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Abstract

We introduce a method for transferring material in-
formation from a partial scan to a CAD model by es-
tablishing a dense correspondence between the scan and
the CAD model. Our method is enabled by a pipeline
composed of a material decomposition network, a ge-
ometry mapping network, and material completion net-
works. Specifically, given a single RGB-D source image
and a target CAD model aligned to the scan, we employ
a material decomposition network to extract material
and illumination parameters from the image. Next, we
sample point clouds from the image and CAD model,
and establish a dense correspondence between the two
point clouds with a geometry mapping network, which
maps the point clouds to a shared template space where
correspondences can be derived from closest points and
aligned UV maps can be obtained. Finally, based on
the established correspondence, we transfer the decom-
posed material information from the source to the tar-
get, and further perform material completion via dif-
fusion on the point clouds and in the UV space. We
demonstrate with qualitative and quantitative evalua-
tions that our method is able to obtain more accurate
material transfers than previous work in challenging in-
put cases with imperfect shape alignment, so that the
shapes with transferred materials better resemble the
scanned shapes.

Keywords: Appearance transfer Relightable Materials
3D shape modeling Appearance Modeling.

1. Introduction

Many graphics applications such as AR/VR/MR,
robotics, and simulation need realistic scenes with high-
quality meshes. To automatically generate such a scene,
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Figure 1. Our material transfer method is robust to imperfect shape
retrieval and alignment. All cases in this figure have varying de-
grees of misalignment and occlusion, but our method is still able
to get reasonable results. The figure shows the input image and
aligned shape (left two columns), the rendering of the shape with
transferred SVBRDF in the environment lighting estimated by the
material decomposition network (middle column), and rendering
in two different illumination conditions (right two columns).

various methods attempt to retrieve CAD models from CAD
libraries and align them to objects in real-world captured
RGB images [16, 15] and RGB-D scans [1, 2, 25]. But
most of these works only focus on obtaining accurate ge-
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ometric alignment, and thus generated scenes lack appear-
ance information such as textures and material properties,
which is essential scene information for most graphics and
vision tasks. In this paper, we aim to transfer materials from
captured RGB-D images to aligned CAD models to produce
high-quality relightable objects.

Recently, some methods [30, 19] have been proposed
for transferring appearance materials from images to 3D
shapes. They first establish part-level correspondences be-
tween the segmented shape and the observed image. Then,
based on the content of corresponding image regions, they
retrieve similar materials from a pre-collected material li-
brary for each part of the target shape. Although these
methods can produce photorealistic relightable objects, they
rely on high-quality mesh segmentation, which is challeng-
ing due to the complexity of shape understanding. More-
over, they project 3D shapes to 2D space and then establish
2D correspondences with images through image alignment
and translation. Thus, these methods require a relatively
complete observation of the target shape. If the object is
occluded by other objects in the scene or captured incom-
pletely, the structural information in the images may be dis-
rupted, resulting in inaccurate transfer results. However,
such occlusion and incomplete observation are common oc-
currences in real-world scans.

In this paper, we propose a novel framework to trans-
fer materials from a real-world RGB-D image to an aligned
CAD model. Our key contribution is to establish dense cor-
respondences between scans and shapes, which can help
us easily transfer 2D materials to 3D models without any
segmentation of the shapes. To achieve this, we establish
a shared template space for shapes of the same category
by learning a deformation neural field that automatically
aligns intra-category shapes. Then, the input RGB-D im-
age and CAD model are mapped to this space for establish-
ing their point-wise correspondences. The shared template
space eliminates shape variations between the observed ob-
ject and retrieved CAD model, effectively improving the
matching accuracy. In contrast to implicitly correlating im-
ages with 3D shapes in latent space [29, 37], our strategy
produces explicit correspondences and thus provides more
direct guidance for appearance transfer.

Based on the estimated correspondences, we develop a
pipeline to effectively transfer materials from the captured
image to the target CAD model. Our pipeline firstly esti-
mates materials from images. Then, the materials are trans-
ferred to the target shape based on predicted correspon-
dences, so that we obtain target shapes with partial mate-
rials. Finally, the materials of the shape are completed in
point and UV space. A challenge for this pipeline is that
existing UV mapping techniques tend to produce inconsis-
tent material maps in UV space, thus decreasing the perfor-
mance of the material completion network. To solve this

issue, we design a semantically aligned UV mapping tech-
nique to learn a regular UV space that exhibits semantic
consistency across intra-category shapes, thereby helping
the network in learning the material distribution.

With these contributions, we are able to transfer ma-
terials from scans to aligned 3D shapes. The generated
meshes have materials closer to the scans when compared
to the results of previous work. We demonstrate this im-
provement with visual and quantitative evaluations of our
method, which include a comparison with state-of-the-art
methods. We also show the effect of the different compo-
nents of our method on the results.

In summary, our contributions include the introduction
of:

• A geometry mapping network that maps a point cloud
in object space to a shared template space, and infers
an aligned UV mapping simultaneously;

• A material completion network that combines point
and UV diffusion to generate material maps from
coarse to fine based on a point cloud with partial ma-
terials;

• A material transfer method, which includes material
decomposition, material transfer, and material comple-
tion, that can handle imperfect retrieval and alignment.

2. Related work

2.1. Alignment of scans to CAD models

With the availability of large-scale 3D shape datasets
[7, 12], the recomposition of 3D scenes using CAD mod-
els has made significant progress in recent years. Several
approaches have been introduced to perform CAD retrieval
and alignment to images [21, 16, 15] or scans [1, 2, 14, 25].
For image-based CAD retrieval and alignment, Izadinia et
al. [21] iteratively optimize the position and scale of the ob-
ject to best match the input image. Gumeli et al. [16] estab-
lish a correspondence between 2D and 3D and then use a
differentiable robust Procrustes method to continuously op-
timize the alignment. More recently, Gao et al. [15] propose
a weakly-supervised method for this task, where they use a
diffusion model to model the probability of a CAD model’s
shape, pose, and scale based on the input image. For scan-
based CAD retrieval and alignment, Avetisyan et al. [1]
learn a joint embedding between real and synthetic shapes
to compute corresponding heatmaps. These maps represent
the likelihood that an input key point in the scan matches a
voxel of the CAD model. Based on the heatmaps, the align-
ment of shapes is optimized. Furthermore, Avetisyan et
al. [2] predict layout elements jointly, enhancing the global
consistency of the predicted scene. Di et al. [14] learn re-
trieval and deformation of shapes in an unsupervised man-
ner. Despite the continuous improvement in enhancing the
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Figure 2. Overview of our method for transferring materials from a single scanned RGB-D frame to an aligned shape. Given the single
frame and shape with 9 DoF pose as input, we first extract an SVBRDF (including albedo, roughness, and metallic properties) and an
illumination map from the RGB-D image using a material decomposition network. Next, we recover a point cloud from the depth image
and transform it to object space based on the input shape’s pose. Simultaneously, we sample a point cloud from the target shape. Then,
given the source point cloud from the scan and the target point cloud from the shape, we use a geometry mapping network to map the
two point clouds to a shared template space, where a point-wise correspondence can be established and an aligned UV mapping can be
obtained. Based on the correspondence, we transfer the SVBRDF from the image to the target point cloud. Finally, we complete the point
cloud with partial materials in a coarse-to-fine manner to obtain the final material map.

accuracy of alignment in this series of works, imperfect re-
trieval and alignment are still unavoidable. Therefore, a ro-
bust material transfer method is needed.

2.2. Appearance transfer from 2D to 3D

The goal of 2D-3D appearance transfer is to transfer tex-
tures or materials from images to shapes. Texture transfer
only handles RGB information. Wang et al. [36] transfer
textures from an input image to a colletion of 3D shapes.
Their method extracts texture from an image and trans-
fers it to similar shapes based on a 2D-to-3D correspon-
dence. Then, using the selected shape as an intermediary,
the texture is transferred to other 3D shapes. Similarly,
Huang et al. [20] manually create a proxy model that re-
sembles the image as an intermediary domain for texture
transfer. More recently, a series of texture generation meth-
ods have been proposed. When conditioned on a given
image, these methods can also be used for texture trans-
fer. Oechsle et al. [29] learn an implicit texture field for
a category of shapes, which can predict points’ color di-
rectly. Yu et al. [37] use point diffusion and UV diffusion
to generate texture maps for meshes. However, such meth-
ods establish implicit correspondences between images and
shapes, and may not yield accurate transfer results. By uti-
lizing powerful pre-trained image diffusion models, signif-
icant progress has been made in text-based texture genera-
tion for 3D shapes [8, 6, 24]. These methods typically use
pre-trained image models to inpaint shapes from different
views. When adapting these pipelines to texture transfer
tasks [34], 3-5 image conditions are needed to fine tune
a pre-trained diffusion model. Material transfer handles
multidimensional appearance properties, including albedo

and other physical components. Nguyen et al. [28] transfer
materials from an image or video to 3D geometry. Their
method uses global optimization to process the entire 3D
scene. Rematas et al. [33] align a target 3D shape to an im-
age and extract materials for each part in 3D. Park et al. [30]
take an image and shape with material segmentation as in-
put, and align a projection of the 3D shape onto the image to
establish part-level correspondence. Afterward, a material
perdition network is used to predict materials from a pre-
collected high-quality material dataset. The image align-
ment method requires the input images and shapes to be
similar in structure. To address this limitation, Hu et al. [19]
use an image translation network to establish more struc-
turally robust semantic correspondences. However, their
method requires 3D models with detailed semantic segmen-
tation. In contrast to previous methods, our method does
not require the 3D model to have any geometric segmen-
tation. Furthermore, our method also does not rely on a
pre-collected high-quality material dataset since it directly
extracts material information from an image.

3. Overview

Figure 2 shows an overview of our method. The inputs to
our method are an RGB-D image and an aligned 3D shape.
We assume that the image is given with an object mask [22]
and that the 3D shape is provided with a 9-DoF pose, where
the retrieval and alignment of the shape can be obtained au-
tomatically with existing methods [23, 16, 15]. Note that
our method does not necessitate any shape segmentation as
input.

Our method starts by extracting environment and mate-
rial information from the RGB image. We use a material



decomposition network to estimate an illumination map and
SVBRDF from the image, including albedo, roughness, and
metallic properties.

Next, we transfer the estimated material properties from
the source image to the target shape to obtain a 3D shape
with partial material definitions. To be more specific, given
the object mask of the input RGB-D frame, we obtain a
source point cloud in the world space, which is then trans-
formed to object space by using the target shape’s pose.
Simultaneously, we sample a target point cloud in object
space from the input 3D shape by farthest points sampling.
Then, our geometry mapping network takes the source and
target point clouds as input, and outputs two point clouds
transformed to a shared template space, along with their UV
coordinates in an aligned UV space. In the shared template
space, we establish point-wise correspondences based on
closest points measured by Euclidean distances. Note that
the use of template space correspondences is a key compo-
nent of our method to address an imperfect 3D shape re-
trieval and alignment. Based on the correspondences, we
transfer the SVBRDF from the source to the target point
cloud, obtaining a point cloud with partial material defini-
tions.

Finally, we generate complete material maps for the tar-
get mesh based on the point cloud with partial material defi-
nitions and aligned UV mappings. Our material completion
network combines 3D and 2D diffusion models to gener-
ate material maps in a coarse-to-fine manner. Specifically,
taking the target point cloud with partial materials and UV
coordinates as input, the network first completes the mate-
rial properties in the point cloud with a 3D diffusion step.
Then, a coarse material map is generated by mapping ma-
terials from the point cloud to the aligned UV space, which
will be refined in an image diffusion stage.

4. Method

In this section, we explain the details of the three key
components of our method: material decomposition, mate-
rial transfer, and material completion.

4.1. Material decomposition

The goal of material decomposition is to extract an
SVBRDF from the input image. In addition, we predict the
illumination of the scene as a sub-task to help SVBRDF
estimation. The SVBRDF is represented as albedo, rough-
ness, and metallic per-pixel properties [3, 27], while the il-
lumination map is represented with 12 spherical Gaussians
(SG), where each SG is defined by amplitude, axis, and
sharpness. Similarly to Boss et al. [4], we only estimate
the amplitude and set the axis and sharpness to cover a unit
sphere.

The architecture of our material decomposition network
D is inspired by Collins et al. [10]. Taking the RGB image

Irgb and object mask Imask as input, a UNet-based model
with a ResNet-34 backbone estimates the SVBRDF Îsvbrdf.
The UNet has a common encoder and multi-head decoder to
predict each component of the SVBRDF separately. For the
environment lighting Îlight, we use another encoder network
followed by 3 fully-connected layers. The loss function for
the network training is defined as:

LD = α1MSE(Îsvbrdf − Isvbrdf) + α2MSE(Îlight − Ilight),
(1)

where MSE is the mean squared error loss, and Isvbrdf and
Ilight are the ground truth SVBRDF and lighting, respec-
tively.

4.2. Material transfer

The goal of this module is to transfer the estimated
SVBRDF from the source image to the target 3D shape.
Since we only have the observation of the scanned object
from a single viewpoint, and this observation may even be
incomplete due to occlusions in the scene, we first obtain a
point cloud with partial materials in this module, which will
be completed in the next stage (Section 4.3).

The key challenge here is how to establish a dense cor-
respondence between the two shapes to guide the material
transfer, given a single-view (possibly incomplete) obser-
vation with imperfect shape retrieval and alignment. To
achieve this, first, two point clouds in object coordinates
are sampled from the input RGB-D scan and 3D shape.
Then, our geometry mapping network takes the two point
clouds as input, and transforms them to a shared 3D tem-
plate space and aligned 2D UV space. In the shared tem-
plate space, we establish point-wise correspondences based
on closest points. Finally, based on the correspondence, we
directly transfer the predicted SVBRDF from the image to
the shape.

4.2.1 Obtaining point clouds in object space

First, we obtain two point clouds in object space from the
inputs. For the input scan, given the depth image Idepth and
object mask Imask, we extract a point cloud in world coor-
dinates by taking pixels covered by the mask and defined
by the pixel coordinates and depth. Then, we transform the
point cloud to object space using the 9-DoF pose of the tar-
get shape Spose, to obtain the source point cloud Ps. For the
target shape, we sample a fixed number of points on the sur-
face of the shape Sgeometry by farthest point sampling (FPS)
to obtain the target point cloud Pt.

4.2.2 Learning a shared template space and aligned
UV space

The next step of the method is to obtain a dense correspon-
dence between the two point clouds in object space. Sim-
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Figure 3. Exemplars of semantically aligned material maps for two
shapes, showing the material distribution on the shapes (left col-
umn), the handcrafted material maps (middle column), and the se-
mantically aligned material maps (right column). Note that only
roughness and metallic distributions are shown in the figure, and
the color map is represented as [R: nothing (always set to 1), G:
roughness (0-1), B: metallic (0-1)].

ilarly to Yu et al. [13], we employ a shared template space
for shapes in the same category, and learn how to map spe-
cific shapes to this template field. Correspondences can then
be easily found after mapping the two point clouds to the
shared template space.

Moreover, given that objects typically have contiguous
regions with the same material, e.g., the soft pillow of a
chair seat, or the hard surface of a chair’s wooden legs, dif-
ferently from existing UV mapping methods that are obliv-
ious to such information [5], we would like to maintain this
material distribution in the mapping to reduce the difficulty
of subsequent material completion. Thus, inspired by Chen
et al. [9], we also learn a semantically aligned UV mapping.
As shown in Figure 3, this aligned UV mapping maintains
the material distribution of the shapes.

To learn the geometry and UV mappings, we introduce
a geometry mapping network. Our network jointly learns a
latent shape space for a collection of shapes from the same
category, a shape mapper to map a shape to the template
space based on the shape latent code, and a UV mapper
to map a template space shape to the aligned UV space.
Note that the UV mapping is based on the template space,
so that the mapping of different shapes naturally results in a
semantic alignment.

Figure 4 shows a simplified diagram of the geometry
mapping network G. The shape mapper takes the shape
code z and a point in object space as input, and outputs the
offset v of the point to the template space. The UV mapper
takes a point in the template space as input, and outputs the
point’s UV coordinates. The loss function that guides the
training of the network is defined as:

LG = Llatent + Lmap + Luv, (2)

where Llatent is the latent space loss, Lmap is the shape
mapper loss, and Luv is the UV mapper loss.

Specifically, Llatent is a regularization term for the shape
latent space. Lmap is used to ensure a robust mapping from
object space to template space, and is defined as:

Lmap = β1Lsdf + β2Lnormal + β3Lsmooth, (3)

where Lsdf is a Signed Distance Function (SDF) recon-
struction loss, since the correspondence is learned in terms
of an SDF, Lnormal is a key loss term which ensures that
the normal of a surface point is highly correlated with its
semantic information, and Lsmooth encourages the smooth-
ness of the SDF field.

Luv is used for learning the semantically aligned UV
mapping:

Luv = β4Lprior + β5Ldist, (4)

where Lprior is a prior loss to guide the UV mapping and
Ldist is a distortion loss to minimize the generated map’s
distortion when mapping to 3D Shapes.

Object space Template space UV space

UV
mapper

Shape
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UV seg priorTemplate
Field

Figure 4. Geometry mapping network used in our work. Given a
shape code z and a point in object space, the shape mapper predicts
the offset v of the point to map it to the learned template space and
a correction SDF value ∆s . Then, the point is offset to map it
to the template field and predict its SDF value s̃, which is added
to ∆s to provide the final SDF value s. Note that SDF values are
only used for training. Next, the UV mapper maps the point to
the semantically-aligned UV space based on the UV segmentation
prior in template space.

4.2.3 Optimizing the shape code

To map the point clouds to the template space, we first ob-
tain a shape code for each input. For the target point cloud
Pt, we obtain its shape code zt during the training of the
geometry mapping network. Moreover, since the learned
shape embedding is in a continuous space and the inference
of the geometry mapping network can be performed for an
arbitrary number of samples, for the source point cloud Ps,
we optimize a shape code zs that best explains the single
view observation via a maximum-a-posteriori estimation.
The objective function is defined as:

argmin
zs

∑
(xj ,sj)∈Ps

β6Lsdf (G(zs,xj), sj) + β7||zs||22, (5)



where xj are the point coordinates, sj is the SDF value in
Ps, which is always set to 0 since all points are sampled
from the surface, and G is the trained geometry mapping
network.

4.2.4 Establishing correspondences

Given the two point clouds in template space, point-wise
correspondences can be established based on point dis-
tances. We establish the correspondence in two stages.
Firstly, for each point in the source point cloud, we find
its nearest point in the target point cloud. Since the num-
ber of samples in the source point cloud is much larger than
in the target, a point in the target point cloud may be the
closest point to several points in the source. Thus, in the
second stage of the matching, for each point in the target
point cloud, we select the source point with the shortest dis-
tance as the corresponding match. Based on the point-wise
correspondence between the source and target point clouds,
along with the pixel-wise correspondence between the in-
put image and source point cloud, we transfer the estimated
SVBRDF from the image to the target point cloud.

4.3. Material completion

After material decomposition and material transfer, we
obtain a point cloud of the target shape with partial materi-
als, where the materials were transferred directly from the
input image. Then, the goal of the material completion is
to generate a complete material map for the target 3D mesh
while preserving the transferred materials. Inspired by Yu et
al. [37], we use a material completion network for this task,
which combines point diffusion and UV diffusion models
to generate SVBRDF maps from coarse to fine.

4.3.1 Point diffusion

In the coarse stage, given the point cloud with partial ma-
terials, we use a point diffusion model to complete the ma-
terials. The point cloud P is defined as {C,Mpc}, where
C ∈ R4096×3 are the point coordinates and Mpc ∈ R4096×5

are the material properties on the point cloud. During train-
ing, given a point cloud sample {C,Mpc

0 }, where Mpc
0 =

(Mpc
known,M

pc
unknown) and Mpc

known correspond to the ma-
terial properties derived from the material transfer, we add
noise on Mpc

0 to obtain the noised material Mpc
t . The noise

adding process is defined as:

Mpc
t = (Mpc

known,
√
αtM

pc
unknown +

√
1− αtϵ), (6)

where t ∈ {0, 1, ..., T} is the time step, and αt is the noise
level which is dictated by t and ϵ ∈ N (0, 1).

Given the noised point cloud {C,Mpc
t }, time step

t, and shape condition maps xshape as input, where
xshape = [xnormal, xcoor, xmask] is the concatenation of

Target shape Noised pc Complete pcCondition maps

Coarse maps

UV
diffusion

Fine maps

Point 
diffusion

Shape with 
materials

Encoder

Figure 5. Material completion network used in our work, where
the core components are based on the method of Yu et al. [37].
Given a point cloud with partial materials as input, we generate
material maps for the 3D mesh from coarse to fine. In the coarse
stage (top of the figure), we complete the material on the point
cloud. Then, we map the generated point cloud to UV space to
obtain a coarse material map. This map is refined in UV space in
the fine stage (bottom of the figure).

pre-computed maps, which is generated by mapping 3D
normal and coordinates to 2D through the aligned UV map-
ping, we employ a point denoising network to predict the
material M̂pc

0 , as shown in the top of Figure 5:

M̂pc
0 = Ccoarse

θ1 ({C,Mpc
t }, t, Eϕ(xshape)), (7)

where Ccoarse
θ1

is the point denoising network with parameters
θ1, and Eϕ is a light shape encoder to extract a global shape
embedding from xshape.

The loss function for the training of the point denoising
network is defined as:

Lcoarse
C = γ1

∥∥∥Mpc
0 − M̂pc

0

∥∥∥2 . (8)

That is, we directly measure the difference between the de-
noised result M̂pc

0 and the original input Mpc
0 because we

found that this is more stable during training. Addition-
ally, since the known materials in the point cloud are al-
ways fixed during the forward process, we can mask away
the known materials and only compute the loss for unknown
materials. In addition, we use an augmented PVCNN
[26, 37] as point denoising network backbone and an MLP
network as shape encoder. During inference, the materials
transferred from the image are fixed, and we perform de-
noising only in the ramaining areas.

4.3.2 Material refinement

In the point diffusion stage, we obtain a point cloud with
complete materials. Based on the UV mapping generated in
Section 4.2.2, we can map and interpolate materials to UV
space to obtain coarse material maps Mmap

coarse. To further



refine the coarse maps, we employ an additional 2D diffu-
sion model in UV space, as shown in the bottom of Figure
5. The main difference from Yu et al. [37] is that we use a
semantically aligned UV mapping, which has the advantage
of maintaining the material distribution patterns that appear
in the 3D models, significantly reducing the difficulty of
material generation. Furthermore, as Yu et al. [37] men-
tioned, their method struggles to generate seamless results
when there are too many fragmented cuts of the UV map.
Our new UV mapping also addresses this limitation since
there are only 4 cuts for most of the chairs.

During training, given the material map Mmap
0 ∈

R512×512×5, the noised map Mmap
t is defined as:

Mmap
t =

√
αtM

map
0 +

√
1− αtϵ, (9)

where t ∈ {0, 1, ..., T} is the time step, and αt is the
noise level which is dictated by t and ϵ ∈ N (0, 1). In or-
der to maintain the information in the coarse material map
Mmap

coarse, we take Mmap
coarse as an input condition for the 2D

denoising network. The denoising process is defined as:

M̂map
0 = Cfine

θ2
(Mmap

t ,Mmap
coarse, xshape, t) , (10)

where Cfine
θ2

is the image denoising network with parame-
ters θ2. The loss function for the training is defined as:

Lfine
C = γ2LMSE + γ3Lsmooth + γ4Lrender, (11)

where LMSE is the MSE loss between the predicted denois-
ing results M̂map

0 and the original input Mmap
0 , Lsmooth is

a smoothed reconstruction loss to help the network learn the
distribution of materials more effectively, and Lrender is a
rendering loss to measure the rendering difference between
the prediction and ground truth.

We use a 2D U-Net combined with self-attention mod-
ules as the backbone of the image denoising network.
During inference, we map the SVBRDF from the point
cloud to UV space so that we obtain coarse material maps
Mmap

coarse. Then, we denoise the input to get fine material
maps Mmap

fine .

5. Experiments and evaluation

In this section, we first present the implementation de-
tails. Then, we show results generated by our method. Af-
ter that, we show the comparisons with baselines to demon-
strate the superiority of our method. Finally, ablation exper-
iments on the main modules proved the effectiveness of the
modules.

5.1. Implementation details

5.1.1 Datasets

We use two types of datasets with our method: shape and
environment lighting. The environment lighting collection

is used to render high-quality images to train our mate-
rial decomposition network. To ensure diverse realistic
backgrounds and lighting conditions, we collect 165 indoor
HDRIs from [17]. For the shape collection, we use 3D
shapes from ABO [10], where the shapes have fine, realistic
materials. We use the ABO dataset to generate training data
for all three networks. Moreover, since most of the existing
scan2CAD methods retrieve CADs models from ShapeNet
[7], we use ShapeNet to supplement the shape collection.

5.1.2 Data preparation

To prepare the training data for the material decomposition
network, we need photorealistic renderings of diverse 3D
shapes in different scenes with ground truth SVBRDF com-
ponents and illumination. We parameterize the environment
maps with 12 SGs firstly. Then, we render all shapes in
ABO [10] from 30 different random views and 3 different
random lightings.

To get the training data for the geometry mapping net-
work, we need point clouds with SDF values from the shape
surfaces and surrounding space. We use shapes of the same
category from ABO [10] and ShapeNet [7]. First, we nor-
malize each ground truth mesh into a unit sphere. Then,
for surface points, we render depth maps from 100 differ-
ent views and record rendering parameters to avoid sam-
pling invisible inner points. The surface points are recov-
ered from depth maps. Normals of these points are sampled
with the same method. For surrounding points, we sample
points in a unit cube uniformly. We compute the distance
to the nearest surface point as the SDF value. The sign of
the SDF value is decided by checking the depth buffer. For
each shape, we randomly sample 500K surface points with
normals and 500K surrounding space points with SDF val-
ues.

To get the training data for the material completion net-
work, we need point clouds with normals and SVBRDF val-
ues for the coarse stage, and SVBRDF maps in aligned UV
space for the fine stage. The point clouds are sampled us-
ing the same virtual scan method as when preparing data for
the geometry mapping network. To get the aligned material
maps, we first train the geometry mapping network and then
map the material component to inpaint the maps. Since we
need shapes with materials in this stage, only shapes from
the ABO dataset are used.

5.1.3 Training details

We train all three networks with four Nvidia RTX3090
GPUs under Ubuntu 20.04.2. The material decomposition
network is trained for 20 epochs with loss weight parameter
set {α1, α2} = {1, 1}. An AdamW optimizer with initial
learning rate 1e-3 is used and the batch size is set to 24.
The geometry mapping net is firstly trained for 50 epochs



to learn a correspondence with loss weight parameter set
{β1, β2, β3, β4, β5} = {1, 1e2, 5, 0, 0}. Note that only the
shape mapper and template field are trained at this stage.
Then, we fix the pre-trained network, and only train the UV
mapping module for 10 epochs with loss weight parameter
set {β1, β2, β3, β4, β5} = {0, 0, 0, 10, 10}. An Adam opti-
mizer with initial learning rate 1e-4 is used and batch size is
set to 256. The material completion network is trained for
1000 epochs in the coarse stage with loss weight parame-
ter set {γ1, γ2, γ3, γ4} = {1, 0, 0, 0}. An Adam optimizer
with initial learning rate 2e-4 is used and batch size is set to
20. Then, we train the fine stage for 1000 epochs with loss
weight parameter set {γ1, γ2, γ3, γ4} = {0, 10, 10, 1}, and
the batch size is set to 4.

5.1.4 Inference details

During inference, given a single scan frame from the real
world [11], we align the 3D object using ROCA [16]. Note
that there are other methods [2, 23, 15] that can provide
the same type of alignment. Then, given the rough object
bounding box generated by ROCA, we use SAM [22] to get
a finer object mask Imask. Given the RGB image Irgb and
finer object mask Imask, we estimate the SVBRDF and illu-
mination using the material decomposition network. Then,
the source point cloud ps and the target point cloud pt are
sampled from the depth image and target shape, respec-
tively. We employ an Adam optimizer with learning rate le-
5 to optimize the source shape code. After mapping the two
point clouds to the template space and obtaining the target
point cloud with partial materials, the portion of the point
cloud without a defined SVBRDF is modified with random
noise. The material decomposition network takes the noised
point cloud as input, and outputs a point cloud with com-
plete materials. Note that to ensure the material consistency
in the generated results, we fix newly completed materials,
add slight noise to the known materials and re-denoise the
part. The materials on the point cloud are mapped to UV
space to generate coarse material maps with a resolution of
512. The image diffusion model refines coarse maps to gen-
erate the final material maps.

Now, we obtained output material maps in aligned UV
space. To assign the maps to the target mesh correctly,
we use the pre-trained geometry mapping network to re-
compute a new UV mapping for the target mesh.

5.2. Results

Figure 1 shows a sample of results obtained with our
method, where we show the input image and aligned shape
on the left, a rendering of the input shape with transferred
material under the predicted illumination in the middle, and
renderings in two different environment maps on the right.
When inspecting these results, we see that our method can

handle imperfect shape retrieval and alignment. For inac-
curate retrieval (row 1), our method successfully transfers
the materials from an armchair to a side chair. For inac-
curate alignment (rows 4, 5, and 6), our method also pro-
vides reasonable results. Furthermore, all source models
in the input image are partially occluded by themselves or
other objects in the scene. For example, chairs in row 1,
3, and 6 are occluded by tables and the chair in row 5 is
occluded by clothes laid on it. The use of the fine masker
SAM [22] has successfully removed the occlusion and pro-
vides cleaner object masks which may have several frag-
mented cuts. Thanks to our 3D correspondences pipeline,
these fragmented cuts have little effect in the results. Note
that previous methods [29, 30, 19] assume a complete ob-
servation to establish 2D correspondences, and would fail
in most of these difficult cases. Moreover, regardless of
whether the object is near (row 2) or far (row 6) from the
camera, our method can get reasonable results.

5.3. Comparison

In this section, we compare our method with baselines
that solve the same problem with different strategies by
qualitative and quantitative evaluations.

Baseline methods. We compare our method to 3 different
baselines. The first baseline, denoted as TF-mat, is based
on Texture Fields [29]. Since the original TF just learns an
implicit texture space, we expand this method to the mate-
rial space and train a material field for each category con-
ditioned on the multi-dimensional SVBRDF components.
During inference, the SVBRDF condition is predicted by
our material decomposition network. Since this method
takes 3D points as input, we reassemble the material maps
using a UV-coordination map calculated by a shape-specific
UV mapping. The second baseline, denoted as PUD-mat, is
based on Point UV Diffusion [37]. We expand this method
to transfer materials and train a material Point UV diffu-
sion network conditioned on the SVBRDF. During infer-
ence, the network takes the estimated SVBRDF as input,
and directly outputs material maps in shape-specific UV
space. The third baseline, denoted as AUV-mat, is based
on the single view reconstruction pipeline in AUV-Net [9].
AUV-Net learns a semantic aligned UV mapping for shapes
in the same category. Based on the aligned UV space, the
method reconstructs a textured shape from a single view ob-
servation. We only expand the texture generation branch to
material space since our shape is given. More specifically,
we train an auto-encoder to generate material maps from
the input SVBRDF directly. During inference, this network
takes the estimated material as input, and outputs material
maps in the aligned UV space.

Metric. For evaluation, we measure the difference be-
tween the input image and the rendered target shape with
the transferred materials in the predicted illumination. To



evaluate how the methods capture and maintain the mate-
rial distribution for a given input image, we use the Fréchet
Inception Distance (FID) [18] . This metric is widely used
in image generation tasks.

Analysis. Figure 6 shows a sample of results generated
by our method and the baselines. Our method obtains rea-
sonable material transfer results even when an imperfect
shape alignment is given, while the baselines suffer from
inaccurate correspondence or fragile UV mapping. To be
more specific, we find that TF-Mat hardly gets reasonable
correspondences when partially occluded observations are
given. Besides that, since this baseline represents the distri-
bution of materials in a 3D volume space, it tends to gen-
erate over-smooth results. That is why shapes with pure
color are generated. In addition, AUV-Mat uses a simple
auto-encoder network to generate view-independent com-
plete material maps from a single view observation. Al-
though all the generated material maps are in an aligned
space, we find that the method still does not have the abil-
ity to handle the misalignment between observations and
material maps. Furthermore, we find that this baseline eas-
ily overfits the training data, and does not generalize well
to new data. For PUD-Mat, we also find that the com-
puted correspondence is of low quality. Since the method
uses the pre-trained CLIP [31] to embed observed mate-
rial components into a latent space, this process may dis-
rupt structural information in the observation. The impact
may be even greater when the structural information is al-
ready incomplete. Furthermore, this baseline generates ma-
terial maps under an object-specific UV mapping. Thus,
when the object is segmented into many small pieces in UV
space, unnatural results will be easily generated, as seen
on the rightest column of Figure 6. We randomly sampled
100 samples from the test set to calculate the FID, which
are 199.90/205.10/201.01/205.90 for ”ours/TF-Mat/AUV-
Mat/PUD-Mat,” with lower values preferred.

5.4. Ablation studies

In this section, we evaluate the effectiveness of each
module of our method. Our pipeline completes materials
on the point cloud first and then refines the material maps in
an aligned UV space. To evaluate the effectiveness of this
strategy, we experiment with two simplified versions of our
method, called ”w/o point material completion” and ”w/o
aligned UV mapping”. The ”w/o point material comple-
tion” configuration indicates that after establishing the cor-
respondence in 3D space, we map the estimated SVBRDF
from the images to the target UV space, so that we obtain
partial material maps directly. Then, we employ an image
completion network to complete the partial material maps.
The ”w/o aligned UV mapping” configuration indicates that
the material completion is processed in a shape-specific UV
mapping.

Input
image

Aligned
shape

Ours TF-Mat AUV-Mat PUD-Mat

Figure 6. Comparison of our method to three baselines. The figure
shows the input images and aligned shape (left two columns), re-
sults of our method (middle column), and results of three baselines
(right three columns). All results are rendered in the estimated il-
lumination. Note that our method can establish a robust 3D cor-
respondence between the input images and 3D shapes to generate
more reasonable results.

Figure 7 shows a sample of results generated by our full
pipeline and simplified versions. In this figure, we show the
input images and aligned shapes on the left, and the transfer
results by 3 different methods on the right. In each col-
umn of the results, we show the rendering of the shapes
with materials on the top and the generated material maps
on the bottom. Note that only half of the material maps
are shown in this figure. When compared to w/o point ma-
terial completion, we find that our full pipeline provides
more consistent results. Specifically, when inspecting the
”leg” (right) part of the generated maps, the result gener-
ated by the full pipeline is relatively pure black which is
more similar to the input image, while w/o point material
completion provides a more random color distribution. The
method maintains a smaller black part which is transferred
from the image, but fills the remaining part with brown and
white colors. We believe that first completing the materi-
als on the point clouds introduces a material distribution
prior from the 3D space, which improves material consis-
tency within different components. When compared to w/o
aligned UV mapping, we find that our full pipeline pro-
vides more reasonable material distributions. Specifically,
given the input image, we observe that the target object
has a white fabric-like material with higher roughness on
its upper half and a black wood-like material with lower
roughness on its lower half. Such distribution can be eas-
ily found in the full pipeline results (the second column),
where lighter orange indicates higher roughness and darker
orange indicates lower roughness. However, we do not see
such distributions in the results of w/o aligned UV mapping
(the forth column). Thus, we believe that the aligned UV
mapping introduces an implicit semantic prior in UV space,
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Figure 7. Ablation studies. The figure shows the input image and
aligned shape (left column) and results of our full pipeline and
simplified versions (right three columns). For each column, we
show the rendering of the target shape on top, and the SVBRDF
maps on the bottom. Note that our point cloud material completion
and aligned UV mapping help us to generate more consistent and
natural results.

which can help the networks to learn a reasonable material
distribution. The FIDs on 100 random sampled test cases
for ”ours / w/o point material completion / w/o aligned UV
mapping” are 199.90/201.15/225.55.

6. Discussion and future work

We presented a method for material transfer from single
scanned frames to aligned shapes based on estimated dense
correspondences. Our method first estimates object mate-
rials from images, then transfers them to the target shape
based on predicted correspondences, and finally completes
partial materials in UV space. We showed with qualita-
tive and quantitative evaluations that, compared to other
baseline methods, our method is more robust in handling
imperfect alignment and partial observations. As a conse-
quence, given scans and aligned shapes, our method can
automatically transfer materials to shapes and provide re-
alistic scenes which have both high-quality geometry and
high-fidelity appearance.

Limitations. Our method has certain limitations. Figure
8 shows example results that represent the main failures of
our method. Given input images with complex material pat-
terns, our method cannot obtain good results. Although the
material decomposition step can recognize these patterns,
the material completion network is unable to correctly rec-
ognize and complete these patterns during diffusion. We
also find that since our material completion network re-
quires training from scratch with 3D models that have high-
quality materials, our method may encounter overfitting for
other categories where such data is insufficient, resulting in
an inability to generate reasonable transfer results.

Future work. One direction for future work is to address
the limitations summarized in Figure 8. Training the ma-

Input Result Input Result

Figure 8. Representative failure cases of our method. Our method
fails to transfer materials with complex patterns to the target
shapes.

terial completion network with more shapes with diverse
appearance [12] may improve the completion ability of the
method. We can also use more powerful material decom-
position, transfer, and completion methods to achieve bet-
ter results in our whole pipeline. In addition, we can also
employ pre-trained image diffusion models [32, 35] to en-
hance the recognition and completion capability of material
patterns in UV space, which can also reduce the demand for
high-quality 3D training data, thereby improving the gener-
alization of our method across different categories.

Another interesting research direction is to transfer ma-
terials from multiple viewpoints of the object. There is no
doubt that multi-view observations provide more geometric
and appearance information about the target object, thus re-
ducing the difficulty of material completion. However, due
to different lighting conditions caused by different view-
points, ensuring consistency in material decomposition may
still be challenging.
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