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Abstract

Multi-source domain adaptation aims to transfer
knowledge from multiple source domains with varying
data distributions to a target domain. However, most
previous methods have overlooked the unique charac-
teristics of the target domain, leading to a decline in the
distinguishability of target domain features. In this pa-
per, we propose a Feature Disentanglement and Fusion
Model, termed as FDFM, which effectively leverages
target-domain-specific features. Specifically, FDFM
comprises a Feature Disentanglement block (FD) and
a Feature Fusion block (FF). FD disentangles features
into domain-invariant components and target-domain-
specific components. FF integrates these two compo-
nents to obtain more discriminative feature representa-
tions in the target domain. Furthermore, we design two
classifiers: one for learning from domain-invariant fea-
tures and another for learning from fused features with
pseudo-labels. The final prediction results are obtained
by integrating the outputs of all classifiers. We conduct
extensive experiments on four popular transfer learning
benchmark datasets, demonstrating that FDFM outper-
forms other state-of-the-art methods. For instance, we
achieve an average accuracy improvement from 74.4%
to 76.6% on the OFFICE-HOME dataset.

Keywords: Mutil-Source Domain Adaptation, Domain-
Specific Feature, Feature Fusion, Feature Disentangle-
ment.

1. Introduction

The inherent variability in data distribution poses a sig-
nificant obstacle to the pursuit of general artificial intelli-
gence. Specifically, artificial intelligence models struggle
to achieve consistent high performance, particularly when
confronted in scenarios involving data dispersed across two
domains: the source domain and the target domain, each
characterized by distinct distributions. Here, the source do-
main represents the training set, while the test set is de-
noted as the target domain[1]. While circumventing this
challenge is possible when the data in the target domain
is well-labeled by the data provider, real-world scenarios
often present the limitation of having only annotated data
in the source domain. Consequently, the training pro-
cess across these two domains becomes intractable. In re-
sponse, Domain Adaptation emerges as a viable solution,
proposed by pioneering researchers to enhance the model’s
performance on the target domain[2]. However, as the
number of data sources increases, single-domain adapta-
tion reveals its limitations in effectively addressing these
challenges[3]. Consequently, researchers have introduced
multi-source adaptation as a strategy to bolster the model’s
generalization capability across diverse data sources with
varying distributions[4, 5, 6].

To address the challenges arising from differences in
data distribution across multiple sources, several multi-
source domain adaptation methods have been introduced,
achieving notable performance milestones[7]. The funda-
mental concept of domain adaptation involves aligning the
distinct data distributions of source and target domains,
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thereby imbuing the data with domain-invariant represen-
tations. These representations, as suggested by Zhao et
al.[8], Amosy et al.[9], and Hoffman et al.[10], encapsulate
domain-invariant features in both the target and source do-
mains. Researchers anticipate that these domain-invariant
features, enriched with discernible characteristics from di-
verse sources, will enhance model performance. In pur-
suit of this objective, researchers have proposed a range
of methods for aligning features in multi-source domains.
Zhu et al.[11] introduced the Multi-Feature Space Align-
ment Network (MFSAN), a two-stage alignment method.
Recognizing the difficulty of establishing a common fea-
ture space for all domains as the number of source domains
increases, MFSAN first aligns the target domain with each
individual source domain in the initial stage. Subsequently,
in the second stage, MFSAN aligns the results from all clas-
sifiers. Another noteworthy approach is the Multi-Source
Contribution Learning for Domain Adaptation (MSCLDA)
presented by Li et al.[12] MSCLDA takes into account the
varying contributions of model performance across differ-
ent source domains, weighting the classifier based on the
dissimilarities between the source and target domains.

Revisiting the concept of domain adaptation, it involves
the acquisition of domain-invariant features in both the
source and target domains, facilitating the training of clas-
sifiers capable of generalizing across both domains[13, 14].
Traditional domain adaptation methods typically achieve
domain-invariant features by eliminating domain-specific
features[15, 16]. While extracting domain-invariant fea-
tures is an effective means of enhancing the model’s per-
formance on the target domain, this approach comes with
the drawback of discarding distinctive features inherent to
the target and source domains. Self-supervised learning and
contrastive learning methods have demonstrated the value
of these variant features by maximizing the dissimilarity
between features of different samples[17, 18, 19]. These
variant features harbor a wealth of information conducive to
categorization. In this paper, we term these variant features
specific to the target domain as domain-specific features.

Domain-specific features not only contain valuable in-
formation for tasks but also contribute to the discrimina-
tory power of features. Their removal results in a reduc-
tion of feature distinctiveness. Importantly, the presence
of domain-invariant features diminishes with an increas-
ing number of source domains[11]. Establishing a suit-
able common feature space is not only highly challenging
but also leads to a decrease in the discriminative capabil-
ity of the extracted features. Consequently, the elimination
of domain-specific features in multi-source domain adapta-
tion induces a more pronounced performance decline com-
pared to single-source domain adaptation. The incorpora-
tion of domain-specific features can enhance feature distinc-
tiveness to a certain extent. However, prior methods have

largely overlooked the significance of domain-specific fea-
tures, consequently falling short of achieving optimal per-
formance.

This paper introduces a novel feature disentanglement
and fusion model designed to effectively incorporate target
domain-specific features and enhance feature discriminabil-
ity. Our model comprises three key components. Firstly, the
feature extraction module employs a public feature extrac-
tor, initially extracting features. Subsequently, it separates
domain-invariant features and domain-specific features by
combining the features through both a common feature ex-
traction network and a specific feature extraction network.
The second component is the feature fusion module, where
domain-invariant features from the source domain are com-
bined with specific features from the target domain to pro-
duce a more discriminative feature representation in the
target domain. Finally, the classification module employs
pseudo-labels to guide the classifier in learning from the
fusion features, resulting in robust classification outcomes.
Additionally, we integrate all classifiers to derive the final
predicted labels.

The primary contributions of this paper can be delineated
as follows:

• We introduce an innovative multi-source domain adap-
tation model that utilizes feature disentanglement
to effectively separate domain-specific and domain-
invariant features.

• We employ an unsupervised fusion feature mechanism
to acquire a more discriminative feature representa-
tion. Notably, our model demonstrates effective clas-
sifier training even in the absence of target domain la-
bels.

• We have conducted comprehensive experiments on
four benchmark datasets, and the simulation results
demonstrate that our model achieves state-of-the-art
performance.

The structure of this paper is organized as follows. Sec-
tion 2 provides a review of related work pertinent to the
topics discussed herein. In Section 3, the proposed method
is elucidated in detail. Section 4 presents and analyzes the
simulation experimental results of our model across three
benchmark datasets. Finally, in Section 5, we summarize
our model and offer a discussion on potential avenues for
future research.

2. Related Works

In this section, we delve into related research, specifi-
cally focusing on single-source unsupervised domain adap-
tation methods (SUDA) and multi-source unsupervised do-
main adaptation methods (MUDA).



2.1. Sigle-source domain adaptation

In recent years, single-source unsupervised domain
adaptation has emerged as a prominent solution for mitigat-
ing data distribution disparities across domains. Depending
on the settings, two predominant approaches characterize
SUDA. The first is Max Mean Discrepancy (MMD)-based
domain adaptation[20, 21, 22, 23], and the second involves
is adversarial network-based domain adaptation[24, 25, 26,
27].

MMD-based approaches extend deep neural networks
for domain adaptation by incorporating adaptation layers
that align the mean embedding of distributions. The in-
troduction of MMD into domain adaptation was pioneered
by Tzeng et al.[28], who computed the MMD loss between
source and target domains before the last fully connected
layer, co-optimizing it with the classification loss. Long et
al.[29] further extended MMD with the introduction of the
Deep Adaptation Network (DAN), utilizing Multi-Kernel
MMD (MK-MMD). MK-MMD employs multiple kernels
on the foundation of MMD to adapt the embedding of
source and target domains. Conversely, Zhu et al.[30] con-
sidered both global and local domain alignment in the adap-
tation process, proposing the Deep Subdomain Adaptation
Network (DSAN) based on Local Maximum Mean Discrep-
ancy (LMMD). LMMD accommodates class-level distribu-
tional alignment without necessitating specific training.

The adversarial network-based domain adaptation ap-
proach trains networks by incorporating a discriminator into
the model. Precisely, the discriminator guides the fea-
ture extractor to extract domain-invariant features by deter-
mining whether features originate from the source or tar-
get domain, and both components are trained adversari-
ally. Ganin et al.[24] introduced a discriminator in deep
networks, employing adversarial training to train the net-
work and the discriminator concurrently. The discriminator
assesses whether the distributions of features extracted by
the network are equivalent, resulting in features with simi-
lar distributions in the source and target domains. Similar
to DSAN, Wang et al.[31] simultaneously align global and
local feature distributions through an adversarial approach.
Chen et al.[32] introduced Batch Spectral Penization (BSP)
into adversarial adaptation to mitigate the discriminative re-
duction of features induced by adversarial training.

Despite the remarkable achievements of previous single-
source domain adaptation methods, they exhibit limitations
when confronted with multiple data sources.

2.2. Multi-source domain adaptation

As the ability to collect information grows, data em-
anates from diverse sources. Single-source domain adap-
tation algorithms fall short of meeting the realistic demands
posed by this diversity. Consequently, multi-source domain
adaptation algorithms emerge as a promising technique[33,

34, 35].
Multi-source domain adaptation leverages various tech-

niques such as ensemble learning, attention mechanisms,
etc., to effectively harness information from multiple source
domain data[36, 37, 38]. Deng et al.[39] introduced the
attention mechanism into multi-source domain adaptation,
directing the model to focus on features with transferabil-
ity. Xu et al.[40] employed a graphical structure to jointly
model relationships between instances/categories for mul-
tiple source domains and target domains, proposing both
Conditional Random Field (CRF-MSDA) and Markov Ran-
dom Field (MRF-MSDA). Concerning the aspect of multi-
source domain adaptive privacy-preserving policy, Feng et
al.[41] achieved domain adaptation through knowledge dis-
tillation of models from different source domains. Mancini
et al.[42] addressed the limitations and inconsistencies of
traditional methods by introducing graphs into multi-source
domain adaptation, enabling both predictive domain adap-
tation and continuous domain adaptation.

Despite the comprehensive exploration of multi-source
domain adaptation in the aforementioned methods, there
has been a notable neglect of target domain-specific fea-
tures, which have the potential to significantly enhance the
discriminative power of features.

3. Method

In this section, we articulate the problem definition and
elucidate the constituents of our model. Our model com-
prises three key components outlined as follows: 1) Base
feature extractor; 2) Domain-invariant/specific feature ex-
tractor and feature fusion; and 3) Classifier and ensemble, as
depicted in Fig. 1. The role of the Base feature extractor is
to extract the base features of samples, encompassing both
domain-invariant and domain-specific features, thereby al-
leviating the challenge of identifying a potential common
feature space for source and target domains. In the Domain-
invariant/specific feature extractor and feature fusion stage,
our model extracts target domain-specific features and all
domain-invariant features. The fusion of these two features
is geared towards providing an enhanced feature represen-
tation for the final classification stage. In the Classification
and ensemble stage, we classify samples based on the fea-
ture representations obtained in the prior stage and employ
ensemble techniques on classifiers trained across multiple
source domains to enhance the final classification results.

3.1. Problem Statement

In the MUDA setting, our objective is to integrate in-
formation from multiple source domains to enhance the
model’s performance on the target domain. We are pro-
vided with access to data Xt from the target domain Dt, but
not to the corresponding labels. Denoting Dt = {(Xt)} =
{(xt

i)}
nt

i=1, where nt is the number of samples in the tar-



Figure 1. The overall of our model.

get domain. For all K source domains {Dsk}
K
k=1, we have

complete access to their labels Ysk and data Xsk , denoted
as Dsk = {(Ysk , Xsk)} = {(xsk

i , yski )}nsk
i=1, where nsk is

the number of samples in the k-th source domain. Let the
feature space be denoted asXsk = Xt. The data distribution
Dsk and Dt exhibit discrepancies, namely p ̸= q. The pri-
mary objective of the Feature Disentanglement and Fusion
Model (FDFM) is to train a model FDFM(·) capable of
combining domain-invariant and domain-specific features
extracted from multi-source and target domains. This aims
to mitigate the impact of data distribution differences on the
model in the target domain.

3.2. Domain Base Feature Extractor

Seeking a common feature space for diverse data is not
suitable, particularly as the variation between data distribu-
tions in different domains increases, a phenomenon exac-
erbated with a higher number of domains. The substantial
disparities in data distribution render domain-invariant fea-
tures sparse across all domains. In the pursuit of extracting
domain-invariant features for all domains, the feature ex-
tractor tends to overlook a significant number of discrimi-
native features. Consequently, not only is it challenging to
identify a common feature space for all domains, but it also
leads to the loss of discriminative features.

To circumvent this challenge, we employ a Domain Base
Feature Extractor, which identifies a common feature space

for each pair of source and target domains. By increasing
the number of common feature spaces, we aim to alleviate
the difficulty of finding a single common feature space and
maximize the retention of discriminable features. The Do-
main Base Feature Extractor consists of two components:
a Base Feature Extractor f(·) and multiple Domain Fea-
ture Extractors hj(·). The base feature extractor is tasked
with extracting low-level base features for all domains. In-
tuitively, using multiple base feature extractors for each pair
of source and target domains seems beneficial. However,
given that feature extractors are typically implemented us-
ing large deep networks, using a single base feature extrac-
tor for all domains effectively reduces computational re-
sources. The process of feature extraction by the base fea-
ture extractor can be represented as xb = f(x), where x
is the data from a source or target domain, xb is the base
feature extracted by the base feature extractor, and f(·) is
the base feature extractor. Domain feature extractors aim
to identify a suitable feature space for each pair of source
and target domains to capture domain features containing
both domain-invariant and domain-specific features. These
domain feature extractors are designed as simple Convo-
lutional Neural Networks (CNN) with fewer convolutional
layers. The process of domain feature extraction by domain
feature extractors can be represented as xd = hk(x

b), where
hk(·) is the k-th domain feature extractor, and xd is the k-th
source or target domain feature.



3.3. Feature Disentanglement

The domain feature comprises both domain-invariant
and domain-specific features. To effectively utilize the
domain-specific features, it is crucial to separate these fea-
tures, a process known as feature disentanglement. Fea-
ture disentanglement enhances the focus of each block in
the network on its designated task. For this purpose, we in-
troduce the Feature Disentanglement Block (FD), consist-
ing of two simple CNNs as illustrated in Figure 1. The up-
per CNN is responsible for extracting domain-invariant fea-
tures, denoted as the invariant-CNN, while the lower CNN
extracts domain-specific features, known as the specific-
CNN. The input to the invariant-CNN is the domain features
of the source and target domains. The process can be rep-
resented as xinvariant = ICNN(xd), where ICNN(·) is
the invariant-CNN, and xinvariant is the domain-invariant
feature. To measure the distance between domain distribu-
tions, we introduce Maximum Mean Discrepancy (MMD).
MMD maps different domain sample feature distributions
into the Reproducing Kernel Hilbert Space (RKHS) and
computes their mean distances. By minimizing the mean
embedding distance between them, we constrain the feature
extractor to extract domain-invariant features. The calcula-
tion of MMD is expressed as follows:

dmmd(p, q) ≜
∥∥Exs∼p [ϕ (xs)]−Ext∼q

[
ϕ
(
xt
)]∥∥2

H ,
(1)

Here,H represents the RKHS equipped with a character-
istic kernel, kernel (Xs, Xt) =< ϕ (Xs) , ϕ (Xt) >, where
< ·, · > denotes the inner product of vectors, ϕ(·) signifies
the mapping from a feature distribution to RKHS, and p and
q are the distributions of xs and xt, respectively. Typically,
the empirical estimate of MMD, dmmd(p, q), can be further
factorized as follows:

d̂mmd(p, q) =

∥∥∥∥∥∥ 1

ns

∑
xi∈Ds

ϕ (xi)−
1

nt

∑
xj∈Dt

ϕ (xj)

∥∥∥∥∥∥
2

H

=
1

n2
s

ns∑
i=1

ns∑
j=1

k
(
xs
i , x

s
j

)
+

1

n2
t

nt∑
i=1

nt∑
j=1

k
(
xt
i, x

t
j

)
− 2

nsnt

ns∑
i=1

nt∑
j=1

k
(
xs
i , x

t
j

)
.

(2)
In summary, the MMD loss of our model can be calcu-

lated as follows:

Lmmd =

K∑
j=1

d̂mmd(p, q)(f(hj(xsj )), f(hj(xt))) (3)

For domain-specific features, we consider domain fea-
tures to be composed of two parts: domain-invariant fea-
tures and domain-specific features. In other words, domain-
specific features can be obtained by removing domain-
invariant features from domain features. To obtain domain-
specific features from domain features, we aim to maxi-
mize the distance between domain-invariant features and
domain-specific features. We utilize cosine similarity to
measure this distance. Cosine similarity is a metric that cal-
culates the angle between two vectors in a multidimensional
space, serving as a measure of similarity between two fea-
ture vectors. When considering two feature vectors A and
B, each feature vector can be conceptualized as a vector in
a high-dimensional space, where each dimension represents
a specific feature, and the value of that feature represents
the value of that dimension. Consequently, if two eigen-
vectors exhibit similar values in the same dimension, these
vectors will be less angular in the space, resulting in higher
cosine similarity. This metric takes into account not only
the values of the features in the feature vector but also the
relationships between the features. It finds utility in vari-
ous scenarios where the similarity of features needs to be
compared. The cosine similarity is calculated as follows:

cos(A,B) =
A ·B
∥A∥∥B∥

=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(4)

We employ specific-CNN to extract domain-specific fea-
tures from the domain features by calculating the cosine
similarity between the domain-specific features and the
domain-invariant features of the target domain. To ensure
that the specific-CNN efficiently extracts domain-specific
features, we constrain it by maximizing the cosine similar-
ity between these features. This process can be represented
as xspecific

t = SCNN(xd
t ), where xspecific

t is the target
domain-specific feature, xd

t is the domain feature of the tar-
get domain, and SCNN(·) is the specific-CNN. The cosine
similarity loss can be expressed as follows:

Lcos = 1− cos(SCNN(xd
t ), ICNN(xd

t )) (5)

3.4. Feature Fusion and Classification

As we lack labels for the target domain data, direct uti-
lization of target domain-specific features is not feasible. To
fully leverage the target domain-specific features, we em-
ploy the Feature Fusion Block (FF) mechanism. Feature fu-
sion mechanisms have demonstrated advantages in various
image classification scenarios, combining features from dif-
ferent layers or branches to provide more robust features for
the classifier. There are several main types of feature fusion
mechanisms: 1) Concatenation: Multiple feature maps are
concatenated in the depth dimension to create a more com-
prehensive representation of features. For example, in the



encoder and decoder, low-level features in the encoder and
high-level features in the decoder are concatenated, enhanc-
ing the perceptual ability of the decoder. 2) Summation:
Summing involves adding multiple feature maps element-
wise to obtain the average value of the features. 3) Multipli-
cation: Multiplying multiple feature maps element-wise en-
hances the semantic information of the features while pre-
serving detail information. 4) Attention Mechanism: The
attention mechanism improves the response of important
features by learning a set of weights to weight features at
different scales. 5) Pyramid Pooling: Features at different
scales are pyramid pooled to obtain feature representations
at various scales, and more. Here, we opt for the simple yet
effective concatenation method for feature fusion. Specifi-
cally, we concatenate the source domain-invariant features
(size: BN ) with the target domain-specific features (size:
BN ) to obtain fused features (size: B2N ). At this point,
the labels associated with the hybrid features transition from
hard labels to soft labels.

In the soft labels of fused features, accurate labels for
the source domain can be obtained, while the labels for the
target domain are unavailable. To address this, we introduce
another classifier, the Invariant Feature Classifier, to assist
in obtaining the target domain label. The Invariant Feature
Classifier is trained with data and labels from the source
domain, and we use cross-entropy to optimize it. This can
be expressed as:

Linvariant = Lce(IFC (f(hj (x
sk))) , ysk) (6)

Here, Lce denotes the cross-entropy loss, K is the num-
ber of source domains, and IFC(·) represents the Invariant
Feature Classifier. Subsequently, we constrain the classifier
(Specific Feature Classifier) to yield a classification result
similar to the Invariant Feature Classifier. We use the L1

loss loss to compute the similarity between them, expressed
as:

L1 = L1(SFC(xspecific
t ), IFC(xinvariant

t )) (7)

Here, L1(·, ·) denotes the L1 loss, and SFC(·) repre-
sents the Specific Feature Classifier. For the part corre-
sponding to the source domain in soft labels, we train the
Specific Feature Classifier with the labels and data of the
source domain. This can be expressed as:

Lcls = Lce(SFC (f(hj (x
sk))) , ysk)) (8)

In summary, the final classification loss of the Specific Fea-
ture Classifier can be obtained as follows:

Lspecific = Lcls + L1 (9)

To enhance the performance of the Invariant Feature
Classifier, we aim for consistent classification results across

all target domain data on different classifiers. We employ
an L1 loss constraint to ensure similarity among the results
obtained by all Invariant Feature Classifiers. This process
can be expressed as:

Ldisc =
2

K × (K − 1)

K−1∑
j=1

K∑
i=n+1

Ex∼Xt
[| IFCi (f(hi (x

sj )))

−IFCj (f(hj (x
sj )))) |]

(10)
Here, IFCi and IFCj represent the Invariant Feature

Classifier of the i-th and j-th source domains, respectively.
Finally, we average the weighted outputs of all classifiers to
obtain the final classification result.

3.5. Overall of Model

Algorithm 1 FDFM

Input: Data: K source domains Dsk = {(xsk
i , yski )}nsk

i=1

and target domain Dt =
{
xt
j

}nt

j=1
. Networks: FDFM

model M . Parameters: hyperparameter α.
Output: The optimal FDFM M .

1: for n to N do
2: fd

sk
← hk(f(x

sk
i )); fd

tk
← hk(f(x

t
j)).

3: f invariant
sk

← ICNNk(f
d
sk
); f invariant

tk
←

ICNNk(f
d
tk
); fspecific

tk
← SCNNk(f

d
tk
).

4: Calculate Lmmd in Eq. (3) with each pair of
f invariant
sk

and f invariant
tk

.
5: Calculate Lcos in Eq. (5) with each pair of

f invariant
tk

and fspecific
tk

.
6: Concatenate fspecific

tk
and f invariant

sk
to obtain

ffusion
sk

.
7: ysk ← IFC(f invariant

sk
); yfusionsk

←
SFC(ffusion

sk
).

8: Calculate Linvariant, Lspecific and Ldisc, in Eq.
(6), Eq. (9) and Eq. (10).

9: Compute Ltotal in Eq.(11)
10: Update parameters of M by minimizing Ltotal.
11: end for
12: return M .

In the context of multi-source domains, extracting fea-
tures with strong discriminability is challenging. Addi-
tionally, domain adaptation in both source and target do-
mains leads to a loss of discriminability in the extracted
features. To address this, we propose the Feature Disen-
tanglement and Fusion Model. In FDFM, we leverage dis-
entangled domain features to extract domain-specific fea-
tures, and collaboratively enhance the model’s classifica-
tion performance through a feature fusion mechanism. Our
model comprises a base feature extractor, N domain fea-
ture extractors, N FD blocks, and 2N classifiers, as depicted



in Figure 1. Generally, our features encompass four com-
ponents: source domain classification loss Linvariant, do-
main adaptation loss Lmmd, feature disentanglement loss
Lfd = Lcos+Lspecific and classifier alignment loss Ldisc.
The overall optimized loss of our model is expressed as:

Ltotal = αLinvariant+(1−α)(Lmmd+Lfd+Ldisc) (11)

In the equation, α is a hyperparameter that governs the
weighting between the source-domain classification loss
and the other losses. The pseudo-code for our model is
shown in Algorithm 1.

4. Experiment

In this section, we assess the effectiveness of our
model against other state-of-the-art adaptation models on
four datasets, namely Office-Home, Office-CALTECH10,
Office-31, and PACS.

4.1. Data sets and Setup

Office-Home[43] is a widely used dataset for transfer
learning, consisting of four domains: Art (Ar), Clipart (Cl),
Product (Pr), and Real World (Rw). Each domain in Office-
Home contains 65 categories, totaling 15,500 images. We
formulate four tasks for multi-source domain adaptation,
where three domains act as source domains, and one do-
main serves as the target domain. The tasks are struc-
tured as follows: Ar,Cl, Pr → Rw; Ar,Cl,Rw → Pr;
Ar,Rw, Pr → Cl and Rw,Cl, Pr → Ar.

Office-CALTECH-10[44] comprises 10 categories
from the Amazon (A), Webcam (W), DSLR (D), and Cal-
tech256 (C) image domains. Each category consists of sam-
ples ranging from 8 to 151, resulting in a total of 2,533 im-
ages. Similarly, we have devised four tasks for multi-source
domain adaptation to assess our model: A,W,D → C;
A,W,C → D; A,C,D →W and C,W,D → A.

Office-31[45], a widely recognized dataset in the realm
of transfer learning, comprises 4,652 images of 31 differ-
ent objects commonly found in office settings, such as lap-
tops, filing cabinets, keyboards, and so on. The images pri-
marily come from Amazon (A), Webcam (W), and DSLR
(D). These images are predominantly sourced from online
e-commerce images, low-resolution images taken by web-
cams, and high-resolution images captured by DSLR cam-
eras. We evaluated our model on three tasks: A,W → D;
A,D →W and D,W → A.

PACS[46] is a significant transfer learning dataset with a
total of 9,991 images distributed across 7 categories: Dog,
Elephant, Giraffe, Guitar, Horse, House, Person, organized
into 4 domains: Art painting (A), Cartoon (C), Photo (P),
and Sketch (S). We evaluated our model on the follow-
ing tasks independently: A,C, P → S; A,C, S → P ;
A,S, P → C and S,C, P → A.

Setup: In the setup section, we followed the approach
of MFSAN[11] to report the average classification accu-
racy across five random trials. We conducted three stan-
dard comparisons: 1) Single Best: This reports the op-
timal results among multiple single-source domain adap-
tations in the multi-source domain, contrasting the upper
bounds of single-source and multi-source domain adapta-
tion. 2) Source Combine: This merges different source do-
mains into one, regardless of the distribution variance. 3)
Multi-Source: This compares the classification outcomes
of multi-source domain adaptation methods. We compared
our model with cutting-edge algorithms designed for image
classification problems. Our model was implemented us-
ing the PyTorch framework, with an initial learning rate set
at 0.002, which decreased over iterations. We utilized the
SGD optimizer with a momentum of 0.9. The backbone
network for feature extraction was ResNet50[47]. For other
algorithms, ResNet50 also served as the backbone network.
We set a learning rate of 0.002 and used SGD as the opti-
mizer in these models. For all MMD-based methods, we
employed a Gaussian kernel with the bandwidth set to the
median pairwise squared distances on the training data.

Table 1. Performance Comparison of Classification Accuracy (%)
on The Office-Home Dataset.

Standards Method Ar,Cl,Pr-Rw Ar,Cl,Rw-Pr Ar,Pr,Rw-Cl Cl,Pr,Rw-Ar AVG

Single Best

ResNet[47] 75.4 79.7 49.6 65.3 67.5
DDC[28] 75.0 78.2 50.8 64.1 67.0
DAN[29] 75.9 80.3 56.5 68.2 70.2

D-CORAL[48] 76.3 80.3 53.6 67.0 69.3
RevGrad[49] 75.8 80.4 55.9 67.9 70
MRAN[50] 77.5 82.2 60.0 70.4 72.5
MDDA[51] 77.8 81.8 57.6 67.9 71.3
DDAN[52] 72.7 78.9 56.6 65.1 68.3
ALDA[53] 77.1 82.1 56.3 70.2 71.4

Source Combine
DAN[29] 82.5 79.0 59.4 68.5 72.4

D-CORAL[48] 82.7 79.5 58.6 68.1 72.2
RevGrad[49] 82.7 79.5 59.1 68.4 72.4

Multi-Source

MFSAN[11] 81.8 80.3 62.0 72.1 74.1
MetaMDA[54] 83.4 81.2 60.5 70.2 73.8
MSCLDA[12] 80.6 79.9 61.4 71.6 73.4

DCA[55] 81.4 80.5 63.6 72.1 74.4
Ours 84.1 83.7 64.6 74.1 76.6

4.2. Results

The experimental results for Office-Home, Office-31,
Office-CALTECH10, and PACS are collectively presented
in Tables 1-4. It is evident that our model consistently out-
performs existing models across most transfer tasks. No-
tably, our model demonstrates a significant improvement in
the average result, enhancing it from 74.4% to 76.6% on
the Office-Home dataset. These results affirm the effective-
ness of our model in extracting domain-specific features to
enhance feature discriminability.

The experimental results unveiled several noteworthy
observations.

• In standard domain adaptation experiments, multi-
source domain adaptation models consistently outper-



Table 2. Performance Comparison of Classification Accuracy (%)
on The Office-31 Dataset.

Standards Method A,W-D A,D-W D,W-A AVG

Single Best

ResNet[47] 99.3 96.7 62.5 86.2
DDC[28] 98.2 95 67.4 86.9
DAN[29] 99.5 96.8 66.7 87.7

D-CORAL[48] 99.7 98 65.3 87.7
RevGrad[49] 99.1 96.9 68.2 88.1

RTN[21] 99.4 96.8 66.2 87.5
MRAN[50] 99.8 96.9 70.9 89.2
MDDA[51] 99.2 97.1 73.2 89.8
DDAN[52] 100.0 96.7 65.3 87.3
ALDA[53] 100.0 97.7 72.5 90.1
MADA[56] 99.6 97.4 70.3 89.1

TCA[57] 95.2 93.2 51.6 80.0
GFK[58] 95.0 95.6 52.4 81.0

DRCN[59] 99.0 96.4 56.0 83.8

Source Combine—

DAN[29] 99.6 97.8 67.6 88.3
D-CORAL[48] 99.3 98.0 67.1 88.1
RevGrad[49] 99.7 98.1 67.6 88.5
DCTN[60] 99.3 98.2 64.2 87.2

Multi-Source

MFSAN[11] 99.5 98.5 72.7 90.2
MSCLDA[12] 99.8 98.8 73.7 90.8

DCA[55] 99.6 98.9 75.1 91.2
Ours 99.8 98.9 74.1 90.9

Table 3. Performance Comparison of Classification Accuracy (%)
on OFFICE-CALTECH10 Dataset.

Standards Method A,D,W-C C,D,W-A A,C,D-W A,C,W-D AVG

Single Best
ResNet[47] 82.5 91.2 98.9 99.2 93.0
ADDA[25] 88.8 94.5 99.1 98 95.1

CyCADA[26] 89.7 96.2 98.9 97.3 95.5

Source Combine

DAN[29] 89.7 94.8 99.3 98.2 95.5
ADDA[25] 90.2 95.0 99.4 98.2 95.7

CyCADA[26] 91.0 95.9 99.0 97.8 95.9
DCTN[60] 90.2 92.7 99.4 99.0 95.3

Multi-Source

M3SDA[61] 92.2 94.5 99.5 98.2 96.1
MFSAN[11] 93.8 95.1 99.1 98.7 96.7

MSCLDA[12] 94.1 95.3 99.1 98.5 96.8
DCA[55] 94.7 96.0 99.7 99.1 97.4

Ours 95.6 96.0 99.4 100.0 97.8

Table 4. Performance Comparison of Classification Accuracy (%)
on The PACS Dataset.

Methods A C P S Avg
ResNet[47] 81.22 78.54 95.45 72.54 81.94
MDAN[62] 83.54 82.34 92.91 72.42 82.80
DCTN[60] 84.67 86.72 95.60 71.84 84.71

M3SDA[61] 84.20 85.68 94.47 74.62 84.74
MDDA[62] 86.73 86.24 93.89 77.56 86.11

LtC-MSDA[63] 90.19 90.47 97.23 81.53 89.85
DAC-Net[39] 91.39 91.39 97.93 84.97 91.42

Ours 92.24 92.40 98.08 84.65 91.84

formed their single-source counterparts in both the sin-
gle best and source combined scenarios. This outcome
underscores the ability of multi-source domain adap-
tive models to effectively leverage features from di-
verse domains, as opposed to a mere combination in
single-source adaptation models.

• Notably, in comparison to models lacking domain-
specific features, such as DCA, M3SDA, MetaMDA,
and MFSAN (which shares a similar structure with our
model), our experimental results demonstrate a sub-

Table 5. Performance Comparison of Classification Accuracy (%)
on OFFICE-Home Dataset With Different Loss.
Lmmd Lcos Lspecific Rw Pr Cl Ar Avg
✓ ✓ ✓ 84.1 83.7 64.6 74.1 76.7

✓ ✓ 83.6 82.7 64.2 73.6 76.0
✓ ✓ 83.2 82.2 63.4 73.3 75.5
✓ ✓ 80.9 81.6 62.4 72.6 74.4

80.8 79.5 59.6 68.2 72.0

stantial improvement. This suggests that the inclusion
of domain-specific features in our model effectively
enhances the feature representation. While prior meth-
ods overlook the considerable discriminative informa-
tion within target domain-specific features, our model
adeptly utilizes this information, enhancing feature
discriminability through a feature fusion approach.

• Our model is compared against a range of recent state-
of-the-art (SOTA) models, and the results consistently
highlight the effectiveness of our approach.

• In contrast to the MSCLDA model, which relies on
weighting based on the different contributions of the
source domains, our model employs a feature fusion
mechanism to combine domain-invariant and domain-
specific features at the feature level. Experimental re-
sults demonstrate that our feature fusion mechanism is
more effective when compared to other methods.

• For the experiments on the Office-31 dataset, although
our model achieved the best results on both tasks, it
performed slightly worse on one task and the average
result. This discrepancy may be attributed to the fact
that the Office-31 dataset has only three domains, re-
sulting in a smaller number of source domains com-
pared to the other datasets. This smaller dataset size
may lead to increased errors in our model when pre-
dicting domain-specific feature labels.

The aforementioned outcomes collectively illustrate the
efficacy of our model in addressing multi-source domain
adaptation tasks.

4.3. Analysis

To comprehensively investigate our model, we con-
ducted a series of supplementary experiments and analyzed
the obtained results.

• Ablation Study: To assess the contribution of each
module in our model, we conducted ablation experi-
ments on four tasks using the Office-Home dataset, and
the results are presented in Table 5. We established
the average-weighted multi-source domain classifica-
tion model as the baseline, involving solely the clas-
sification loss, without incorporating Lmmd, Lcos,



MFSAN

Rw → Pr

JANResNet50 DAN Ours

Ar → Pr

Cl → Pr

Figure 2. The visualization of feature representations learned on Office-Home. The color of the source samples are blue and the color of
the target samples is red.

and Lspecific. A comparison between the first and
fourth rows indicates a 2.3% reduction in accuracy
after the exclusion of Lspecific, underscoring the
significant enhancement in performance provided by
domain-specific features. Additionally, the compari-
son between the second and third rows reveals that fea-
ture disentanglement encourages blocks to focus more
on their respective tasks, demonstrating that Lcos can,
to some extent, replace Lmmd. Experiments show
that the combination from three different losses exem-
plifies the superiority of our model.

• Feature Visualization: To delve deeper into the trans-
fer capabilities of our model, we visualized the fea-
tures using t-SNE embedding learning, as illustrated in
Fig. 2. Our experiments were conducted on the Office-
Home dataset, and we compared our model with
the standard baseline model ResNet50, the traditional
single-source domain adaptation model JAN[64], the
deep single-source domain adaptation model DAN,
and the deep multi-source domain adaptation model
MFSAN. In Fig. 2, target domain samples are denoted
by blue points, while red points represent source do-
main samples. The experimental results reveal that
our model exhibits an enhanced feature alignment
capability in comparison to other models. Specifi-
cally, ResNet50 demonstrates inferior alignment com-

pared to other models, while the multi-source domain
adaptation model MFSAN exhibits superior alignment
compared to JAN and DAN. In feature visualization,
our model demonstrates smaller intra-class distances
and larger inter-class distances compared to other
methods. This is attributed to our model’s ability to
prompt the domain-invariant feature extractor to focus
more on domain-invariant features through feature dis-
entanglement.

• Fusion Feature Validity: To assess the efficacy of the
feature fusion block and fusion features in our model,
we tracked the number of correct samples with differ-
ent feature-based classifiers in domains Ar and Cl for
the task Ar,Cl,Rw → Pr within the Office-Home
dataset. The experimental results, depicted in Fig. 4,
showcase the number of correct samples for the clas-
sifier based on fusion features in orange, while the
blue denotes the number of correct samples based on
domain-invariant features. Figures 4 exhibit a sim-
ilar trend. In the early stages of training, the cor-
rect samples of the fusion feature-based classifier re-
main at a low level, owing to the initial imprecision of
the soft labels. However, as the number of iterations
increases, the fusion feature-based classifier’s correct
samples surpass those of the domain-invariant feature-
based classifier. In the final stages, the number of



Figure 3. The number of samples correctly classified by different
classifiers in the Art and Clipart domains on the Product is the
target domain task.

correct samples for the domain-invariant feature-based
classifier gradually converges, highlighting the advan-
tage of feature disentanglement. Classifiers based on
fusion features maintain a slight lead. These experi-
mental results comprehensively demonstrate the effec-
tiveness of our model’s feature fusion mechanism.

• Convergence: To illustrate the convergence of
our model, we plotted loss curves for the task
Ar,Cl,Rw → Pr on the Office-Home dataset, as de-
picted in Fig. 5. Our model’s loss exhibits a signif-
icant decline in the initial stages of training and be-
gins to stabilize around 1000 iterations, maintaining
this trend until the completion of training. These ex-
perimental results provide additional evidence of the
enhanced convergence and stability of our model.

• Hyperparameter Setting: In our exploration of hyper-

Figure 4. The loss of our model for task Ar,Cl,Rw → Pr on the
Office-Home dataset.

Figure 5. The accuracy of our model with different α.

parameters, we varied the values for α within the set
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The model’s
accuracy in the Ar,Cl,Rw → Pr task on the Office-
Home dataset was recorded. The results, presented in
Fig. 6, exhibit a bell-shaped curve, with accuracy ini-
tially increasing and then decreasing. Consequently,
we selected α = 0.6 as the optimal value, producing
the most favorable results for our model.

5. Conclusion and Discussion

Existing adaptation methods have predominantly em-
phasized the extraction of domain-invariant features, ne-
glecting the significance of target domain-specific features.
This paper introduces a novel multi-source domain adap-
tation approach grounded in feature disentanglement and



fusion. By employing a self-supervised technique, we ex-
tract target domain-specific features and leverage a feature
fusion mechanism to augment feature representation. Ex-
tensive experiments on four benchmark datasets affirm the
efficacy of our proposed model.
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