contrastive learning loss functions for
global alignment between images and textual prompts are
deemed to be rudimentary and inefficient. Building upon
this foundation, we develop a patch-to-token alignment, en-
hancing the nuanced expressive power of prompts. Af-
ter obtaining hierarchical fine-grained patches, we employ
the optimal transport strategy to align these patch features
with multi-granularity textual prompts, enabling the learn-
able tokens of textual prompts to capture more distinctive
pedestrian information within the selected patches. The se-
lected patches are denoted as {fm}Mm=1, where M denotes
the number of selected patch features. The corresponding
granularity learnable textual prompt is denoted as {pn}Nn=1

where N is the number of the learnable tokens of textual
prompts. We define the total distance between them as fol-
lows:

⟨T̃ ,C⟩ =
M∑

m=1

N∑
n=1

T̃m,nCm,n (13)

where C represents the cost matrix, wherein each element
signifies the cost associated with the pairing of {fm}Mm=1

and {pn}Nn=1. Furthermore T̃ ∈ RM×N is learned to min-
imize the total distance between these pairs. It should be
noted that T̃m,n measures the transported probability from
the m-th visual patch to the n-th learnable token of the tex-
tual prompt. To facilitate rapid optimization, we utilize the
Sinkhorn distance [4], utilizing an entropic constraint. The
distance is thus formulated as an entropy-regularized opti-
mal transport problem, which is articulated as follows:

dOT,λ(u,v|C) = minimize
T̃

⟨T̃ ,C⟩ − λh(T̃ ) (14)

subject to T̃1N = u, T̃
⊤
1M = v, T̃ ∈ RM×N

+ (15)

where h(·) denotes the entropy, vectors u and v are de-
fined as discrete probability vectors that sum to 1, and λ
is a hyper-parameter that influences the entropy regulariza-
tion. Subsequently, rapid optimization can be achieved with
minimal iterations, as detailed below:

T̃
∗
= diag(ut̃) exp (−C/λ) diag(vt̃) (16)

ut̃ =
u

exp (−C/λ)vt̃−1
, vt̃ =

v

exp (−C/λ)ut̃−1

(17)



where t̃ denotes the iteration. Upon obtaining the learned
transport plan T̃

∗
, we proceed to define the prediction prob-

ability of the image x with ID label yx (one-hot label vec-
tor) as follows:

p(y = l|x) = exp ((1− dOT,λ(l))/τ)∑L
l=1 exp ((1− dOT,λ(l))/τ)

(18)

We optimize the multi-granularity textual prompt with
cross-entropy loss:

Lotce = − 1

|X |
∑
x∈X

L∑
l=1

yxp(y = l|x) (19)

Similarly, the multi-granularity textual prompts {P k
t }Kk=1

are also optimized through Eq.(2) and Eq.(3):

Lstage1 =

K∑
k=1

αk ∗ (Lk
i2t + Lk

t2i) +

K∑
k=1

βk ∗ Lk
otce (20)

Through hierarchical prompt learning, the learned multi-
granularity textual prompts are capable of furnishing com-
prehensive and detailed descriptions of pedestrians.

3.3. Collaborative Prompt Learning

The single-modal prompt is insufficient for unearthing
the rich multi-modal semantic knowledge inherent in CLIP
and fails to offer direct and effective guidance to the image
encoder. To surmount this limitation, a conceivable solu-
tion is the creation of independent visual prompts. How-
ever, such a design may lack synergistic integration between
the visual and linguistic components, potentially resulting
in semantic misalignment between the visual and textual
prompts. Furthermore, the direct mapping of text embed-
dings to visual prompts faces challenges during the infer-
ence phase due to the paucity of textual information.

Consequently, we design extra visual prompts that are
aligned with the learned multi-granularity textual prompts.
This strategy effectively facilitates the transmission of
multi-level semantic information, enhancing the model’s
capability to capture and utilize rich textual contexts. Based
on visual and textual prompts, we construct the multi-modal
joint interactive learning to assist the image encoder in
bridging the modality gap, fully utilizing the rich multi-
modal semantic knowledge within CLIP to learn discrim-
inative representations.

In the second training stage, the objective is to optimize
the image encoder I(·) utilizing the high-level semantic in-
formation embedded within the learned multi-granularity
textual prompt. We initially construct visual prompts P v

from the input images I through a projection network, en-
suring that this process does not introduce additional noise
or interference.

P v = MLP (GAP (Conv(I)) (21)

Here, MLP (·) represents the weights of a learnable multi-
layer perceptron, whereas GAP (·) and Conv(·) are global
average pooling layer and convolution operations with the
filter size of 3×3, respectively. We encourage the visual
prompts to capture high-level semantic information corre-
sponding to their respective granularities while ensuring di-
versity among them to prevent the multi-prompt from con-
verging on redundant information. Follow this idea, we pro-
pose the transformation loss Lal as:

T k = T (P k
t ) (22)

Ltr =

K∑
k=1

||P k
v − T k||1 −

K−1∑
i=1

K∑
j=i+1

||P i
v − P j

v||1 (23)

where T (·) is the frozen text encoder, while P k
v and P k

t

denote the visual and textual prompts, respectively, at their
respective granularities k. This methodology empowers the
visual prompts to inherit multi-tiered, fine-grained informa-
tion, thereby facilitating the image encoder’s incremental
acquisition of subtle discriminative cues.

After obtaining the visual prompts, they are concate-
nated with the image tokens Itokens after the image through
the patch embed, forming the input [Itokens,P

1
v, . . . ,P

K
v ]

for the image encoder. The explicit conditioning of P t on
P v facilitates the image encoder in progressively absorb-
ing the nuanced semantic information embedded within the
multi-granularity textual prompts, effectively bolstering our
model’s ability to harness latent multi-modal knowledge.
Similarly, we also optimize the image encoder using the
identity loss Lid and the triplet loss Ltri [29], as well as
the image-to-text cross-entropy loss Li2tce:

Lstage2 = Lid + Ltri + Li2tce + Ltr (24)

4. Experiments

This section first introduces our experimental datasets,
evaluation protocols, and implementation specifics. Then,
we compare the proposed MMPL with various state-of-the-
art approaches. Lastly, we execute ablation studies to dis-
cern the contribution of individual components and present
an analysis of some visualization results.

4.1. Datasets and Evaluation Protocols

Our method is assessed on four benchmark datasets
for person ReID: MSMT17 [43], Market-1501 [53],
DukeMTMC-reID [35], and Occluded-Duke [30]. Table
2 provides a summary of the datasets incorporated in the
study. We utilize the cumulative matching characteristics
(CMC) at Rank-1 (R1) and the mean average precision
(mAP) as performance metrics.

MSMT17 is a large-scale person re-identification dataset
from a campus environment, comprising a total of 15 cam-
era views, including 12 outdoor cameras and 3 indoor cam-
eras. The dataset contains 4,101 identities and a total of



Table 1. Performance comparison to the state-of-the-art methods on four datasets.

Methods References MSMT17 Market-1501 DukeMTMC Occluded-Duke
mAP R1 mAP R1 mAP R1 mAP R1

ABD-Net [3] ICCV (2019) 60.8 82.3 88.3 95.6 78.6 89.0 - -
HOReID [40] CVPR (2020) - - 84.9 94.2 75.6 86.9 43.8 55.1
SAN [13] AAAI (2020) 55.7 79.2 88.0 96.1 75.5 87.9 - -
OfM [48] AAAI (2021) 54.7 78.4 87.9 94.9 78.6 89.0 - -
CDNet [17] CVPR (2021) 54.7 78.9 86.0 95.1 76.8 88.6 - -
PAT [21] CVPR (2021) - - 88.0 95.4 78.2 88.8 53.6 64.5
AAformer [60] CVPRW (2021) 63.2 83.6 87.7 95.4 80.0 80.0 58.2 67.0
TransReID [10] ICCV (2021) 67.4 85.3 88.9 95.2 82.0 90.7 59.2 66.4
CAL [34] ICCV (2021) 56.2 79.5 87.0 94.5 76.4 87.6 - -
HAT [49] ACM MM (2021) 61.2 82.3 89.8 95.8 81.4 90.4 - -
DCAL [58] CVPR (2022) 64.0 83.1 87.5 94.7 80.1 89.0 - -
PASS [59] ECCV (2022) 71.8 88.2 93.0 96.8 - - - -
HAWK [39] ACM MM (2022) 68.7 87.9 89.6 96.6 83.1 91.6 58.8 66.2
CLIP-ReID [20] AAAI (2023) 75.8 89.7 90.5 95.4 83.1 90.8 60.3 67.2
PCL-CLIP [18] ArXiv (2023) 76.1 89.8 91.4 95.9 - - - -
LFM [8] IJCNN (2024) 77.1 87.4 86.6 94.8 - - - -
IRM [11] CVPR (2024) 72.4 86.9 93.5 96.5 - - - -

MMPL 78.5 92.1 93.8 97.4 86.1 94.0 62.8 70.1

126,441 image samples. The training set consists of 30,248
images, while the test set includes 11,659 query samples
and 82,161 gallery samples.

Market-1501 was gathered on campus using five rela-
tively high-resolution cameras and one low-resolution cam-
era. This dataset includes 32,688 images of 1,501 identities.
The training set consists of 12,936 images representing 751
identities. The remaining 750 identities are split between
the query set, consisting of 3,368 images, and the gallery
set, which includes 19,734 images.

DukeMTMC-reID is a dataset collected from eight
camera views on campus. It includes 1,404 identities. The
dataset is divided into a training set with 16,522 images of
702 identities, a query set with 2,228 images, and a gallery
set with 17,661 images of 1,110 identities.

Occluded-Duke is a standard occluded person ReID
dataset derived from the DukeMTMC-reID dataset. The
training set encompasses 15,618 images of 702 identities,
with 9% of the images being occluded. In the test set, there
are 2,210 occluded query images and 17,661 gallery images
of 1,110 identities, and 10% of them are occluded.

4.2. Implementation Details

We implement the proposed method with PyTorch and
training on a single NVIDIA V100 GPU. The pre-trained
image and text encoder from CLIP serve as the backbone
for our image and text feature extractors, respectively. For

Table 2. Statistics of the experimental datasets.

Dataset ID Person Image amera

MSMT17 [43] 4,101 126,441 15
Market-1501 [53] 1,501 32,668 6
DukeMTMC [35] 1,404 36,411 8
Occluded-Duke [30] 1,404 35,489 8

the image encoder, we employ the ViT-B/16 with 12 trans-
former blocks, each with a hidden size of 768 dimensions,
pass the output of the encoder through a linear projection
layer to reduce the feature dimension from 768 to 512.

In the first training stage, we train the information selec-
tor agent for 50 epoch with Adam optimizer and the learn-
ing rate is set to be 1 × 10−4. The MMPL framework
we used for comparison employs prompts of three different
granularities, with corresponding prompt lengths (N ) of 4,
6, and 8. The numbers of segmentation patches (Mc) are 16,
64, and 128, and the selected numbers of patches (M ) are
10, 40, and 80, respectively. The input images are resized
to 256× 128 and the batch size is 64. The learnable textual
prompts are optimized using the Adam optimizer across 120
epochs, with an initial learning rate set at 3.5× 10−4, while
all other parameters remain frozen. The hyper-parameters α
and β are uniformly set at 1 and 0.1. For optimal transport
strategy, we set the hyper-parameters in Sinkhorn distances



algorithm [4] as λ = 0.1. The maximum number of itera-
tions for the inner loop is set at 50, and we will implement
early stopping when the average absolute update value is
less than 0.05.

In the second training stage, image augmentation is per-
formed through random horizontal flipping, padding crop-
ping, and random erasing [54] to 256 × 128. We use the
Adam optimizer to train the model for 60 epochs, with an
initial warm-up phase of 10 epochs during which the learn-
ing rate linearly increases from 5×10−7 to 5×10−6. Then,
the learning rate is reduced by a factor of 0.1 at the 30th and
50th epochs.

4.3. Comparison with State-of-the-Art Methods

Our method is compared with state-of-the-art ap-
proaches on three widely recognized person ReID datasets
and one occluded person ReID dataset, with the results pre-
sented in Table 1.

Observations indicate that the proposed MMPL achieves
state-of-the-art performance across all four datasets evalu-
ated. Specifically, within the range of methods compared,
there is a discernible trend indicating progressive enhance-
ment in person ReID. Firstly, the vision transformer serves
as a more powerful backbone compared to traditional CNN-
based methods due to its enhanced capability to capture
global dependencies within an image. For example, Tran-
sReID [10] demonstrates superior performance that signif-
icantly exceeds the capabilities of the previous CNN-based
model. Furthermore, the introduction of visual-language
pre-training by CLIP-ReID [20] has resulted in leaps for-
ward across various performance metrics. This showcases
the tremendous potential inherent in visual-language pre-
training for person ReID. In addition, under the same back-
bone conditions, networks that focus on fine-grained fea-
tures often achieve better performance than those relying
solely on global features (e.g., ABD-Net [3] vs CDNet
[17]). Our MMPL achieves a 93.8% mAP and 97.4% Rank-
1 accuracy on Market-1501 outperforming other meth-
ods. Although IRM [11] demonstrates comparable perfor-
mance on this dataset, a noticeable performance discrep-
ancy emerges on other datasets, demonstrating the superior
adaptability and robustness of our MMPL.

Compared to all the aforementioned methods, the
strength of our MMPL can be attributed to several aspects:
1) The multi-granularity prompts we fine-tuned success-
fully capture both global structural information and fine-
grained details, aiding the model in learning discriminative
pedestrian representation. 2) The multi-modal joint inter-
active learning framework we proposed aids the image en-
coder of CLIP in bridging the modal gap. This leverages the
extensive, advanced semantic information embedded within
CLIP to enhance feature discriminability. 3) We propose the
MMPL framework, which leverages Hierarchical Prompt

Table 3. Analysis of HPL and CPL on the Market-1501 dataset.

HPL CPL R1 (%) mAP (%)

× × 95.1 90.3
✓ × 96.6 92.2
× ✓ 96.0 91.4

✓ ✓ 97.4 93.8

Table 4. Analysis of ISA and PTA for HPL on the Market-1501
dataset.

ISA PTA R1 (%) mAP (%)

× × 96.0 91.4
✓ × 96.5 92.5
× ✓ 96.7 92.8

✓ ✓ 97.4 93.8

Learning (HPL) and Collaborative Prompt Learning (CPL)
to effectively excavate the potential of large-scale vision-
language pre-trained models like CLIP for applications in
the person ReID. It adeptly harnesses sophisticated seman-
tic information to effectively guide the acquisition of dis-
criminative visual features.

4.4. Ablation Studies and Analysis

Analysis of each component in MMPL. To verify the
impact of each component within MMPL, we present the re-
sults of the ablation study in Table 3. We regard the model
without HPL and CPL as the baseline, similar to CLIP-
ReID. In comparison to the baseline, when only HPL is
adopted, we can observe the performance is improved by
+1.5% R1 accuracy and +1.9% in mAP. This display of the
HPL effectively captures fine-grained information across
multiple levels, providing sophisticated semantic guidance
to the image encoder in CLIP for learning a comprehen-
sive and precise description of pedestrians. Furthermore,
the incorporation of CPL into the baseline leads to addi-
tional improvements, with a +0.9% increase in R1 accu-
racy and +1.1% improvement in mAP. This outcome ev-
idences that CPL assists the model in narrowing the se-
mantic gap between modalities, enabling it to harness abun-
dant multi-modal knowledge for the learning of visual fea-
tures. Upon integrating HPL and CPL, notable advance-
ments are attained, with a +2.3% increase in R1 accuracy
and a +3.5% improvement in mAP. These enhancements
confirm that MMPL successfully maximizes CLIP’s capa-
bilities for generating discriminative feature representations
through the synergistic application of HPL and CPL.

Analysis of each component in HPL. We conduct ab-
lation studies on the Market-1501 dataset to validate the
effectiveness of the Information Selector Agent (ISA) and
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Figure 3. Showcases some Rank-5 retrieval results obtained by both the baseline and our MMPL on the Market-1501 dataset. The green
boxes indicate correct matches and red ones rep- resent incorrect matches.

Patch-to-Token Alignment (PTA) within HPL. In the ab-
sence of ISA, we employ attention masks [46] as an alter-
native. Drawing parallels to [20], we optimize the learnable
textual prompts solely using contrastive learning loss in sce-
narios where PTA is not employed. As evidenced in Table
4, the exclusive application of ISA led to an improvement of
+1.1% in mAP and +0.5% in R1 accuracy. Conversely, the
independent utilization of PTA yielded respective improve-
ments of +1.4% in mAP and +0.7% in R1 accuracy. These
findings substantiate the efficacy of our HPL, which har-
nesses ISA and PTA to generate multi-granularity prompts.

The concurrent deployment of the ISA and PTA, as opposed
to not utilizing either, leads to a performance improvement
of +2.4% mAP and +1.4% in R1 accuracy. This underscores
the synergistic effect between ISA and PTA in enhancing
model performance.

Analysis of the influence of granularity level K. Ta-
ble 5 illustrate the impact of utilizing the different granu-
larity level K. Apparently, with the increase of K, which
corresponds to the adoption of prompts with more granular-
ities, the model’s performance progressively improves. For
example, MMPL3 demonstrates a +1.3% absolute enhance-



Table 5. Analysis of the influence of the granularity level K on the
Market-1501 dataset.

K R1 (%) mAP (%)

Baseline × 95.1 90.3

MMPL1 1 96.1 91.8
MMPL2 2 97.0 93.3
MMPL3 3 97.4 93.8
MMPL4 4 97.1 93.2
MMPL5 5 96.9 92.7

Figure 4. Analysis of learnable
tokens N with k = 1 on the
Market-1501.

Figure 5. Analysis of learnable
tokens N with k = 2 on the
Market-1501.

Figure 6. Analysis of learnable
tokens N with k = 3 on the
Market-1501.

Figure 7. Analysis of hyper-
parameter α/β on the Market-
1501.

ment in R1 accuracy and a +2.0% improvement in mAP
compared to MMPL1. This suggests that our HPL has ef-
fectively captured fine-grained information, and the mutual
supplementation of prompts at various granularities collec-
tively enhances the representation of pedestrians. However,
we find that increasing the granularity level beyond three
provides limited performance improvements but results in a
significant increase in memory consumption, and also leads
to overfitting, as evidenced by the performance decline of
MMPL4 compared to MMPL3.

Analysis of the influence of N . We investigate the im-
pact of the number of learnable tokens, denoted by N . As
illustrated in Fig. 4, the model performs optimally with
N = 4 when k = 1, suggesting that an insufficient num-
ber of tokens fail to adequately describe pedestrians, while
an excess leads to overfitting and hinders generalization per-

Figure 8. The analysis of hyper-parameters α/β on the Market-
1501 dataset, with respect to granularity level K, is conducted us-
ing mAP as the metric.

Table 6. Complexity Comparison on Market-1501.

Methods Params (M) FLOPs (G) mAP (%)

TransReID [10] 85.9 17.2 88.9
HAWK [39] 72.3 15.2 89.6
CLIP-ReID [20] 57.5 7.92 90.5

MMPL 60.1 8.27 93.8

formance. Comparing with Fig.s 5 and 6, it can be observed
that the optimal number of tokens increases as the coarse-
ness of a single granularity level is adjusted. For instance,
at granularity level k = 3, an optimal prompt length of 8 is
identified, compared to 6 at k = 2. This finding supports
the rationale and effectiveness of employing variable-length
textual prompts in our multi-granularity prompts.

Analysis of hyper-parameter α/β. Fig. 8 demonstrates
the effect of the hyper-parameter α and β. The values dis-
played here indicate the relative magnitudes of the loss co-
efficients for each textual prompt. It is evident that an im-
balanced ratio of α/β can detrimentally impact the model’s
performance with an optimal ratio established at α/β = 10.
Concurrently, we explored the impact of α/β on prompt
learning across various granularities, as depicted in Fig. 8.
All achieve optimal performance when α/β is set to 10, al-
beit with differing sensitivities to this parameter.

Analysis of Complexity for MMPL. As illustrated in
Tabel 6, we reproduce the SOTA methods on Market-1501.
Our method demonstrates significant advantages over Tran-
sReID [10] and HAWK [39] in terms of Params (60.1M
VS 85.9M and 72.3M) and FLOPs (8.27G VS 17.2G and
15.2G). Moreover, our method also achieves substantial im-
provements in mAP (93.8% VS 88.9% and 89.6%) com-
pared to these existing methods. Compared with the slightly
less parameter-heavy CLIP-ReID, our model undeniably
outperforms in terms of performance. These results demon-
strate that our method is not only efficient but also effec-
tive, exhibiting lower complexity compared to other meth-
ods while delivering superior performance.
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Figure 9. The visualization of the class activation maps for the
baseline and MMPL on the Market-1501 dataset.

4.5. Visualization

Visualization of Feature Heatmaps. Fig. 9 showcases
some visualization experiments using the class activation
maps (CAMs) [1]. Our MMPL enables more exhaustive
and meticulous observation of pedestrians than the baseline.
For example, as shown in the second column, our MMPL
attends to diverse discriminative areas, forming a compre-
hensive and detailed observation of pedestrians. In contrast,
the baseline concentrates on certain parts, omitting other in-
tricate details of the human body.

Visualization of Retrieved Results. As depicted in Fig.
3, we selectes eight pedestrians images from the Market-
1501 dataset. Significantly, MMPL is able to effectively
improve the ranking results by retrieving more correctly
matched images than the baseline. For instance, the base-
line incorrectly matched three images in the third row,
whereas MMPL achieved correct matches for all.

5. Conclusion

In this work, we present an exhaustive review of the
current research in person ReID and propose the Multi-
Granularity and Multi-Modal Prompt Learning framework
for person ReID. This framework incorporates Hierarchical
Prompt Learning (HPL) and Collaborative Prompt Learning
(CPL) to fully harness the capabilities of pre-trained vision-
language models, such as CLIP, for learning robust and dis-
criminative representations. Within the HPL, we develop
the Information Selector Agent (ISA) to refine and syn-
chronize key visual information with textual prompts across
various granularities at the patch-to-token level, resulting
in high-quality, multi-granularity textual prompts. In the
CPL, we establish multi-modal interactive learning both vi-
sual and textual prompts, aiding CLIP’s image encoder in
bridging the modality gap and leveraging CLIP’s rich multi-
modal semantic information to achieve more nuanced per-
son representations. Our method has demonstrated state-of-
the-art performance across four widely recognized datasets

for person ReID.
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