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Abstract

In this study, we propose a simple and efficient
clustering framework on Grassmann manifold space.
Initially, we address the transformation of distance
metrics from Euclidean space to Grassmann manifold
space, thereby extending existing clustering methods in
Euclidean space to Grassmann manifold space. For
convenience, we refer to this method as the Metric-
Based Clustering Framework on Grassmann Manifold
(MCFG). To further enhance the performance of the
clustering framework, we introduce the Uniform Mani-
fold Approximation and Projection on Grassmann Man-
ifold (GUMAP). GUMAP is employed to extract key
features from image-set data, which are subsequently
utilized within the aforementioned clustering method.
We designate this integrated approach as MCFG with
GUMAP. This method is applicable to all clustering
analyses, thereby presenting a straightforward and ef-
fective clustering framework. Experimental results on
multiple image-set datasets demonstrate that MCFG
with GUMAP outperforms both MCFG and existing
clustering methods on Grassmann manifold. MCFG
with GUMAP effectively transfers clustering methods
from Euclidean space to Grassmann manifold, estab-
lishing itself as a potent tool for clustering tasks on
Grassmann manifold.
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1. Introduction

In the era of big data, the rapid advancements in com-
puter technology and the drastic surge in data volume have
necessitated heightened demands for data processing and
analysis techniques. Cluster analysis[22], a pivotal tech-
nique within the realm of unsupervised learning, possesses
the capability to partition data into distinct categories or

1Benchao Li and Yun Zou have contributed equally to this work.
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clusters based on their intrinsic features, solely relying on
the similarities or differences among samples, without pre-
existing labels. This approach facilitates the discovery of
latent patterns and structures within vast datasets. Con-
sequently, clustering analysis plays an indispensable role
across numerous domains, including data mining and im-
age processing. Classical clustering algorithms, such as K-
means[4, 14] and Spectral Clustering[23], have been exten-
sively applied to various data analysis tasks. These algo-
rithms not only uncover potential patterns and anomalies
within data but also provide support for data analysis and
decision-making. Therefore, conducting in-depth research
into clustering algorithms and their applications is of sig-
nificant importance for advancing the field of data science,
fostering knowledge discovery, and optimizing decision-
making processes.

As data scales and complexity continue to escalate, tra-
ditional clustering methods struggle to capture the intrin-
sic structures of high-dimensional data, necessitating an
increasingly urgent need for the optimization and exten-
sion of clustering algorithms. This is crucial for enhanc-
ing the efficiency and accuracy of data analysis. Numer-
ous studies[13, 19] have demonstrated that preliminary di-
mensionality reduction can effectively aid the clustering
process. By decreasing the dimensions of data, the com-
putational burden of clustering algorithms is alleviated,
thereby improving clustering efficiency. Furthermore, high-
dimensional data often contain noise and redundant fea-
tures, which can be eliminated through dimensionality re-
duction techniques. These techniques retain features that
significantly influence clustering outcomes, thereby opti-
mizing clustering performance. For instance, dimension-
ality reduction methods such as Principal Component Anal-
ysis (PCA)[1], t-Distributed Stochastic Neighbor Embed-
ding (t-SNE)[16, 28], and Uniform Manifold Approxima-
tion and Projection (UMAP)[18, 30] have been integrated
with clustering methods in numerous practical applications.
This integration not only enables clustering algorithms to
better handle larger datasets but also enhances clustering ef-
ficiency.
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The Grassmann manifold[2, 12], as a specialized type of
subspace structure, is extensively utilized in handling intri-
cate high-dimensional data, particularly in the analysis of
image-set data and video data. By representing image-sets
or videos as low-dimensional subspaces embedded within
a high-dimensional manifold space, it effectively addresses
the challenges posed by traditional Euclidean space in pro-
cessing complex high-dimensional video data. This repre-
sentation not only preserves the geometric structure of the
data but also enables efficient computations on the mani-
fold through appropriate distance metrics, thereby finding
widespread application in fields such as computer vision
and pattern recognition. Currently, several clustering al-
gorithms have been developed on Grassmann manifold, in-
cluding Clustering on Grassmann Manifold via Kernel Em-
bedding (CGMKE)[24], Grassmann K-Means [25, 27], and
Grassmann LBG (GLBG)[25]. These methods leverage the
geometric structure of the Grassmann manifold to extend
traditional clustering algorithms into a framework of sub-
space clustering, providing effective solutions for process-
ing high-dimensional image-set data. Furthermore, these
algorithms can reasonably cluster the data without compro-
mising its structural integrity, demonstrating the feasibility
and superiority of clustering on Grassmann manifold.

Due to the fundamental differences in their principles,
various clustering methods often find application in distinct
domains. In this study, we attempt to extend multiple clus-
tering methods, which are widely used in Euclidean space,
to Grassmann manifold through a straightforward approach.
We propose a novel technique, namely the Metric-Based
Clustering Framework on Grassmann Manifold (MCFG),
which migrates clustering methods from Euclidean space
to Grassmann manifold through a predefined similarity ma-
trix based on Grassmann metrics. To enhance the perfor-
mance of these clustering framework, we introduce Uni-
form Manifold Approximation and Projection on Grass-
mann Manifold (GUMAP), a new nonlinear dimensionality
reduction technique implemented on Grassmann manifold.
By leveraging GUMAP to extract key features of samples in
high-dimensional space and subsequently applying MCFG
for clustering, we can further improve the performance of
MCFG.

The structure of this paper is organized as follows: Sec-
tion 2 provides a detailed overview of the pertinent work
regarding Grassmann manifold, UMAP and clustering anal-
ysis; Section 3 elucidates the MCFG technique and the
GUMAP approach; Section 4 presents the clustering perfor-
mance of the MCFG framework, and Section 5 concludes
the findings.

2. Related Works

2.1. Metric on Grassmann Manifold

A Grassmann manifold G(m,D) is a collection of all m-
dimensional linear subspaces within a D-dimensional Eu-
clidean space.[2, 12] Each point on G(m,D) represents a
linear subspace, which is spanned by m orthonormal ba-
sis vectors in D-dimensional space. Approximating the
geodesic distance on the Grassmann manifold based on lin-
ear subspaces is a widely used technique. The projection
metric on the Grassmann manifold can be expressed as fol-
lows:

dproj (X1,X2) = 2−1/2
∥∥∥X1X

T
1 −X2X

T
2

∥∥∥
F

(1)

In addition to projection metric, a series of metrics based
on principal angles exist on the Grassmann manifold. The
principal angles {θi}mi=1 between X1 and X2 can be ob-
tained through the Singular Value Decomposition (SVD) of
XT

1 X2. The Procrustes metric based on principal angles
between X1 and X2 can be expressed as follows:

dCF (X1,X2) = 2

(
m∑
i=1

sin2 (θi/2)

)1/2

(2)

By embedding samples on Grassmann manifold into a
Reproducing Kernel Hilbert Space (RKHS), the similar-
ity between samples can be measured through kernel func-
tions defined on Grassmann manifold. The projection ker-
nel function between X1 and X2 can be represented as:

kproj (X1,X2) =
∥∥∥XT

1 X2

∥∥∥2
F

(3)

2.2. UMAP

Uniform Manifold Approximation and Projection
(UMAP)[18] is an advanced nonlinear dimensionality
reduction and visualization technique, extensively utilized
in high-dimensional data analysis fields such as bioinfor-
matics and spectral image analysis. UMAP is constructed
based on the theoretical framework of Riemannian ge-
ometry and algebraic topology. Its core idea involves
creating a fuzzy topological representation between high-
dimensional data and their low-dimensional embeddings,
and optimizing the low-dimensional embeddings to ensure
that their fuzzy topological representations resemble the
high-dimensional data, thereby achieving the desired
dimensionality reduction results.

Compared to earlier manifold learning methods such as
Local Linear Embedding (LLE)[21] and t-SNE, UMAP is
capable of accommodating larger-scale and non-uniformly
dense datasets. Additionally, UMAP exhibits lower time
complexity, making it more widely applicable in tasks in-
volving the visualization of large-scale high-dimensional
data.



2.3. Clustering Analysis

Clustering analysis[22] is a pivotal technique in the fields
of data mining and machine learning. It involves grouping
samples into clusters such that similar samples are assigned
to the same cluster, thereby revealing the intrinsic relation-
ships among the data. The objective of clustering analysis
is to maximize the similarity within the same cluster while
minimizing the similarity between different clusters.

Spectral Clustering (SPC)[23] is a graph-based cluster-
ing method whose fundamental idea involves partitioning
the undirected connectivity graph of all samples such that
the distances among samples within each subgraph are min-
imized while the distances between samples across different
subgraphs are maximized, thereby achieving the purpose of
clustering. Affinity Propagation (AFP)[10] represents an-
other graph-based clustering approach that does not require
a predefined number of clusters. It achieves robust clus-
tering results by iteratively propagating messages of affin-
ity and responsibility within dense regions of the sample
space. Shared Nearest Neighbor-Based Density Peaks Clus-
tering (SNN-DPC)[17] is an improvement upon the tradi-
tional density peaks clustering method, offering more accu-
rate identification of cluster centers and demonstrating ro-
bustness against noise and outliers.

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN))[9] is a clustering method that relies
on the density distribution of samples to delineate clus-
ters, commonly utilized for the detection of outliers. Hi-
erarchical DBSCAN (HDBSCAN)[5], as an extension of
DBSCAN, is another density-based hierarchical clustering
approach that can adaptively adjust the hyperparameters,
demonstrating robustness against noise and outliers. Order-
ing Points To Identify the Clustering Structure (OPTICS)[3]
is another density-based clustering method that does not re-
quire a predefined number of clusters in the data, capable of
discovering complex clustering structures and boundaries
within the dataset.

Agglomerative Clustering (AGC)[26] is a widely used
hierarchical clustering method that begins with each sam-
ple as an independent cluster and iteratively merges the two
closest clusters until a specific condition is met.

3. Methods

3.1. MCFG

The traditional Euclidean space provides an imperfect
representation of image-set and video data, leading to
suboptimal clustering results when applying conventional
methods such as SNN-DPC and DBSCAN to image-set
data. A series of clustering methods, including SNN-DPC
and DBSCAN, rely on a similarity matrix of the data to
perform clustering analysis. By constructing a similarity
matrix for samples on Grassmann manifold using an appro-

priate metric, these methods, such as SNN-DPC and DB-
SCAN, can be naturally extended to Grassmann manifold,
enabling clustering analysis of image-set and video data.

In this study, the Riemannian metric presented in Ta-
ble 1 is employed to enhance a range of sample-based clus-
tering methods that rely on similarity matrices, including
SNN-DPC, AFP, AGC, DBSCAN, HDBSCAN, OPTICS,
and SPC. Consequently, we propose the following methods
tailored for Grassmann manifold: Shared Nearest Neighbor
DPC on Grassmann Manifold (SNN-DPCG), Affinity Prop-
agation on Grassmann Manifold (GAFP), Agglomerative
Clustering on Grassmann Manifold (GAGC), DBSCAN on
Grassmann Manifold (GDBSCAN), HDBSCAN on Grass-
mann Manifold (GHDBSCAN), OPTICS on Grassmann
Manifold (GOPTICS), and Spectral Clustering on Grass-
mann Manifold (GSPC).

3.2. GUMAP

Numerous existing studies have demonstrated that pre-
processing data through dimensionality reduction tech-
niques can effectively eliminate noise information and ex-
tract pivotal features from the data. Compared to per-
forming clustering analysis directly on the original high-
dimensional data, conducting clustering analysis on the ex-
tracted pivotal features allows for a better identification of
the underlying cluster structure within the data, achieving
superior clustering results at a lower computational cost.

In order to discover the low-dimensional manifold struc-
ture G(m, d), (d < D), embedded within the high-
dimensional Grassmann manifold G(m,D), analyze the
nonlinear relationship between the high-dimensional and
low-dimensional manifold structures, and extract key fea-
tures from samples on the high-dimensional Grassmann
manifold to assist in clustering tasks on Grassmann man-
ifold, this paper proposes the Uniform Manifold Approxi-
mation and Projection on Grassmann Manifold (GUMAP).

Firstly, a k-nearest neighbor graph is constructed on the
high-dimensional manifold to represent the neighborhood
structure among samples. For a point Xi ∈ G(m,D) in
a given sample set {Xi}Ni=1, it is straightforward to obtain
a set {X1

i ,X
2
i , . . . ,X

k
i } of its k neighbors. The similar-

ity between the sample Xi and its neighbor pairs can be
expressed as:

P
(
Xi,X

j
i

)
= exp

−
dproj

(
Xi,X

j
i

)
− ρi

σi

 (4)

where, ρi denotes the distance between sample point Xi

and its nearest neighbor, which can be specifically ex-
pressed as:

ρi = min
{
dproj

(
Xi,X

j
i

)
|i ≤ j ≤ k

}
(5)



Table 1: The Metrics Employed in Various Euclidean Clustering Approaches and Grassmann Methods.

Euclidean Methods Euclidean Metrics Grassmann Methods Grassmann Metrics
AFP −∥x− y∥22 GAFP −2

(∑m
i=1 sin

2 (θi/2)
)1/2

AGC ∥x− y∥2 GAGC 2
(∑m

i=1 sin
2 (θi/2)

)1/2
DBSCAN ∥x− y∥2 GDBSCAN 2

(∑m
i=1 sin

2 (θi/2)
)1/2

HDBSCAN ∥x− y∥2 GHDBSCAN 2
(∑m

i=1 sin
2 (θi/2)

)1/2
OPTICS ∥x− y∥2 GOPTICS 2

(∑m
i=1 sin

2 (θi/2)
)1/2

SPC exp
(
−∥x−y∥2

2

2σ2

)
GSPC

∥∥XT
1 X2

∥∥2
F

SNN-DPC ∥x− y∥2 SNN-DPCG 2
(∑m

i=1 sin
2 (θi/2)

)1/2

In Eq. (4), σi represents the normalization factor of sample
point Xi, and it can be calculated by performing the binary
search on Eq. (6).

k∑
j=1

P
(
Xi,X

j
i

)
= log2 k (6)

Accordingly, the similarity between the projected points
Y i and Y j

i of Xi and Xj
i onto the low-dimensional Grass-

mann manifold can be defined as:

Q
(
Y i,Y

j
i

)
=
[
1 + ad2bproj

(
Y i,Y

j
i

)]−1

(7)

where, a and b are 2 hyperparameters, which can be solved
by fitting Eq. (7) using Eq. (8).

Ω(X,Y ) =

{
1 if ∥X − Y ∥F ≤ mindist

exp (− (∥X − Y ∥F −mindist)) otherwise
(8)

GUMAP can minimize the discrepancy between P
and Q through the cross-entropy function, thereby ap-
proximating the distribution of samples on the low-
dimensional Grassmann manifold G(m, d) to that on the
high-dimensional Grassmann manifold G(m,D). When
the similarity between Xi and Xj on the high-dimensional
manifold is strong, correspondingly, the similarity between
Y i and Y j on the low-dimensional manifold is also strong.
By minimizing the cross-entropy function, the attractive
force F and repulsive force H between samples on the low-
dimensional manifold can be respectively expressed as:

F =
∂P logQ

∂Y i
(9)

=
−2abd

2(b−1)
proj (Y i,Y j)[

1 + ad2bproj (Y i,Y j)
]P (Xi,Xj)

(
Y iY

T
i − Y jY

T
j

)
Y i

(10)

H =
∂(1− P ) log(1−Q)

∂Y i
(11)

=
2b(1− P (Xi,Xj))

(
Y iY

T
i − Y jY

T
j

)
Y i[

1 + ad2bproj (Y i,Y j)
] [

ε+ d2proj (Y i,Y j)
] (12)

In order to avoid the potential issue arising from the
Eq. (12) of dproj(Y i,Y j) = 0, a small positive number ε
is introduced into the denominator as a regularization term.
During the course of experimentation, the value assigned to
ε is conventionally established at 0.001.

In order to provide a more intuitive representation of
the training process of GUMAP, the pseudocode of the
GUMAP method is presented in Algorithm 1.

3.3. MCFG with GUMAP

Within the context of this research, we undertake fea-
ture extraction for samples residing on Grassmann mani-
fold, leveraging the methodology detailed in Section 3.2,
namely the GUMAP. Subsequently, a similarity matrix is
computed for the extracted pivotal features employing the
Grassmann metric, thereby facilitating the attainment of en-
hanced clustering outcomes.

The transition from (a) to (b) in Fig. 1 illustrates the mod-
eling of the original image-sets and videos onto Grassmann
manifold. Specifically, a descriptor G(m,D) on Grassmann
manifold in (b) is employed to represent the collective of
multiple images shown in (a). The sequence of steps from
(a) to (b) and subsequently to (e) encapsulates the MCFG
introduced in Section 3.1. Within this framework, cluster-
ing of the samples on Grassmann manifold in (b) is directly
accomplished using a clustering algorithm that leverages
the Grassmann metric.

The transition from (c) to (d) and subsequently to (e)
in Fig. 1 elucidates the dimensionality reduction of high-
dimensional Grassmann samples through the application
of GUMAP, as introduced in Section 3.2. This process
entails refining the topological configuration of the pro-
jected points in (d) by optimizing the interplay of attractive



Algorithm 1 Uniform Manifold Approximation and Projection on Grassmann Manifold

Require: Image-set samples X = {X1,X2, . . . ,XN},Xi ∈ G(m,D), number of neighbors k, order of Grassmann
manifold m, target dimension d, neighborhood radius mindist, number of iterations epochs.

Ensure: Optimal projection points Y = {Y 1,Y 2, . . . ,Y N},Y i ∈ G(m, d).
1: function GUMAP(X ,k,d,m,mindist,epochs):
2: Construct the pairwise distance matrix using Eq. (1);
3: Construct the k nearest neighbor graph G(V,E,P ) using Eqs. (4) to (6);
4: Randomly initialize the projection points Y on the low-dimensional manifold;
5: Determine the hyperparameters a and b through Eq. (8) and mindist;
6: α = 1.0;
7: for e ∈ [1, 2, . . . , epochs] do:
8: for Xa Xb ∈ X do:
9: Y a = Y a +∇(log(Q))(Y a,Y b);

10: Sampling from the k nearest neighbors of Y a or Y b to Yneg;
11: for Y c ∈ Yneg do:
12: Y a = Y a +∇(log(1−Q))(Y a,Y c);
13: end for
14: end for
15: α = α− e/epochs;
16: end for
17: end function

Figure 1: The Fundamental Concept of MCFG with GUMAP: (a) Represents the original image-sets; (b) Illustrates the
descriptors of the image-sets on Grassmann manifold; (c) Depicts the topological structure constructed by GUMAP on the
high-dimensional Grassmann manifold; (d) Shows the topological structure on the low-dimensional Grassmann manifold
after optimization by GUMAP; (e) Displays the clustering results obtained by MCFG with GUMAP.

and repulsive forces among them, thereby aiming to mir-
ror the topological organization of the samples on the high-
dimensional Grassmann manifold depicted in (c). Within
the context of GUMAP’s optimization, the distances be-
tween highly similar samples are progressively minimized,
whereas those separating less similar samples are expanded.

In contrast to the clustering procedure spanning from (b)

to (e) within the standard MCFG, the clustering sequence
from (d) to (e) in MCFG with GUMAP demonstrates en-
hanced performance. This superiority stems from the ar-
rangement in (d), where samples exhibiting high similar-
ity are positioned in closer proximity, while those with low
similarity are spaced further apart, thereby offering a direc-
tive influence on the clustering process of (d)-(e).



In order to provide a more intuitive representation of the
training process of MCFG with GUMAP, the pseudocode
of the MCFG with GUMAP is presented in Algorithm 2.

4. Experiments

4.1. Datasets

The pivotal aspect of MCFG resides in leveraging
GUMAP to extract pivotal features from the data, thereby
augmenting the efficacy of clustering methods. This
study examines the impact of GUMAP in the context of
image-set clustering tasks, employing 4 datasets: ETH-
80[8], Extended Yale B (EYB)[15], UTD-MHAD[7],
and Weizmann[11]. Each video or image-set within
these datasets is mapped onto the Grassmann manifold
G(10, 400) and subsequently undergoes dimensionality re-
duction to G(10, 20) through the application of GUMAP.
The essential parameter configurations for these datasets are
recorded in Table 2.

Fig. 2 illustrates the process of modeling image-sets onto
the Grassmann manifold. For each image within the image-
set, it is individually resized to m × n and subsequently
flattened into a vector denoted as yi. The ensemble of
all images from the image-set constitutes a matrix Y . By
performing Singular Value Decomposition on the matrix
Y Y T , the first p eigenvectors of U elucidate a descriptor
on the Grassmann manifold G(p,mn).

4.2. Evalutions

In this study, the clustering performance of the MCFG
is evaluated through 3 metrics: the Adjusted Rand In-
dex (ARI)[6], the Adjusted Mutual Information Score
(AMI)[29], and the Homogeneity Score (HMS)[20].

The ARI provides a measure of the consistency between
the true labels of the data and the clustering results, offer-
ing stronger reliability and interpretability for the clustering
outcomes. Its value ranges from [−1, 1]. When the ARI
approaches 0, it indicates that the clustering results are ran-
domly assigned. Conversely, when the ARI approaches 1, it
signifies a perfect alignment between the clustering results
and the true labels.

The AMI score reflects the correlation between the true
labels of the data and the clustering results, with a range of
[−1, 1]. A higher AMI score indicates a better clustering
performance.

The HMS measures the homogeneity between the true
labels of the data and the clustering results, assessing
whether the samples within each cluster belong to the same
category. Its value ranges from [0, 1], and an HMS closer to
1 indicates a superior clustering effect.

4.3. Clustering Performance of MCFG with GUMAP

We conducted clustering analyses on high-dimensional
Grassmann manifold samples using both the MCFG and
MCFG with GUMAP. The clustering performance was
evaluated using the AMI, ARI, and HMS. The AMI, ARI,
and HMS results for the clustering outcomes of MCFG and
MCFG with GUMAP are visualized in Figs. 3 to 5, re-
spectively. The time costs required by each algorithm are
recorded in Table 3.

The application of the MCFG with GUMAP to various
clustering methods, such as SNN-DPC, AFP, and AGC,
has demonstrated superior performance compared to exist-
ing clustering methods on Grassmann manifolds, including
CGMKE, Grassmann K-Means, and GLBG. This proves
the effectiveness of MCFG with GUMAP in image-set clus-
tering tasks.

The clustering performance of MCFG with GUMAP sur-
passes that of MCFG alone, a conclusion that is intuitive
and effectively demonstrates the auxiliary role of GUMAP
in enhancing clustering methods on Grassmann manifold.
By extracting key features from high-dimensional mani-
folds, GUMAP reduces the distance between highly similar
samples while increasing the separation between those with
low similarity, thereby significantly improving the perfor-
mance of clustering algorithms on Grassmann manifold.

Based on indices such as AMI, ARI, and HMS for
GDBSCAN, GHDBSCAN, and GOPTICS, simply extend-
ing these methods to Grassmann manifold through prede-
fined distance matrices is not an optimal choice. How-
ever, after applying GUMAP to reduce the dimensions of
high-dimensional image-set samples, GDBSCAN, GHDB-
SCAN, and GOPTICS can achieve satisfactory clustering
results. This occurs because DBSCAN, HDBSCAN, and
OPTICS all focus on the density distribution of the samples,
yet the distribution of image-sets on Grassmann manifold is
uniform and dispersed, a characteristic that limits the per-
formance of such algorithms. GUMAP, during the dimen-
sionality reduction process, brings similar samples closer
together while increasing the distance between those with
low similarity, explaining its more significant enhancement
for GDBSCAN, GHDBSCAN, and GOPTICS.

From the results presented in Table 3, it is evident that
the MCFG exhibits lower computational time costs for pro-
cessing key features compared to those associated with cor-
responding high-dimensional samples. The GUAMP ap-
proach significantly reduces the computational complexity
and conserves both time and space costs for MCFG opera-
tions by extracting G(10, 20) embedded within G(10, 400),
thereby eliminating redundant information from the data.

4.4. Parameters Analysis

In GUMAP, there are 3 critical hyperparameters: the
number of neighbors in the graph construction process, the



Algorithm 2 Metric-Based Clustering Framework on Grassmann Manifold with GUMAP

Require: Image-set samples X = {X1,X2, . . . ,XN},Xi ∈ G(m,D).
Ensure: Clustering labels {ti}Ni=1

1: function MCFG(X ):
2: Y=GUMAP(X ,k = 10,d = 20,m = 10,mindist = 0.1,epochs = 500);
3: Construct the pairwise distance matrix D using Table 1 for Y;
4: Clustering base on the pairwise distance matrix D;
5: end function

Table 2: Summary of Dataset Information.

Names Samples Classes G(m,D) G(m, d)
ETH-80[8] 80 8 G(10, 400) G(10, 20)
EYB[15] 252 28 G(10, 400) G(10, 20)

UTD-MHAD[7] 861 27 G(10, 400) G(10, 20)
Weizmann[11] 93 10 G(10, 400) G(10, 20)

subspace orders of the samples, and the target dimensions.
In this section, we evaluate the impact of these hyperpa-
rameters on model performance using Spectral Clustering
on Grassmann Manifold (GSPC) as an example, conduct-
ing experiments on datasets such as ETH-80, EYB, UTD-
MHAD, and Weizmann.

We evaluated the performance of GSPC across different
values of the number of neighbors k(k ∈ [5, 15]). GSPC
was run 5 times for each value of the number of neighbors,
and the mean and standard deviation of the experimental
results are shown in Fig. 6. The variation in clustering per-
formance of GSPC with respect to the number of neigh-
bors is minimal. In this study, the number of neighbors for
GUMAP was uniformly set to 10.

We evaluated the performance of GSPC across different
values of the target dimensions d(d ∈ [10, 30]). GSPC was
run 5 times for each target dimension, and the mean and
standard deviation of the results are shown in Fig. 7. As
the target dimensions of GUMAP increases, the clustering
performance of GSPC improves. When the target dimen-
sions of GUMAP exceeds 16, the clustering metrics ARI,
AMI, and HMS tend to stabilize. In this study, the target
dimensions of GUMAP was uniformly set to 20 across all
datasets.

We evaluated the performance of GSPC across different
values of the subspace orders p(p ∈ [5, 15]). GSPC was run
5 times for each subspace order, and the mean and standard
deviation of the results are shown in Fig. 8. The effect of the
subspace order p on the clustering performance of GSPC
varies across different datasets. Overall, when the subspace
order p ∈ [8, 10], the clustering metrics such as ARI, AMI,
and HMS for GSPC remain stable. In this study, the sub-
space order was uniformly set to 10 across all datasets.

5. Conclusion

In this paper, we propose the Metric-Based Clustering
Framework on Grassmann Manifold (MCFG), which suc-
cessfully transfers clustering methods from Euclidean space
to Grassmann manifold through a predefined similarity ma-
trix based on Grassmann metrics. Additionally, we intro-
duce the Uniform Manifold Approximation and Projection
on Grassmann Manifold (GUMAP), a nonlinear dimension-
ality reduction method on Grassmann manifold that effec-
tively extracts low-dimensional Grassmann manifolds em-
bedded within high-dimensional ones. Preprocessing high-
dimensional Grassmann samples with GUMAP can sig-
nificantly enhance the clustering performance of MCFG.
Furthermore, MCFG with GUMAP outperforms existing
clustering methods on Grassmann manifold across multiple
image-set dataset benchmarks.

While our method has exhibited superior performance in
image-set and video clustering tasks, it is not without limita-
tions. For example, GUMAP is capable of iteratively learn-
ing the implicit nonlinear mapping relationship between
high-dimensional and low-dimensional Grassmann mani-
folds. As a result, GUMAP is unable to directly project
new, unknown samples onto the low-dimensional Grass-
mann manifold, thereby giving rise to the Out-of-Sample
Problem. Developing appropriate methods to address this
issue will be a key focus of our future research. Concur-
rently, we will also concentrate on extending a wider range
of clustering methods from Euclidean space to the Grass-
mann manifold in a more direct and generalized fashion.



Figure 2: The process of modeling image-sets onto the Grassmann manifold: (a) Several images within an image-set; (b)
Flatten each image into a vector yi; (c) Computing the covariance matrix Y Y T ; (d) Modeling through Singular Value
Decomposition.
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Figure 3: Comparison of Average ARI and Standard Deviation in Clustering Performance across Various Datasets between
MCFG and MCFG with GUMAP: Light-colored bars represent the ARI of MCFG, while dark-colored bars indicate the ARI
of MCFG with GUMAP. The error bars above the bars depict the standard deviation of multiple clustering outcomes.
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Figure 4: Comparison of Average AMI and Standard Deviation in Clustering Performance across Various Datasets between
MCFG and MCFG with GUMAP: Light-colored bars represent the AMI of MCFG, while dark-colored bars indicate the AMI
of MCFG with GUMAP. The error bars above the bars depict the standard deviation of multiple clustering outcomes.
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Figure 5: Comparison of Average HMS and Standard Deviation in Clustering Performance across Various Datasets between
MCFG and MCFG with GUMAP: Light-colored bars represent the HMS of MCFG, while dark-colored bars indicate the
HMS of MCFG with GUMAP. The error bars above the bars depict the standard deviation of multiple clustering outcomes.



Table 3: Comparison of Time Costs (s) for Clustering Across Various Datasets Between MCFG and MCFG with GUMAP.
Specifically, GSPC and GUMAP-GSPC represent the respective applications of MCFG and MCFG with GUMAP, within the
SPC method.

Methods ETH-80 EYB UTD-MHAD Weizmann
CGMKE[24] 0.1186 0.4015 4.1684 0.1471

GUMAP-CGMKE 0.0933 0.1760 1.8067 0.1306
GKM[27] 6.1801 19.4436 88.3841 11.1410

GUMAP-GKM 1.6940 26.8549 35.3539 1.4856
GLBG[25, 27] 0.3218 4.0518 26.9033 0.9866

GUMAP-GLBG 0.1511 2.8923 14.7118 0.2126
SNN-DPCG 0.1810 1.7897 21.0272 0.2427

GUMAP-SNN-DPCG 0.1743 1.7179 20.0815 0.2331
GAFP 0.1606 1.5826 18.6691 0.2143

GUMAP-GAFP 0.1542 1.5215 17.7559 0.2060
GAGC 0.1579 1.5743 18.5356 0.2122

GUMAP-GAGC 0.1516 1.5005 17.5784 0.2037
GDBSCAN 0.1585 1.5701 18.5539 0.2122

GUMAP-GDBSCAN 0.1524 1.4992 17.5919 0.2043
GHDBSCAN 0.1586 1.5777 18.5585 0.2134

GUMAP-GHDBSCAN 0.1525 1.5064 17.6081 0.2050
GOPTICS 0.1891 1.6682 18.9754 0.2475

GUMAP-GOPTICS 0.1826 1.5989 18.0299 0.2395
GSPC 0.0466 0.4441 4.5966 0.0594

GUMAP-GSPC 0.0258 0.2489 2.2340 0.0330
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Figure 6: The Mean and Standard Deviation of ARI, AMI, and HMS for GSPC with Different Values of the Number of
Neighbors k.
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Figure 7: The Mean and Standard Deviation of ARI, AMI, and HMS for GSPC with Different Values of the Target Dimen-
sions d.
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Figure 8: The Mean and Standard Deviation of ARI, AMI, and HMS for GSPC with Different Values of the Subspace Orders
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