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Abstract

With the development of data collection and storage
technologies, high-dimensional time series data has be-
come increasingly prevalent in various scenarios. Time
series data visualization, which intuitively depicts the
dynamic changes in such data through graphical repre-
sentations, has become an important research direction
in data science and information visualization. Existing
static data visualization methods have limitations, such
as inconsistent projection results, while current time se-
ries visualization techniques, including Joint t-SNE, suf-
fer from high computational complexity. To address
these issues, we propose Joint UMAP. We first intro-
duce a Graphlet Frequency Distribution (GFD) to cap-
ture similarities between data points in adjacent time
frames and then integrate a new vector constraint into
UMAP’s loss function to preserve inherited structures in
the high-dimensional data space, ensuring consistency
in subsequent projections. Using both synthetic and
real-world datasets, we demonstrate that Joint UMAP
outperforms existing techniques in terms of Local Co-
herence Error (LCE) and Cross-Entropy (CE). By elim-
inating the global dependency of projection results dur-
ing optimization, Joint UMAP is particularly advanta-
geous in dynamic scenarios where datasets change over
time.

Keywords: Dimensionality Reduction High-
dimensional Data Visualization Time-oriented Data
UMAP.

1. Introduction

In the fields of data science and machine learning, high-
dimensional data visualization[18] is a crucial task. Some
traditional data visualization techniques[8], such as pie
charts, graphs, maps, and heat maps, are suitable for both
conventional data and large datasets to some extent. How-
ever, as the dimensions of data increase, more special-
ized visualization tools are required for advanced visual-
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ization of massive datasets. High-dimensional data visu-
alization techniques map high-dimensional data to lower-
dimensional spaces, simplifying the complexity of the data.
This allows us to intuitively observe patterns, relation-
ships, and anomalies within the data in a low-dimensional
space, thereby helping us to understand the structure and
patterns of the data more clearly. Consequently, re-
searchers have proposed various dimensionality reduction
visualization methods, such as PCA (Principal Component
Analysis)[15], LLE (Locally Linear Embedding)[25], and
MDS (Multidimensional Scaling)[5], t-SNE(t-Stochastic
Neighbor Embedding)[29], UMAP(Uniform Manifold Ap-
proximation and Projection)[20], etc.. These algorithms
have demonstrated excellent performance in visualizing
high-dimensional data, revealing the inherent structure and
patterns within the data.

With the advancement of data collection and storage
technologies, various time series data have emerged in nu-
merous fields, such as financial market data[28], sensor
data[16], medical monitoring data[27]. These datasets are
vast in quantity and update rapidly. Time series data visual-
ization has become increasingly important and has evolved
into a significant research direction in data science and in-
formation visualization. The goal of time series data visual-
ization is to use time as a dimension to showcase the trends
and patterns in the data, often through intuitive graphical
representations that depict the dynamic changes in time se-
ries data, such as dynamic graph drawing[34, 17]. In recent
years, researchers have proposed many effective visualiza-
tion techniques to enable users to quickly understand the
dynamic characteristics of time-oriented data. According
to[1], current time-oriented data visualization techniques
are diverse and can be broadly categorized into abstract
or spatial, univariate or multivariate, linear or cyclical, in-
stantaneous or interval-based, static or dynamic, and 2D or
3D visualizations. Our research primarily focuses on ab-
stract, multivariate, and instantaneous time-oriented visual-
izations.

UMAP has been widely used in recent years for dimen-
sionality reduction and visualization of high-dimensional
data, with significant advantages in computational effi-
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ciency, enabling it to process larger datasets more quickly.
Compared to other dimensionality reduction methods (such
as PCA and t-SNE), UMAP is better at preserving both
global and local structures of data. This makes UMAP par-
ticularly suitable for visualizing large datasets, and it has
gained wide recognition in various application areas, such
as image processing and genomics. Especially in large-
scale data processing, UMAP’s time complexity is signif-
icantly lower than that of methods like t-SNE, allowing it to
generate high-quality projections in a shorter time.

However, existing UMAP methods still face challenges
when dealing with dynamic datasets, such as inconsisten-
cies in projection results and inaccuracies in capturing tem-
poral dynamics. This is because UMAP processes each time
frame of dynamic data independently during its stochastic
optimization process, leading to varying projection results
across different time frames, and thus failing to accurately
reflect the temporal evolution of the data. To address this
issue, we propose a new projection technique called Joint
UMAP (JUMAP). The main idea of JUMAP is to selec-
tively preserve the topological structure between projec-
tions across different time frames based on the topological
similarity of the projections, ensuring consistency in the re-
sults. Specifically, JUMAP first uses Graphlet Frequency
Distribution (GFD)[23] to capture the frequency distribu-
tion of various small subgraphs (graphlets) in the graph,
representing the local structural characteristics around each
point. Then, a vector constraint is introduced during
UMAP’s optimization process to ensure coherence in the
projection results across different time frames. This im-
provement allows JUMAP to effectively capture both the
global and local structures of the data, while also accurately
reflecting its temporal dynamics. In various evaluations,
JUMAP has shown excellent performance in metrics such
as Local Coherence Error (LCE) and Cross-Entropy (CE),
demonstrating higher stability and projection consistency,
with significant potential for applications in dynamic data
visualization and analysis.

This paper is organized into six main sections: Sec-
tion 1 serves as the Introduction, outlining the significance
of the research and key concepts. Section 2 provides an
overview of the Related Work, discussing existing litera-
ture on dimensionality reduction techniques, particularly
focusing on static and dynamic projection methods. Sec-
tion 3 delves into the Research Background, introducing the
UMAP algorithm and the concept of Graphlet Frequency
Distribution (GFD). Section 4 details the Joint UMAP Al-
gorithm, emphasizing its design and unique contributions.
Section 5 presents the Experimental Design and Results
Analysis, where various algorithms are evaluated on dif-
ferent datasets, detailing the methods used and the results
obtained. Finally, Section 6 concludes the paper by sum-
marizing the research findings and suggesting future work

directions.

2. Related Works

Projection[22] is a data visualization technique that maps
high-dimensional data to a low-dimensional space and is
widely applied in fields such as data mining[3], machine
learning[12], computer vision[30], and bioinformatics[4].
Static projection methods are primarily used to display a
one-time low-dimensional representation of data, while dy-
namic projection methods are employed to continuously
capture and visualize the process of data changing over
time. As the scale and complexity of datasets grow, dy-
namic projection methods play an increasingly important
role in the analysis and visualization of time-series data.
This section first discusses common static dimensionality
reduction methods, followed by a detailed exploration of
dynamic projection techniques and their development.

2.1. Techniques for static dimensionality reduction

Static projection techniques have matured and are widely
used for processing static data. Common methods include
linear techniques such as PCA[15] and nonlinear methods
like t-SNE[29] and UMAP[20]. PCA emphasizes the global
structure of the data and is suitable for linear data, but it
struggles with complex nonlinear structures. t-SNE high-
lights the clustering characteristics of data by preserving lo-
cal structures, but its distortion of global structures can lead
to misleading results. UMAP combines topology and ge-
ometry to balance the preservation of local and global struc-
tures while improving computational efficiency. Although
these methods excel in visualizing static data, they cannot
handle the dynamic changes of data over time. Several re-
views have discussed these techniques in detail[6, 35, 26],
covering comparisons and analyses from linear to nonlinear
methods.

2.2. Techniques for dynamic dimensionality reduction

Dynamic projection techniques focus on time-series
data, aiming to capture the evolution trajectory of data over
time and provide consistent, temporally continuous low-
dimensional projections. Unlike static projections, dynamic
projection methods not only need to preserve the structural
characteristics of high-dimensional data in low-dimensional
space but also must ensure that the projection results remain
consistent across consecutive time frames, avoiding distor-
tion. Given that the dynamic changes in data can be highly
complex, these techniques hold significant importance in
the visualization of time-series data but also face numerous
technical challenges.

Dominik Jäckle et al. proposed Temporal MDS (Tem-
poral Multidimensional Scaling)[14], one of the earlier dy-
namic projection methods. It extends the classic MDS ap-
proach to capture the temporal evolution trajectory of high-



dimensional data, particularly in the absence of prior knowl-
edge, meaning that there is no need to know the temporal in-
formation of the data in advance. The method reduces mul-
tivariate data in each time frame to one-dimensional slices
and aligns these slices along the time axis using a flipping
heuristic method. However, the method’s accuracy in align-
ment is limited when facing rapid changes, and without
prior knowledge, it struggles to adapt to fast-evolving data
structures, making it less effective at capturing the dynamic
nature of the data.

Paulo E. Rauber et al. extended t-SNE by develop-
ing Dynamic t-SNE[24] to handle time-series data. This
method maintains projection consistency between time
frames during the projection process through a smoothing
mechanism and the addition of loss terms, allowing for a
more intuitive tracking of data changes. However, Dynamic
t-SNE often proves too rigid when faced with significant
changes in the data, leading to projection distortion and an
inability to adapt flexibly to rapid changes in data structure,
making it less effective at capturing the dynamic evolution
of data in such cases.

Yinqiao Wang et al. further improved upon Dynamic
t-SNE by proposing Joint t-SNE[31], which reinforces pro-
jection consistency and accuracy to some extent by intro-
ducing constraint conditions. Compared to Dynamic t-SNE,
Joint t-SNE achieves a better balance between visual conti-
nuity and distortion reduction; however, it still faces chal-
lenges with high computational complexity when dealing
with large-scale streaming data, particularly in real-time
processing, where it encounters significant computational
bottlenecks.

It is also worth mentioning that Fujiwara et al. pro-
posed a PCA-based method for handling streaming data[7].
This type of method dynamically adjusts low-dimensional
projections to accommodate the characteristics of stream-
ing data, making it suitable for continuously updating data
flows. However, due to the inability to predict future data
changes, this method may face certain limitations in opti-
mizing low-dimensional representations, as it cannot guar-
antee projection consistency or preserve global structures
effectively in highly dynamic scenarios.

Other research has also explored the use of dimension-
ality reduction techniques to visualize time-series data. For
instance, Hu et al. employed Self-Organiz-ing Maps[13] to
create 2D trajectory plots that capture the dynamic changes
in human motion data. Similarly, Mao et al. applied PCA
to analyze the evolution of text features[19], demonstrating
the dynamic changes in text sequences.

However, these methods often struggle to balance pro-
jection consistency, global structure preservation, and com-
putational efficiency when dealing with dynamic data.
While each method has its advantages, they still face signif-
icant limitations when dealing with time-dependent high-

dimensional data. On the one hand, t-SNE-based meth-
ods (including Dynamic t-SNE and Joint t-SNE) are highly
sensitive to initial conditions and suffer from high compu-
tational complexity, making it difficult to effectively pre-
serve global structures. On the other hand, although UMAP
demonstrates high computational efficiency and the ability
to preserve both global and local structures in static data,
it often produces inconsistent projections when applied to
dynamic data and struggles to capture the dynamic changes
over time. To address these issues, this paper introduces the
Joint UMAP method.

3. Research Background

3.1. UMAP

UMAP, as a nonlinear dimensionality reduction algo-
rithm based on manifold learning, is often used for projec-
tion. UMAP is constructed based on the theoretical frame-
work of Riemannian geometry and algebraic topology. Its
main idea is to build a fuzzy topological representation be-
tween high-dimensional data and low-dimensional embed-
dings, and to optimize the low-dimensional embeddings so
that their fuzzy topological representation is similar to that
of the high-dimensional data, thereby achieving dimension-
ality reduction results, as shown in the Figure 1. The over-
all process of UMAP can be classified as the following two
stages:

3.1.1 Graph Construction

Given a high-dimensional dataset X =
{
x1, ..., xn

}
, we

calculate the distance or dissimilarity between any two data
points in the high-dimensional space, denoted as d : X ×
X → R≥0. To model the local structure around each data
point , we use the conditional probability pi|j to measure the
similarity between xi and xij , which represents the proba-
bility of data point xi choosing xij as its neighbor. The
expression for this conditional probability is:

pi|j = exp

(
−max

(
0, d

(
xi, xij

)
− ρi

)
σi

)
. (1)

Here, ρi represents the distance from data point xi to its
nearest neighbor, ensuring that at least one edge weight of 1
connects to xi. The parameter σi reflects the distance distri-
bution among the nearest neighbors of xi. Specifically, σi is
defined as the maximum distance between xi and its near-
est neighbors. It describes the range of relative distances
among xi’s nearest neighbors, capturing the spatial distribu-
tion of the local structure around xi. ρi and σi are computed
using function 2 and 3, respectively.

ρi = min
{
d
(
xi, xij

)
|1 ≤ j ≤ k, d

(
xi, xij

)
> 0
}
. (2)



k∑
j=1

exp

(
−max

(
0, d

(
xi, xij

)
− ρi

)
σi

)
= log2 (k) . (3)

Since the conditional probability pi|j is not symmetric,
it is necessary to calculate the symmetric joint probability
pij :

pij = pi|j + pj|i − pi|jpj|i. (4)

Finally, let Y = {y1, . . . , yn} denote the low-
dimensional data points, and the similarity between data
points yi and yj in the low-dimensional space is given by
the following equation:

qij =
(
1 + a (∥yi − yj∥2)2b

)−1

. (5)

Here, qij represents the similarity between yi and yj in the
low-dimensional space, and the parameters a and b control
the expansion rate and curvature of the similarity function.
By default, UMAP sets a ≈ 1.93 and b ≈ 0.79, but these
parameters can be adjusted to modify how distances in the
high-dimensional space are mapped to similarities in the
low-dimensional space. By adjusting a and b, UMAP can
better balance the local and global structures in the low-
dimensional projection.

3.1.2 Graph Embedding

The precomputed fuzzy topological representations are op-
timized so that the high-dimensional and low-dimensional
representations are as similar as possible. UMAP uses
stochastic gradient descent to optimize the low-dimensional
embedding, finding the appropriate values for yi and yj (i.e.,
the positions of data points in the low-dimensional space) to
minimize the difference between the high-dimensional sim-
ilarity pij and the low-dimensional similarity qij . To mea-
sure this difference, UMAP uses cross-entropy to evaluate
the similarity between the two representations. The UMAP
loss function is defined as follows:

CE =

n∑
i=1

n∑
j=1
j ̸=i

(
pij log

(
pij
qij

)

+(1− pij) log

(
1− pij
1− qij

))
.

(6)

UMAP defines a loss function to describe this optimiza-
tion process, and by adjusting the positions of the data
points to minimize the loss function, it generates the pro-
jection results in the low-dimensional space. The attraction
and repulsion forces are the core components of UMAP,

responsible for maintaining the relationships between data
points in the low-dimensional space. Attraction refers to
the pull between neighboring points during the optimization
process. The attraction in the UMAP algorithm is defined
as follows:

−2ab ∥yi − yj∥2(b−1)
2

1 + ∥yi − yj∥22
pij (yi − yj) (7)

where yi and yj represent the corresponding data points in
the low-dimensional space.

Repulsion refers to the push that separates non-
neighboring points in the low-dimensional space during the
optimization process. The repulsion in the UMAP algo-
rithm is defined as follows:

2b(
ε+ ∥yi − yj∥22

)(
1 + α ∥yi − yj∥2b2

)(1−pij

)(
yi−yj

)
(8)

where ε is a small constant added to prevent division by
zero, with a default value of 0.001.

3.2. Graphlet

Graphlets refer to non-isomorphic substructures in a
graph with k nodes, which are the fundamental building
blocks of a graph. Any large graph can be decomposed
into these subgraph structures, making them useful for rep-
resenting and describing the local structure of the graph.
In Figure 2, all substructures with k ∈

{
3, 4, 5

}
nodes are

shown, indicating that they cannot be transformed into an-
other substructure through simple node rearrangement. The
frequency of graphlets, meaning the occurrence frequency
of each distinct graphlet (i.e., the number of times various
graphlets appear in a graph), can serve as a fingerprint to
differentiate between graphs. This fingerprint is defined
as the Graphlet Frequency Distribution (GFD). GFD[23],
also known as Graphlet concentration or Graphlet statistics,
was proposed by Pržulj et al. It has become a widely used
tool for graph analysis and has been applied in various do-
mains such as image classification[36], biological network
comparison[11], and disease gene identification[21], among
many other fields.

The main idea of JUMAP is to selectively preserve
the topological structure between projections of high-
dimensional data into low-dimensional space, specifically
focusing on the topological similarity across different time
frames. This edge similarity is captured using the Graphlet
Frequency Distribution (GFD), which measures the struc-
tural similarities and differences between adjacent time
frames. By comparing the GFDs of various graphs repre-
senting different time frames, we can gain insights into the
dynamic changes in the data, allowing GFD to serve as a
distinctive feature akin to a fingerprint for identifying and



Figure 1. Temporal Graph Construction and Layout Representation at t=0 and t=1

differentiating between various graphs, similar to how hu-
man fingerprints are used to identify individuals.

Although GFD is an effective method, counting
graphlets is a computationally expensive task, especially
for large graphs. This paper adopts the idea of combin-
ing GFD with GUISE[2], a graph-oriented uniform sam-
pling method. GUISE uses the Markov Chain Monte
Carlo (MCMC) method to approximate the GFD of large
graphs, capturing the local topological structure around
high-dimensional data points. This approach significantly
accelerates the computation, greatly reducing the associated
costs.

Graphlet kernel is an improved kernel method for mea-
suring graph similarity. A kernel, also known as a gener-
alized inner product, is a function that measures the simi-
larity between two vectors x, y ∈ Rm by computing their
corresponding inner product in a higher-dimensional fea-
ture space ϕ(x), ϕ(y) ∈ Rn. The mapping function ϕ trans-
forms x and y into the feature space Rn.

The similarity between two graphs G0 and G1 using the
graphlet kernel kg is defined as the inner product of their
feature vectors:

kg(G0, G1) = ⟨fG0
, fG1

⟩ (9)

where the feature vectors f are based on the normalized
GFD. Common kernel functions used in this context include
the Gaussian kernel, Laplacian kernel, and cosine similarity.

4. Joint UMAP

The objective of JUMAP is to generate low-dimensional
embeddings that can consistently visually track the evolu-
tion of data over time, as shown in the Figure 3. In most
time series datasets, data points exhibit both continuity and
variability within each time frame. Therefore, in order to
achieve the JUMAP’s goal, it is crucial not only to identify
and analyze the dynamic structural changes between differ-
ent time frames in the data space, but also to maintain the
inherent structures of the data as it exists in different time
frames within the projections. This ensures that the em-
beddings can effectively distinguish between time-varying
structures and consistent structures. Additionally, it is im-
portant to ensure the accuracy of the projections, meaning
that the low-dimensional space should accurately reflect the
structures and relationships present in the high-dimensional
space. By addressing these sub-goals, JUMAP creates low-
dimensional representations that capture the temporal evo-
lution of data while preserving significant local inherited
structures, thereby facilitating visual exploration and analy-



Figure 2. All graphlets of 3, 4, and 5 nodes

sis.
Traditional dimensionality reduction algorithms, such as

PCA, t-SNE, and UMAP, are primarily designed to project
individual time frames or datasets without temporal depen-
dencies, focusing on the accuracy of each standalone pro-
jection. However, when projecting multiple time frames si-
multaneously, these algorithms struggle to generate aligned
layouts, resulting in inconsistent projections of the same
classes across different time frames, as illustrated in Fig-
ure 1. To address this issue, JUMAP employs a sliding
window mechanism with a window length of 2 to handle
adjacent time-frame data. This mechanism generates a co-
herent projection Y1 for the new dataset X1, combining it
with the existing projection Y0. This combination preserves
the topological structure of the items with high similarity
between Y0 and Y1 in the data space. Figure 3 illustrates
this process, clearly reflecting the relationships between the
two time frames.

To preserve the topological structure of items with high
similarity and detect local changes, JUMAP first specifies a
parameter k, for the number of neighbors to be considered.
For each dataset, an undirected k-Nearest Neighbors(kNN)
graph G(V,E) is constructed in high-dimensional space,
where V =

{
v1, v2, ..., vn

}
and E =

{
e1, e2, ..., en

}
repre-

sent the set of vertices and edges in the graph, respectively.
To associate datasets with different dimensions, the origi-
nal datasets are not used directly. Instead, the relationship
is calculated through two graphs. For the two datasets X0

and X1, kNN undirected graphs G0 and G1, are constructed
using a distance metric. An edge eij exists if and only if
vi ∈ kNN

(
vj
)

or νj ∈ kNN (νi).
To capture the structural similarity between two graphs,

we introduce two types of similarity: point similarity and
edge similarity. **Point similarity** Spi

refers to the co-
sine similarity ⟨fv0

i
, fv1

i
⟩ calculated between the normal-

ized feature vectors fv0
i

and fv1
i
, which are derived from

the Graphlet Frequency Distribution (GFD) of nodes v0i and
v1i , respectively. This cosine similarity is then multiplied by
the proportion of their common neighbors to assess their

Figure 3. Technical Illustration of Joint UMAP

overall similarity. We utilize the graphlet kernel to measure
the similarity value for each node, capturing changes in the
topological structure of a node and its neighbors from one



time frame to the next.
In this context, Figure 3 illustrates the comparison be-

tween the data and projection spaces, clearly reflecting how
structural similarities between different time frames are pre-
served in the projection. Specifically, some changes oc-
curred between X0 and X1, with several points breaking
their neighborhood relationships with the original cluster.
Joint UMAP detects these changes by measuring the sim-
ilarity of local structures and calculating edge similarities
(Se12 > Se13 > Se14). It uses edge similarities as weights
for the corresponding vector constraints, generating projec-
tion Y1 while preserving the relative positions of points in
Y0.

Ultimately, this method, which combines cosine similar-
ity and the proportion of common neighbors, better reflects
the dynamic changes between nodes. The expression for
point similarity is as follows:

Spi =

∣∣kNN
(
G0, ν

0
i

)
∩ kNN

(
G1, ν

1
i

)∣∣
k

·
〈
fν0i , fν

1
i

〉
.

(10)

The edge similarity between e0ij and e1ij is defined as
the product of the point similarities between their two end-
points. Specifically, this refers to the similarity of the com-
mon edges between the k-nearest neighbors (kNN) undi-
rected graphs G0 and G1, which are constructed from the
datasets X0 and X1. This means that for an edge e0ij con-
necting nodes v0i and v0j in graph G0, and an edge e1ij
connecting nodes v1i and v1j in graph G1, the edge simi-
larity is given by the product of the point similarities of the
node pairs (v0i , v

1
i ) and (v0j , v

1
j ). This allows us to measure

the overall similarity of corresponding edges in two kNN
graphs. The vector constraint, introduced to preserve tem-
poral consistency between time frames, is defined as:

Seij = Spi
· Spj

. (11)

where Spi and Spj are the similarity scores for each
data point. These similarity scores represent the degree of
relationship between two data points in the original high-
dimensional space and are crucial for maintaining the im-
portance of local structures, especially when projections of
data points change across time frames.

To effectively integrate the dimensionality reduction
results from different time frames into subsequent time
frames, and to ensure that the projections in the later frames
remain roughly consistent with those from earlier frames,
we introduce a vector constraint. Inspired by edge vector
constraint methods[32, 33], which have shown better per-
formance in preserving local structures compared to other
methods, we incorporate this constraint into the UMAP loss
function. This vector constraint helps maintain structural

consistency between consecutive time frames by preserv-
ing the relative positions between pairs of points. Specifi-
cally, the vector constraint guides the optimization process
by weighting each edge with its similarity score, ensur-
ing that the projections across different time frames remain
consistent while preserving the local topological structure.
The loss function that includes this constraint aims to mini-
mize the relative position difference between the initial time
frame (y0i and y0j ) and the subsequent time frames (y1i and
y1j ), while also considering the smoothness of the projection
positions across time frames. The vector constraint can be
expressed as:

argmin
Y1

C1 =
γ

M

∑
i ̸=j

Seij ·
∥∥(y0i − y0j

)
−
(
y1i − y1j

)∥∥2
+ λ

∑
i

∥y1i − y0i ∥2.

(12)

where λ is the smoothing penalty coefficient that con-
trols the range of node movement across time frames, ensur-
ing that projections transition smoothly between adjacent
time frames. M represents the number of common edges
between G0 and G1, and γ is the user-defined weight for
the vector constraint, with a default value of 0.1.

The gradient in Equation 13 represents the vector con-
straint term’s gradient with respect to the projections in the
subsequent time frame. This gradient will be used in the
optimization process to update the positions of data points.
The gradient is given by::

∂C1

∂y1i
= −2γ

M

∑
i ̸=j

Seij

(
(y0i − y0j )− (y1i − y1j )

)
+ 2λ(y1i − y0i ).

(13)

This gradient update ensures that the optimization pro-
cess accounts for the structural consistency between the
common edges in both graphs. It drives the optimization
process by minimizing the difference between the initial and
subsequent time frame projections, while also smoothing
the transition between frames using the smoothing penalty
coefficient λ. This helps maintain structural consistency
and stability between time frames.

5. Experiments

To evaluate JUMAP, we compare it to the original
UMAP (UMAP), Equal-initialization UMAP (EUMAP),
the original t-SNE (t-SNE), Equal-initialization t-SNE (ET-
SNE) and Joint t-SNE (JTSNE) techniques that can be used
to generate projections and visualizations are compared
quantitatively and qualitatively. Among these, UMAP and



t-SNE served as the original algorithms with random initial
layouts to project each dataset. In contrast, EUMAP and
ETSNE projected each dataset Di using UMAP and t-SNE,
respectively, but both used the same initial layout which was
also randomly generated. We validate and compare these
algorithms using synthetic datasets for which the true struc-
ture is known and the fidelity and consistency between pro-
jections can be accurately assessed through operations such
as transformations.

5.1. Datasets

The four datasets used in the experiments are: (1) the
5-Gaussian dataset, (2) the 8-Gaussian dataset, (3) the 10-
Gaussian dataset[24], and (4) the MNIST dataset. These
four datasets are described below.

The 5-Gaussian dataset consists of 1000 data points in
a 100-dimensional space, sampled from 5 isotropic Gaus-
sian distributions, with each distribution containing 200
data points. The variance of the Gaussian distributions is
set to 0.1, indicating equal variance across all dimensions.
The centers of these distributions are randomly selected be-
tween the standard basis vectors of R100 (i.e., vectors sim-
ilar to (1, 0, 0, ..., 0) and (0, 1, 0, ..., 0)). This means that
the centroids are located at certain vertices or along some
edges of the unit hypercube in R100. To simulate tempo-
ral dependence, a progressive contraction operation is ap-
plied, where each data point is moved towards the center
of its respective Gaussian distribution by a distance equal
to 10% of the remaining distance to the center. This oper-
ation is repeated three times, generating a new time frame
with each iteration, resulting in a final dataset comprising
four time frames. The 8-Gaussian dataset consists of 1600
data points in a 100-dimensional space, similarly sampled
from 8 isotropic Gaussian distributions. The 10-Gaussian
dataset comprises 2000 data points in a 100-dimensional
space, sampled from 10 isotropic Gaussian distributions.
Both the 8-Gaussian and 10-Gaussian datasets share sim-
ilar parameters with the 5-Gaussian dataset: each Gaussian
distribution contains 200 data points with a variance set to
0.1. The same progressive contraction operation of 10%
is applied three times to each cluster, resulting in datasets
spanning ten frames. The MNIST dataset consists of 60,000
gray-scale images of handwritten digits (0 − 9) with each
image represented as a 28× 28 pixel array.

5.2. Evaluation Metrics

In order to quantitatively compare JUMAP with other
techniques that can be used for data visualization, we used
two metrics:

(1) Local Coherence Error(LCE)
LCE (Local Clustering Error) is used to quantify the

changes in the local structure of the same clusters in two
projections Y0 and Y1, by calculating the Euclidean distance

between the edge vectors of each pair of points in the two
projections.

LCE (Y0, Y1) =
1

n(n− 1)

∑
C0

k⊂Y0

C1
k⊂Y1

∑
y0
i ,y

0
j∈C0

k

y1
i ,y

1
j∈C1

k

i<j∥∥(y0i − y0j
)
−
(
y1i − y1j

)∥∥2 .
(14)

where n is the number of sample points, C0
k ⊂ Y0 and

C1
k ⊂ Y1 in C0

k and C1
k are the corresponding clusters in Y0

and Y1. Points y0i , y
0
j ∈ C0

k refer to a pair of points within
cluster C0

k in projection Y0, while y0i , y
0
j ∈ C0

k refer to the
corresponding pair of points within cluster C1

k in projection
Y1.

(2) Cross Entropy(CE)
CE evaluates the effect of dimensionality reduction by

calculating the cross entropy between the similarity distri-
butions in the high and low dimensional spaces and quanti-
fying the difference between the similarity distributions in
the high and low dimensional spaces. See function 6.

5.3. Evaluation Results and Comparison

On the 5-Gaussian, 8-Gaussian, and 10-Gaussian
datasets, we projected the data at different time frames(
t = 0, 1, 2, 3

)
using the JUMAP algorithm. The experi-

mental results indicate that the alignment of projections de-
teriorates as the number of clusters increases. To provide
a better comparison of the projections, Figure 4 illustrates
the visualization results on the 10-Gaussian dataset using
the UMAP, EUMAP, JTSNE, and JUMAP algorithms. It is
evident that the projection quality of JUMAP is comparable
to that of JTSNE, with good alignment across different time
frames. In contrast, the positions of the data classes using
UMAP and EUMAP show noticeable shifts across different
time frames, indicating poor alignment.

To gain a deeper understanding of the effectiveness of
our algorithm in alignment projection, we measured and
compared the performance of UMAP, EUMAP, t-SNE, ET-
SNE, JTSNE, and JUMAP algorithms on different datasets
using the LCE. Tables 1 and 3 present the comparison re-
sults of LCE and running time for these six algorithms
across three different datasets. Additionally, Table 2 shows
the results of CE evaluation metrics for UMAP, EUMAP,
and JUMAP.

In terms of LCE, a smaller LCE indicates better preser-
vation of local structures in the projected data, meaning the
proximity relationships of the data are better maintained
during dimensionality reduction.As shown in Table 1, for
the 5-Gaussian, 8-Gaussian, and 10-Gaussian datasets, the
JUMAP’s LCE is significantly lower than that of the other
five algorithms, indicating that JUMAP has a substantial
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Figure 4. The effect of 10-Gaussian low-dimensional embedding

advantage in preserving local structures and aligning data
across different time frames to generate more consistent
projections.

In terms of CE, a smaller CE value indicates a higher
match between the reduced-dimensional data distribution
and the original distribution, reflecting better preservation
of the global structure. As shown in Table 2, despite
JUMAP introducing an additional vector constraint, its di-
mensionality reduction performance still surpasses the other
two algorithms. Specifically, JUMAP is more effective in
retaining the global structure and class information of the
original high-dimensional data, resulting in more precise
alignment and classification.

From Table 3, it is evident that JUMAP, compared to
t-SNE, ETSNE, and JTSNE, significantly reduced running
time while maintaining good embedding quality. JUMAP
increases running time compared to UMAP and EUMAP
due to the additional vector constraints considered during
optimization. The time complexity of the JUMAP algo-
rithm is primarily influenced by three key components: ini-
tial nearest-neighbor search, layout optimization, and the

Methods 5-Gaussian 8-Gaussian 10-Gaussian
UMAP 15.57 17.55 19.84

EUMAP 11.83 12.91 15.72
t-SNE 66.85 107.28 257.66

ETSNE 131.81 468.67 719.44
JTSNE 2.28 6.89 8.38
JUMAP 0.18 0.19 0.19

Table 1. LCE for the Joint UMAP

gradient descent step. Overall, the time complexity of
JUMAP is O(n2T ), where n is the number of data points
and T is the number of iterations. This is higher than stan-
dard UMAP (O(n log n)) due to the additional temporal
alignment constraints.

Specifically, the time complexity of the initial nearest-
neighbor search is O(n log n), utilizing efficient search
techniques such as KD-Trees or Ball Trees to find the near-
est neighbors for each data point. The layout optimiza-
tion process involves computing pairwise distances between
data points during each iteration, resulting in a per-iteration



Methods 5-Gaussian 8-Gaussian 10-Gaussian MNIST
UMAP 1.03 1.22 1.31 0.68

EUMAP 1.03 1.22 1.31 0.67
JUMAP 0.97 1.15 1.31 0.66

Table 2. CEs for the Joint UMAP

Methods 5-Gaussian 8-Gaussian 10-Gaussian
UMAP 21.11 30.56 37.62

EUMAP 14.48 23.22 30.48
t-SNE 689.72 1759.56 2645.31

ETSNE 572.11 1519.69 2318.13
JTSNE 823.97 2034.23 3105.30
JUMAP 152.66 388.17 552.81

Table 3. Running time of Joint UMAP

time complexity of O(n2). Finally, the gradient descent
step also has a time complexity of O(n2), as it involves
computing the gradients of the loss function with respect
to the data layout. Despite the higher time complexity,
JUMAP maintains efficient performance for moderately-
sized datasets, as evidenced by experimental results show-
ing a balance between runtime and projection quality, par-
ticularly when compared to t-SNE and ETSNE, which have
even higher time complexities.

5.4. Consistency of Projections on Synthetic Datasets

To better evaluate the fidelity and consistency of JUMAP,
we conducted another experiment. The 5-Gaussian dataset,
created by progressively contracting each cluster through
moving each data point toward the center of its respective
Gaussian distribution, simulates time-dependent changes.
To explore richer types of transformations beyond the con-
traction operation, we applied three different transforma-
tions to three different time frames

(
t = 0, 1, 2, 3

)
of the

dataset. The three transformations were: translation, split-
ting, and overlapping. Similarly, before applying each
transformation, we contracted all clusters by 10%. At t = 1,
we applied the translation transformation to the first clus-
ter (the blue cluster in Figure 5). Specifically, we shifted
all the data points in this cluster by 0.08 units in the posi-
tive direction in each dimension, resulting in a slight overall
shift in one direction. At t = 2, we performed a splitting
transformation on the third cluster (the green cluster in Fig-
ure 5), which we divided into two subclusters using the k-
means clustering algorithm[10] and then moved these two
sub-clusters by +0.08 in opposite directions along each di-
mension. Despite the split, this cluster is still considered
as one. At t = 3, we performed an overlapping transfor-
mation on the second and fourth clusters (the orange and
red clusters in Figure 5). By making their means the same,
we translated these clusters to a new position where they

partially overlapped with each other. These transformations
simulated the evolution of data over time, allowing us to
evaluate the performance of different algorithms in handling
data with various transformation patterns.

At t = 1, as shown in Figure 5, all projection results
place this cluster far from the others. However, the pro-
jections from UMAP and EUMAP exhibit misalignment.
UMAP shifts the red cluster from the top left corner at t = 0
to the bottom right corner at t = 1, while EUMAP moves
the red cluster from the top right corner at t = 0 to the bot-
tom right corner at t = 1, resulting in projection inconsis-
tency. This misalignment cannot be easily corrected using
Procrustes transformation[9], which involves rotation, scal-
ing, and translation to minimize shape differences. If one
tries to rotate UMAP’s projection at t = 1 to align the red
cluster with its previous position, the green and orange clus-
ters would still be misaligned. However, although JTSNE
is able to move the blue cluster from its position at t = 0
to a new location, the projection of JTSNE exhibits larger
fluctuations between different time steps, causing signifi-
cant changes in the position of the blue cluster and resulting
in poor alignment between clusters. In contrast, JUMAP is
better at maintaining the relative positions of the clusters,
with its projection results showing smaller shifts and pre-
serving the topological consistency of the data. This sug-
gests that JUMAP provides more stable projection results
when handling cluster translations.

At t = 2, the green cluster splits into two subclus-
ters. While UMAP and EUMAP effectively separate the
two subclusters, the projection’s consistency and fidelity de-
grade due to the split. In contrast, JUMAP accurately han-
dles the clustering split by considering the topological simi-
larity between datasets from adjacent time frames. JUMAP
compares the neighborhood structures of data points be-
tween t = 1 and t = 2, identifying topological changes and
adjusting the projection accordingly. This enables JUMAP
to more faithfully reflect the true structural changes between
clusters compared to the other algorithms. At t = 3, the or-
ange and red clusters completely overlap. Although JTSNE
can capture overlapping trends, there is still a certain de-
gree of distortion and overlap in its projection results, which
leads to inaccurate cluster distribution in the projection.
JUMAP effectively manages this complete overlap conver-
sion. By identifying significant changes in the neighbor-
hood structure of data points between time frames, JUMAP
accurately projects fully overlapping clusters, avoiding par-
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Figure 5. Comparison plot of 4 different algorithms for projection of 5-Gaussian dataset

tial overlap or distortion. This ability enables JUMAP
to perform excellently in handling significant topological
changes.

The experiment concludes that JUMAP is more accu-
rate in dealing with complex transformations such as clus-
ter splitting and overlapping by taking into account topo-
logical similarities between time points. JUMAP can iden-
tify and adapt to changes in the neighborhood structure of
data points, ensuring that the projection results more faith-
fully reflect actual cluster transformations. JUMAP con-
sistently performs well in projection tasks across different
time frames, particularly excelling in alignment. Compared
to UMAP and EUMAP, JUMAP shows a significant ad-
vantage in providing more consistent and accurate projec-
tion results when dealing with complex cluster transforma-
tions. The projections generated by JTSNE also indicate
that JTSNE exhibits larger fluctuations in data point posi-
tions across different time frames compared to JUMAP, re-
sulting in slightly poorer structural coherence.

5.5. Consistency of Projections on Real Datasets

Due to the Gaussian dataset itself being synthetic, cre-
ated by generating points that follow a Gaussian distribu-
tion, in this experiment we use the real dataset MNIST to
evaluate the consistency of projections generated by four
different projection algorithms (UMAP, EUMAP, JTSNE,
and JUMAP). The MNIST dataset is a well-known dataset
of handwritten digit images. For this experiment, we ex-
tracted a subset of the MNIST dataset, selecting images of
five different digits

(
0, 1, 2, 3, 4

)
. We randomly selected

100 images for each digit without repetition, resulting in
a total of 500 images as the initial dataset.

In the experiment, we applied two transformations to
these images that did not alter the pixel values but rather re-
placed the images. First, considering the similarity in shape
between digits 9 and 4, we replaced all 100 images of digit
0 with images of digit 9. It was hypothesized that in the
projection, the cluster of digit 4 and the replaced cluster of
digit 9 would become closer. Second, we replaced the 100
images of digit 1 with a new set of 100 images of digit 3.
These new digit 3 images were different from the initial 100
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Figure 6. Comparison plot of projections on MNIST dataset for 4 different algorithms

digit 3 images, being randomly selected without repetition
from the remaining digit 3 images in the dataset. Since both
sets of images represent digit 3, we hypothesized that the
two clusters would completely overlap in the projection.

As shown in Figure 6, at t = 0, digit 0 is represented
by the blue cluster, digit 1 by the orange cluster, digit 2
by the green cluster, digit 3 by the red cluster, and digit 4
by the purple cluster. At t = 1, the projection results af-
ter applying the two transformations illustrate how different
algorithms perform with the changed data. For UMAP, al-
though the new cluster of digit 3 (the orange cluster) nearly
overlaps with the original cluster of digit 3 (the red cluster),
at t = 0, the original red cluster is located at the top left of
digit 2 (the green cluster). However, after the data update
at t = 1, the red cluster moves to the upper right of the
green cluster, failing to maintain cluster position stability
and exhibiting obvious projection inconsistencies, thereby
not achieving the desired projection effect. EUMAP’s per-
formance is also suboptimal. The cluster of digit 3, which
should have been at the upper right of digit 2, drifts to its
lower right, while the cluster of digit 4 shifts from the lower
right of digit 2 to the upper left. These projection results not
only disrupt the local structural relationships between clus-
ters but also indicate that EUMAP and UMAP struggle to
maintain stable relative positions of clusters when handling
temporal data updates. Moreover, these algorithms lack an
effective mechanism to handle temporal smoothing between
time steps, leading to discontinuous and inconsistent repre-
sentations of dynamic data changes.

At t = 0, the projection generated by JUMAP shows
compact and well-separated clusters for the five digits,
clearly distinguishing each category in the low-dimensional
space. At t = 1, after the data transformations, JUMAP
maintains the relative positions of clusters effectively. The
new cluster of digit 9 moves noticeably closer to the cluster

of digit 4, aligning with the expected pattern from the trans-
formation. Meanwhile, the new cluster of digit 3 almost
perfectly overlaps with its original cluster, preserving both
spatial consistency and cluster compactness. This demon-
strates JUMAP’s strong capability to maintain projection
stability and coherence over time.

In contrast, JTSNE struggles to maintain local consis-
tency across time points. The same categories of data points
exhibit less cohesive clustering in the projection space,
with clusters becoming fragmented and dispersed after data
transformations. This inconsistency indicates that JTSNE
is less effective at capturing temporal dynamics and pre-
serving the inherent structural relationships within evolving
datasets compared to JUMAP.

When applied to the real-world dataset MNIST, JUMAP
demonstrates clear advantages in both quantitative metrics
and visualization results compared to UMAP, EUMAP, and
JTSNE. As shown in Table 2, the CE comparison high-
lights that JUMAP achieves the best dimensionality reduc-
tion performance on MNIST. It excels at preserving the rel-
ative positions of clusters before and after data transforma-
tions, resulting in more compact clusters for data points of
the same category and clearer separation between different
categories. These findings indicate that JUMAP provides
superior stability and accuracy when handling complex data
transformations.

6. Conclusions

This paper proposes Joint UMAP, an advanced visual-
ization technique designed to handle dynamic datasets. By
introducing kernel-based similarity measures and a novel
vector constraint, Joint UMAP effectively addresses the
challenge of dimensionality reduction for high-dimensional
temporal data, generating consistent projections across mul-
tiple time steps. These innovations alleviate the incon-



sistencies faced by traditional methods, such as UMAP
and t-SNE, in sequential projections. Experimental results
demonstrate that Joint UMAP excels at producing projec-
tions with high consistency and fidelity. Tests conducted
on both synthetic and real-world datasets show that Joint
UMAP maintains superior projection consistency across
datasets, significantly outperforming existing UMAP-based
solutions. Compared to Dynamic t-SNE and Joint t-SNE,
Joint UMAP exhibits greater robustness to data transforma-
tions, shorter runtime, and substantially reduced computa-
tional costs, making it better suited for handling large-scale
and complex dynamic datasets.

Future work will explore validating this method on more
complex datasets, such as financial time series and sensor
network data, to further enhance its practical value. Addi-
tionally, integrating automated parameter selection strate-
gies and lightweight neural networks (such as GCN or
Transformer) could improve adaptability and performance
when handling high-dimensional nonlinear structures. Ex-
ploring its potential for real-time data stream projection
in IoT and dynamic network analysis scenarios remains a
promising avenue for future research.
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