
MAAU-UIE: Multiple Attention Aggregation U-Net for Underwater Image
Enhancement

Junsheng Chang, Qin Shi, Yijun Zhang, Zongtang Hu
China Mobile (Suzhou) Software Technology Co., Ltd.

Suzhou, Jiangsu, China

Xulun Ye
Faculty Of Electrical Engineering and
Computer Science, Ningbo University

Ningbo, Zhejiang, China

Abstract

To address issues such as color distortion, blurriness,
and low contrast in underwater images, a Multiple At-
tention Aggregation U-Net for Underwater Image En-
hancement (MAAU-UIE) is proposed. The network is
constructed using an encoder-decoder structure, with a
multiple attention block designed to enhance the ability
to extract features from low-quality underwater images.
First, axial rectangular window attention and shifted
axial rectangular window attention are alternately ap-
plied to learn local context and establish global depen-
dencies, respectively. Additionally, channel convolution
and spatial convolution are incorporated into the pro-
cess of window attention calculation to further supple-
ment local information. A channel enhancement mod-
ule is then added to improve the modeling capability in
the channel dimension. Finally, gradient loss and multi-
scale structural similarity loss are used to enhance the
network’s ability to extract edge detail information and
multi-scale structural features. Ablation experiments
demonstrate the significant role of each proposed mod-
ule plays in improving network performance. Quanti-
tative experiments show that this method surpasses ex-
isting methods on various objective metrics. The peak
signal-to-noise ratio (PSNR) and structural similarity
(SSIM) on the benchmark dataset UIEB test set reach
24.467 and 0.920, respectively. The underwater image
quality measurement (UIQM) and underwater color im-
age quality evaluation (UCIQE) on the UIEB challenge
set and in three color-bias environments of UCCS out-
perform cutting-edge methods. Qualitative experiments
indicate a clear advantage in subjective visual effects, ef-
fectively restoring underwater images with natural col-
ors and clear texture structures.

Keywords: underwater image enhancement, attention
aggregation, rectangular window attention, channel fea-
ture enhancement, multi-scale

1. Introduction

With the continuous advancements in ocean exploration
and underwater activities, the acquisition of underwater im-
ages has become increasingly important in fields such as
marine science, archaeology, ocean engineering, and under-
water robot navigation [30, 25]. However, due to the com-
plexity of the underwater environment, underwater images
are often affected by factors such as light scattering and ab-
sorption [20], which lead to poor image quality. These is-
sues mainly manifest as color distortion, reduced contrast,
blurring, and increased noise [1, 2], significantly lowering
the usability and visual quality of underwater images. As
a result, underwater image enhancement technologies have
emerged, aiming to improve the visual quality of under-
water images through algorithms and technical approaches,
making them more suitable for human perception and com-
puter vision applications.

Traditional methods [1, 2, 34] rely on statistical infor-
mation and assumptions about the image. These methods
attempt to improve visual quality by correcting color dis-
tortions and enhancing contrast through manually designed
features. However, these methods are unable to adapt to dy-
namic scenes and perform poorly in terms of image quality
restoration.

Convolutional neural networks (CNNs) perform excel-
lently in feature extraction for images and are therefore
widely used in image restoration and related fields. CNN-
based methods [5, 12, 13] can automatically extract im-
age features and achieve end-to-end image representation.
However, the receptive field and fixed convolutional ker-
nels of CNN-based methods limit their development in the
field of image restoration. Due to the limitations of the
receptive field, CNN-based methods cannot capture rela-
tionships between pixels over a larger range. Furthermore,
the fixed convolutional kernels prevent CNN-based meth-
ods from adapting to the diversity of underwater images.

The transformer model, based on self-attention, was ini-
tially applied in natural language processing (NLP) [10]. In
recent years, due to its outstanding performance in visual
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tasks, many transformer-based methods [17, 19] have been
applied to image restoration. However, due to its quadratic
computational complexity, it faces challenges when dealing
with high-resolution images, as the computational load be-
comes enormous and needs to be optimized.

The main contributions are summarized as follows:
1) The network is built upon the U-Net architec-

ture, which leverages hierarchical up-sampling and down-
sampling operations to effectively extract information from
feature maps of different scales. This enhances the model’s
ability to handle various complex underwater environments.

2) Standard U-Net networks, relying purely on convo-
lutional operations, have limited ability to capture global
information. To address this, the base module of the U-Net
is designed using a window attention mechanism. To mit-
igate the high computational cost of standard Transformer
models, the feature map is divided into a series of rectan-
gular windows, and attention is calculated within each win-
dow to effectively extract information in both horizontal and
vertical directions. Further, by shifting the axial rectangu-
lar window partitioning, connections between windows are
strengthened.

3) To further enhance the feature extraction capabilities,
convolution operations are integrated into the window at-
tention computation to capture richer local detail informa-
tion. Additionally, a channel enhancement module is added,
which assigns different weight coefficients to each channel,
improving modeling capacity.

4) In addition to pixel-based reconstruction loss, gradient
loss and multi-scale structural similarity loss are incorpo-
rated to enhance the robustness of the model in recovering
texture details.

5) Extensive experiments conducted on the UIEB bench-
mark dataset [14] show that our method significantly im-
proves performance across various objective metrics and
demonstrates superior subjective visual results. Further-
more, validation on the UCCS dataset [16] confirms that
the proposed method achieves superior performance in un-
derwater environments with three different color casts.

2. Related Work

In recent years, significant progress has been made in the
field of underwater image enhancement. Traditional meth-
ods [2, 34]continue to be optimized and applied, but more
attention is being given to deep learning-based enhance-
ment methods, which have gradually become a research
hotspot. For instance, Islam et al. [9] designed a multi-
scale convolutional neural network that improves the con-
trast and clarity of underwater images through multi-layer
feature extraction and fusion.

Moreover, Generative Adversarial Networks (GANs)
have demonstrated great potential in underwater image en-
hancement. Ye et al. [29] utilized GANs to achieve efficient

image denoising and dehazing, significantly enhancing the
visual quality of underwater images. Zhang et al. [31]
proposed an enhanced GAN architecture that incorporates
a self-attention mechanism in both the generator and dis-
criminator, further improving color balance and detail rep-
resentation. Cong et al. [4] introduced a GAN-based phys-
ical model for underwater image enhancement, which per-
formed well in terms of visual aesthetics. However, GAN-
based methods rely on large amounts of training data, and
the training process may encounter mode collapse issues,
leading to instability in the quality of the generated images.

In recent years, attention mechanisms and Transformer
structures have also been introduced into the field of under-
water image enhancement. Huang et al. [8] introduced a
Transformer-based method for underwater image enhance-
ment, which effectively integrates global and local infor-
mation in the image through self-attention mechanisms, en-
abling more precise correction of color and contrast is-
sues. Ren et al. [19, 21] employed Transformers and self-
attention mechanisms for underwater image enhancement,
which can capture a broader range of pixel features from the
input images, although these methods tend to have higher
computational demands. The underwater image enhance-
ment method based on Mamba[6] is another promising re-
search direction. Lin et al. [15] proposed PixMamba, ap-
plying Mamba to underwater image enhancement. Mamba
offers efficient sequence modeling capabilities, its primary
limitation lies in the increased difficulty of model tuning
due to its complexity. Furthermore, its application in the
image domain remains in the exploratory phase, requiring
more experimental evidence to verify its effectiveness in un-
derwater image enhancement.

Although significant progress has been made, current
underwater image enhancement methods still face several
challenges. First, the diversity and complexity of underwa-
ter environments lead to inconsistent performance of exist-
ing models across different settings, lacking generalizabil-
ity. Second, deep learning-based methods require substan-
tial computational resources and depend on large amounts
of annotated data, which poses challenges for real-world
applications. Additionally, most existing research focuses
on a single image enhancement task, and there is still no
unified framework that can simultaneously handle multiple
tasks such as color correction, contrast enhancement, de-
noising, and dehazing. Therefore, further research is neces-
sary to develop more general, efficient, and resource-light
underwater image enhancement methods.

To address the above challenges, This paper proposes a
Multiple Attention Aggregation U-Net [22] for Underwa-
ter Image Enhancement (MAAU-UIE) based on multiple
attention mechanisms combined with effective loss func-
tions, which achieves promising performance in underwater
image enhancement.



Figure 1. The network structure of MAAU-UIE

3. Methodology

3.1. Network Architecture

This paper presents a Multiple Attention Aggregation U-
Net network (MAAU-UIE) for underwater image enhance-
ment. The network structure, as shown in Fig. 1, primarily
consists of an encoder, a bottleneck layer, and a decoder. A
novel Multiple Attention Block (MAB) is designed as the
foundational module of the network. The original underwa-

ter image is first resized to a predefined dimension, denoted
as Iin ∈ RH×W×3. The image is then passed through a
3 × 3 convolutional layer to map the number of channels
to C. After that, a PatchEmbed layer is applied to divide
the image into a series of patches of size P ×P , generating
shallow encoded features, denoted as X0 ∈ R

H
P ×W

P ×C .

The encoder consists of three Multiple Attention Blocks
(MABs), each followed by a PatchMerging module used
as a down-sampling (DS) operation. The PatchMerging



reduces the width and height of the feature maps by half
while doubling the number of channels. Taking the input
X0, the outputs of the three DS modules in the encoder are
denoted as E1 ∈ R

H
2P × W

2P ×2C , E2 ∈ R
H
4P × W

4P ×4C and
E3 ∈ R

H
8P × W

8P ×8C respectively. The bottleneck layer in-
cludes one MAB that further enhances the features, produc-
ing the output E

′

3 ∈ R
H
8P × W

8P ×8C .
The decoder has a symmetric structure to the encoder,

also comprising three MABs. Each MAB in the decoder
is followed by an up-sampling (UP) module, which uses
bicubic interpolation to double the width and height of the
feature maps while halving the number of channels. The
outputs of the three UP modules in the decoder are de-
noted as D1 ∈ R

H
4P × W

4P ×4C , D2 ∈ R
H
2P × W

2P ×2C and
D3 ∈ R

H
P ×W

P ×C respectively. Simultaneously, the fea-
ture maps from the encoder and decoder at corresponding
positions are concatenated along the channel dimension. A
fully connected (Linear) layer is then applied to reduce the
number of channels by half, improving the information flow
across the network.

To retain more image details and enhance the visual
quality of the reconstructed image, an Enhanced Upsam-
pling Block (EUB) is used after the decoder. This block
employs parallel sub-pixel convolution (PixelShuffle) and
bilinear interpolation to double the width and height of
the feature map, followed by channel concatenation. The
resulting feature map is then processed through a 1 × 1
convolutional layer to extract spatial features and restore
the number of channels to C, resulting in output features
IF ∈ RH×W×C .At the end of the network, a 3 × 3 convo-
lutional layer is applied to map the channel dimension of IF
to 3, producing the enhanced underwater image, denoted as
Iout ∈ RH×W×C .

3.2. Multiple Attention Block

As shown in the blue box in Fig. 1, the Multiple Atten-
tion Block (MAB) consists of the Rectangle Window Atten-
tion Layer (RWAL) and the Shift Rectangle Window Atten-
tion Layer (SRWAL). These two window attention layers
alternate to learn local features and extract global contex-
tual information. For simplicity, let the input features of
MAB be denoted as Yin ∈ RH×W×C , which are paral-
lelly input into the Convolution-Axial Rectangle Window
Attention (Conv-ARWA) and the Channel Enhanced Mod-
ule (CEM).

The Conv-ARWA focuses on computing correlations
within rectangular windows, extracting information in both
horizontal and vertical directions, while utilizing convolu-
tion layers to enhance the learning of local features. The
CEM establishes correlations between feature channels, and
its output is combined with the results from Conv-ARWA
through a weighted summation, controlling the weights of
spatial and channel features during fusion. The overall pro-

cess of RWAL is described by Equations (1) to (4):

XR = Conv −ARWA(LN(Yin) (1)

XC = CEM(LN(Yin)) (2)

XF = FFN(LN(α ·XC +XR + Yin)) (3)

Y
′

in = α ·XC +XR +XF (4)

where LN represents Layer Normalization, FFN rep-
resents the Feed-Forward Network, and α represents the
channel feature weights. The Shift Rectangle Window
Attention Layer (SRWAL) replaces the Conv-ARWA in
RWAL with Convolution-Shift Axial Rectangle Window
Attention (Conv-SARWA), while the remaining steps are
identical to RWAL.

3.3. Rectangle Window Partitioning

In the standard Transformer model [24], self-attention is
computed across all pixels in the entire feature map, which
results in high computational costs and limited capability
in extracting local features. To ensure effective feature ex-
traction while reducing computational load, the feature map
is divided into a series of non-overlapping rectangular win-
dows as described in [3]. Let the width and height of each
rectangular window be denoted as Mw and Mh, respec-
tively. Based on the relationship between Mw and Mh,
the rectangular windows are categorized into two types. If
Mw > Mh, the window is defined as a horizontal window,
and if Mw < Mh, it is defined as a vertical window.

As illustrated in Fig. 2, Rectangle Window Attention
(RWA) divides the feature map Y ∈ RH×W×C along the
channel dimension into two parts, Y1 ∈ RH×W×C

2 and
Y2 ∈ RH×W×C

2 , and further partitions Y1 and Y2 into a se-
ries of horizontal and vertical windows, respectively. Let Y1

and Y2 be considered as consisting of 1×1× c
2 tokens, each

with a dimension of H × W ; hence, each window can be
viewed as containing Mw ×Mh tokens. In Fig. 2, the green
boxes represent tokens, and the blue rectangular boxes rep-
resent the partitioned windows used for subsequent atten-
tion calculation. Compared to square windows [17], rect-
angular windows capture more information along the hor-
izontal and vertical directions for each pixel, which helps
enhance the model’s feature extraction capabilities.

Considering that Rectangle Window Attention (RWA)
focuses on information interaction within each window and
lacks connections between different windows, Shift Rectan-
gle Window Attention (SRWA) is added to further expand
the receptive field. As shown in Fig. 2, a cyclic shifting
operation is applied: the windows partitioned in RWA are
shifted downward by Mh

2 pixels and rightward by Mw

2 pix-
els, resulting in newly partitioned windows. Finally, the re-
sults from horizontal SRWA and vertical SRWA are con-
catenated along the channel dimension to obtain the final
output of the window attention mechanism.



Figure 2. The window partition method of RWA and SRWA

Figure 3. The attention area of the pixel in ARWA

Furthermore, one side of the rectangular window is ex-
tended to match the full length of the input feature map (ei-
ther H or W ), while the other side takes a smaller value,
denoted as Ml. As illustrated in Fig. 3, the orange pixel
can now interact with all the pixels along its horizontal and
vertical axes, within the orange-shaded region. This type of
attention calculation is referred to as Axial Rectangle Win-
dow Attention (ARWA). Similarly, a Shift Axial Rectan-
gle Window Attention (SARWA) is added after ARWA, and
they alternate.

In terms of computational cost, the standard Transformer
computes the similarity between pixels over the entire fea-
ture map of size H ×W × C, which results in a computa-
tional complexity proportional to the square of the feature
map size, as shown in Equation (5). The Rectangle Window
Attention (RWA) computes self-attention within a series of
rectangular windows of size Mh×Mw×C, and the number
of such windows is H

Mh
× W

Mw
, leading to the computational

complexity as given by Equation (6).

Ω(MSA) = 2(HW )2C + 4HWC2

= HWC × (2HW + 4C)
(5)

Ω(RWA) = (2(MhMw)
2 + 4MhMwC

2)× H

Mh
× W

Mw

= HWC × (2MhMw + 4C)
(6)

Similarly, the computational complexity for Axial Rectan-
gle Window Attention (ARWA) is provided in Equation (7):

Ω(ARWA) = HWC × (HMl +WML + 4C) (7)

Although the computational cost of ARWA is higher
than that of RWA, it is significantly reduced compared
to the standard Transformer. Moreover, ARWA’s window
size changes flexibly with the feature map, making it more
adaptable. Additionally, ARWA has a larger attention re-
gion, capable of capturing all information in both horizon-
tal and vertical directions. Therefore, in the Multiple At-
tention Block (MAB), ARWA and SARWA are employed
alternately.

3.4. Convolution-Enhanced Window Attention Calcula-
tion

Transformers are known for effectively capturing
global dependencies, while Convolutional Neural Net-
works (CNNs) excel at local feature extraction and trans-
lation invariance, making them effective in capturing



Figure 4. The algorithm of the window attention combined with
the convolution

the two-dimensional local structure of images. There-
fore, convolution operations are integrated into the cal-
culation of rectangular window attention, resulting in
Convolution-Axial Rectangle Window Attention (Conv-
ARWA) and Convolution-Shift Axial Rectangle Window
Attention (Conv-SARWA) to enhance local information
within the windows and improve the model’s ability to re-
construct image details.

In conventional window attention calculations [27], a
fully connected layer is used to generate the Query, Key,
and Value matrices from the input window feature map. In
the proposed method, two convolutional layers are applied
within the divided windows—one along the channel dimen-
sion and the other along the spatial dimension—to extract
local features and generate the corresponding Query, Key,
and Value matrices for each window. Fig. 4 illustrates the
workflow of convolution-enhanced window attention calcu-
lation.

By incorporating convolution operations, the Conv-
ARWA and Conv-SARWA modules can extract richer lo-
cal details, thereby enhancing the ability of the model to
effectively reconstruct detailed features in underwater im-
ages. This fusion helps in retaining essential information
that might be overlooked by purely attention-based mecha-
nisms, ultimately leading to improved image enhancement
results.

After dividing the feature map into a series of rectangular
windows according to the approach in Section 2.3, denote
the horizontal rectangular windows obtained from the first
C
2 channels of the feature map as Ri ∈ RMh×Mw×C

2 [i =

1, 2, ..., H×W
Mh×Mw

,Mh < Mw].
For window Ri, a 1 × 1 convolution is first applied

along the channel dimension to facilitate information inter-
action, and the number of channels is expanded by three
times. Then, a 3 × 3 convolution is used to enhance the
extraction of local spatial features, resulting in features
Gi ∈ RMh×Mw× 3C

2 , as shown in Equation (8):

Gi = Conv3×3(Conv1×1(Ri)) (8)

The dimensions of Gi are then reshaped to Mh ×Mw ×
3C
2 , and it is split evenly along the channel dimension to

obtain the Query, Key, and Value matrices for the window,
denoted as Qi ∈ RMh×Mw×C

2 , Ki ∈ RMh×Mw×C
2 and

Vi ∈ RMh×Mw×C
2 , respectively. The matrices Qi, Ki and

Vi are further divided into d heads along the channel di-
mension, with each head having a channel dimension of
D = C/2d. The attention is computed for each head of
the window in parallel, as shown in Equation (9):

Qi = [Q1, Q2, ..., Qd],

Ki = [K1,K2, ...,Kd],

Vi = [V 1, V 2, ..., V d]

(9)

The attention calculation process for the m-th head of hori-
zontal window Ri is represented by Equation (10):

Xm
i = Attention(Qm

i ,Km
i , V m

i )

= Softmax[
Qm

i (Km
i )T√
D

+B]V m
i ,

m = 1, 2, ..., d

(10)

Where B represents the learnable positional encoding,
and T represents matrix transpose. The attention results
from all d heads for the horizontal window are concate-
nated along the channel dimension to obtain the attention
output for the i-th horizontal window, denoted as Fi ∈
RMh×Mw×C

2 (Mh < Mw):

Fi = Concat(Xm
i ),m = 1, 2, ..., d (11)

Finally, the attention outputs from all H×W
Mh×Mw

horizontal
windows are recombined in the original partitioned order to
restore the size of the original feature map, obtaining the
horizontal window attention output F ∈ RH×W×C

2 :

F = WindowReverse(Fi),

i = 1, 2, ...,
H ×W

Mh ×Mw

(12)

This process effectively extracts both local and global de-
pendencies within each window and integrates them back
to enhance the feature representation of the entire feature
map.

For the vertical windows obtained from the remaining C
2

channels, attention is computed following the same steps as
described above. Let the attention output for the i-th vertical
window be denoted as V − i ∈ RMh×Mw×C

2 (Mh > Mw).
The final attention output for all vertical windows, denoted
as V ∈ RH×W×C

2 , is computed as follows:

V = WindowsReverse(V i), i = 1, 2, ...,
H ×W

Mh ×Mw
(13)

Next, the outputs F and V are concatenated along the chan-
nel dimension, and a fully connected layer is applied to ob-
tain the final output of the rectangular window attention,
denoted as XR ∈ RH×W×C :

XR = Concat(F, V )W o (14)



Figure 5. The structure of CEM

Where W o ∈ RC×C represents the linear mapping matrix.
This step ensures that the information from both horizontal
and vertical windows is fully integrated, capturing compre-
hensive spatial features and enriching the final feature rep-
resentation.

3.5. Channel Enhanced Module

The channel dimension of an image contains rich color
information, and enhancing the inter-channel associations
can help in learning the color and intensity variations spe-
cific to underwater environments. In this work, a Chan-
nel Enhanced Module (CEM) is added in parallel with the
rectangular window attention mechanism. The structure of
CEM is shown in Fig. 5. The input feature Y is processed
through two 3 × 3 convolutional layers with GELU activa-
tion functions to extract features U ∈ RH×W×C , as repre-
sented by Equation (15):

U = Conv3×3(GELU(Conv3×3(Y ))) (15)

This operation aims to strengthen the correlation between
different channels, capturing subtle variations in color that
are critical for enhancing underwater images. By us-
ing pointwise convolutions, the module focuses solely on
channel-wise interactions, without altering the spatial rela-
tionships, which effectively boosts the model’s ability to re-
construct color and texture details.

Next, channel attention[32] is used to establish associ-
ations among different channels of the feature map, adap-
tively assigning channel weights. Specifically, the feature
U is treated as consisting of C feature maps, each of size
H × W , denoted as U = [v1, v2, ..., vC ]. Global Average
Pooling (GAP) is applied to capture the global information
of each channel, as shown in Equation (16):

U
′

k =
1

H ×W

H∑
i=1

W∑
j=1

U(i, j, k), k = 1, 2, ..., C (16)

A 1 × 1 convolutional layer is used to reduce the number
of channels to C

γ , where γ is the channel compression ra-
tio, set to 4. Then, the GELU activation function is applied
to enhance the nonlinearity of the features, followed by an-
other 1times1 convolutional layer to restore the number of
channels back to C, as shown in Equation (17):

P = Conv1×1(GELU(Conv1×1(U
′
))) (17)

Subsequently, a gated activation function Sigmoid =
1

1+e−x is applied to normalize the values of the feature map
P between 0 and 1. Finally, element-wise multiplication is
performed with the input feature U , resulting in the output
feature of the Channel Enhanced Module XC , as described
in Equation (18):

XC = U · Sigmoid(P ) = U · T (18)

3.6. Loss Function

A multi-task loss function is employed in this work, con-
sisting of Charbonnier loss, gradient loss, and multi-scale
structural similarity (MS-SSIM) loss. The weighted combi-
nation of these three loss components is given by Equation
(19):

L = LC + λ1 · LGP + λ2 · LMS (19)

Where λ1 and λ2 are the balancing coefficients for the loss
terms, with values set to 2 and 1, respectively. The Charbon-
nier loss aims to reduce the pixel-wise difference between
the enhanced output image Iout and the reference image Igt,
as shown in Equation (20):

LC = EIout∼P (g),Igt∼P (o)

√
(Igt − Iout)2 + ϵ2 (20)

Where P (o) and P (g) represent the distributions of the re-
constructed enhanced image Iout and the reference image
Igt, respectively. ϵ is set to 1e−3 to prevent the gradient
from becoming zero, thereby improving robustness to a cer-
tain extent. This loss ensures that the enhanced output is as
close as possible to the reference, providing a strong foun-
dation for pixel-level similarity and helping the model to ef-
fectively reduce artifacts and retain important details. Con-
sidering that Charbonnier loss lacks attention to the high-
frequency information of the image, gradient loss [23] is
used to emphasize the reconstruction of high-frequency de-
tails by constraining the difference between the enhanced
image Iout and the reference image Igt in terms of spatial
gradients. The calculation is as follows:

IGP = E∇Igt∼Q(g),∇Iout∼Q(o)(∇Igt −∇Iout) (21)

Where ∇Igt and ∇Iout represent the gradient fields of the
reference image Igt and the enhanced output image Iout,
respectively. Q(g) and Q(o) represent the distributions of
the gradients in the x and y directions for both ∇Igt and
∇Iout .

To further improve the perceptual quality of Iout for hu-
man viewers, multi-scale structural similarity (MS-SSIM)
loss [27] is used to reduce the differences between Igt and
Iout in terms of luminance, contrast, and structure at multi-
ple scales.

As shown in Fig. 6, multiple scales of the image are
obtained by repeatedly applying Gaussian filtering and 2x



Figure 6. The algorithm of MS-SSIM

down-sampling to the original image. The original image
is labeled as scale 1, and the image generated after M − 1
iterations is labeled as scale M . The multi-scale structural
similarity (MS-SSIM) is calculated as follows:

IMS(Igt, Iout) = [lM (Igt, Iout)]
αM

·
M∏
j=1

[cj(Igt, Iout)]
βj [sj(Igt, Iout)]

γj
(22)

Where αM , βj and γj are the coefficients that adjust the
importance of luminance, contrast, and structural compo-
nents, respectively. cj(Igt, Iout) and sj(Igt, Iout) represent
the contrast and structure differences at the j-th scale, and
lM (Igt, Iout) represents the luminance difference at the M -
th scale. The multi-scale structural similarity loss is com-
puted as follows:

LMS = 1− IMS(Igt, Iout) (23)

4. Experimental Results and Analysis

4.1. Experimental Setup

The experiments in this study were conducted using the
Pytorch 1.11 framework on an NVIDIA V100 GPU with
24GB memory. The batch size for training was set to 8,
and the number of training epochs was 800. The learning
rate was set to 5 × 10−4 , and the Adam optimizer was
used to train the model, with parameters β1 = 0.9 and
β2 = 0.99. The size of the underwater images used for both
training and testing was uniformly adjusted to 256 × 256.
The channel dimension C in the network was set to 64. In
the PatchEmbed layer, the value of P was set to 2. In the
Multiple Attention Block (MAB), six Rectangle Window
Attention Layers (RWAL) and Shift Axial Rectangle Win-
dow Attention Layers (SRWAL) were used alternately, i.e.,
N = 6 . The number of heads for multi-head self-attention
in both horizontal and vertical rectangular windows was set
to 4, i.e., d = 4.

4.2. Dataset

The experiments were conducted on the benchmark
underwater image enhancement datasets UIEB [14] and

UCCS [16]. The UIEB dataset contains 890 paired refer-
ence underwater images, with 800 pairs used as the training
set, referred to as Train-800, and 90 pairs used as the test-
ing set, referred to as Test-90. Additionally, UIEB includes
60 unpaired original underwater images, referred to as the
Challenge Set (C60). The UCCS dataset contains 300 orig-
inal underwater images without ground truth labels, con-
sisting of 100 images each from three different color cast
environments: blue, green, and blue-green. These datasets
provide a diverse range of underwater conditions, allowing
comprehensive evaluation of the model’s ability to handle
various underwater image enhancement challenges, includ-
ing different lighting conditions and color distortions.

4.3. Evaluation Metrics

The evaluation metrics for underwater image enhance-
ment in this study are divided into two categories:
reference-based and non-reference. For underwater im-
ages with ground truth labels, reference-based metrics are
used: Peak Signal-to-Noise Ratio (PSNR) [11] and Struc-
tural Similarity (SSIM) [26]. PSNR measures the pixel-
wise difference between the enhanced image and the refer-
ence image, indicating the overall reconstruction accuracy.
SSIM measures the contrast, luminance, and structural sim-
ilarity between images, which aligns better with human vi-
sual perception. Higher values of PSNR and SSIM indicate
a higher similarity between the enhanced image and the ref-
erence image in terms of content. For underwater images
without ground truth labels, non-reference metrics are used:
Underwater Image Quality Measure (UIQM) [18] and Un-
derwater Color Image Quality Evaluation (UCIQE) [28].
UIQM is defined as a linear combination of Underwater
Image Colorfulness Measure (UICM), Underwater Image
Sharpness Measure (UISM), and Underwater Image Con-
trast Measure (UIConM). UCIQE considers chroma, satu-
ration, and contrast in underwater images. Higher values
of UIQM and UCIQE indicate better balance in terms of
colorfulness, contrast, and overall visual quality of the en-
hanced image. These metrics provide a comprehensive as-
sessment of the model’s performance in both objective ac-
curacy and perceptual quality, allowing for a detailed evalu-



ation of the enhancement results under different conditions
and datasets.

4.4. Ablation Study

An ablation study was conducted on the UIEB dataset,
with the model trained on Train-800 and tested on Test-90.
To validate the contribution of the proposed modules to un-
derwater image enhancement, the performance of three dif-
ferent network structures was evaluated.

• Model 1 integrates Axial Rectangle Window Atten-
tion (ARWA) and Shift Axial Rectangle Window Attention
(SARWA) into the U-Net architecture.

• Model 2 adds convolution operations to the rectan-
gular window attention mechanism, replacing ARWA and
SARWA in Model 1 with Conv-ARWA and Conv-SARWA.

• Model 3 builds upon Model 2 by incorporating the
Channel Enhanced Module (CEM), forming the final net-
work, MAAU-UIE.

The experimental results are shown in Table 1. Com-
pared to the baseline U-Net model, Model 1 achieved sig-
nificant improvements in PSNR and SSIM, with increases
of 5.629 and 0.084, respectively. This improvement is due
to the limited global information modeling capability of
the ResBlock, whereas Model 1 alternates between ARWA
and SARWA, effectively combining local context extraction
with global feature representation. Model 2, compared to
Model 1, further increased PSNR by 0.250 and SSIM by
0.001, demonstrating that adding convolutional layers en-
hances the window attention mechanism’s ability to learn
spatial local information, thereby improving the model’s de-
tail enhancement capability. Model 3 achieved the best per-
formance, indicating that integrating the Channel Enhanced
Module allows for better utilization of global information,
leading to improved reconstruction of color, brightness, and
other variations. The combination of attention and channel
enhancement contributed to a comprehensive enhancement
of the underwater image quality.

Table 2 discusses the impact of different height (Mh) and
width (Mw) combinations of the rectangular windows on
the network performance. Based on Model 1, the height
and width of the rectangular windows were varied. Com-
pared to the first two rows with square window attention,
Rectangle Window Attention (RWA) demonstrated signifi-
cant performance advantages. Using Axial Rectangle Win-
dow Attention (ARWA) further improved the metrics, in-
dicating that extending the longer side of the rectangular
window to match the feature map’s length better aggregates
information along that direction. Additionally, increasing
the shorter side of the axial rectangular window (Ml) al-
lows each token to interact with more tokens, enhancing the
extraction of global information. By comparing the last two
rows of Table 2, it is observed that when Ml increases from
4 to 8, there is no significant performance improvement.

Moreover, as indicated by Equation (7), increasing M − l
leads to higher computational cost. Therefore, considering
the balance between image reconstruction performance and
computational efficiency,Ml was set to 4.

Table 3 compares the effect of different values of α in
the Channel Enhanced Module (CEM) on the performance
of the MAAU-UIE network. Setting α = 0 indicates that
the channel enhancement module is not used. Adding the
channel enhancement module (α > 0) slightly improved
PSNR and SSIM. When α = 0.1, the model achieved opti-
mal performance, indicating that adjusting the balance be-
tween channel information and spatial information fusion
can further optimize the model’s performance. The results
highlight the importance of carefully choosing hyperparam-
eters for the attention mechanisms and channel enhance-
ment module to achieve a good balance between enhance-
ment effectiveness and computational efficiency.

Table 4 compares the results of training the MAAU-UIE
network using different combinations of the three loss com-
ponents. When gradient loss (LGP ) or multi-scale struc-
tural similarity loss (LMS) was added individually on top of
the Charbonnier loss (LC), both PSNR and SSIM showed
significant improvements. When all three loss components
were used together, both metrics reached their optimal val-
ues. This indicates that reducing the difference between
the enhanced image and the reference image in the high-
frequency gradient domain, as well as enhancing their struc-
tural consistency, contributes significantly to improving the
visual quality of the output image. The combination of
these losses effectively ensures that the enhanced images
not only closely match the reference in pixel values but
also retain important textural and structural information, ul-
timately leading to a more visually appealing enhancement
result.

4.5. Quantitative Comparison

To validate the superiority of proposed method, various
objective metrics were compared between the proposed ap-
proach and state-of-the-art underwater image enhancement
methods. The models were trained on the UIEB training set
(Train-800), and performance was compared on its testing
set (Test-90) using PSNR and SSIM metrics. Additionally,
for non-reference test sets (C60 from UIEB and UCCS),
UIQM and UCIQE metrics were used for comparison.

Table 6 compares the UIQM and UCIQE metrics of var-
ious methods on C60 and UCCS datasets, respectively. Ac-
cording to Tables 6, the proposed method outperformed
other methods on the UIQM metric for C60 and the UCIQE
metric for UCCS, surpassing the second-best method by
0.004 and 0.003, respectively. These results indicate that the
proposed method achieves superior sharpness and contrast,
and exhibits strong robustness when processing underwater
images with three different color casts in the UCCS dataset.



Model U-Net(ResBlock) ARWA & SARWA Conv-ARWA & Conv-SARWA CEM Test-90
PSNR SSIM

Base Model ✓ 18.472 0.832
Model1 ✓ 24.101 0.916
Model2 ✓ 24.351 0.917
Model3 ✓ ✓ 24.467 0.920

Table 1. Comparison of different obfuscations in terms of their transformation capabilities

(Mh,Mw) Test-90
First C/2 channel Last C/2 channel PSNR SSIM

Square Window (4,4)
(8,8)

(4,4)
(8,8)

22.120
22.866

0.899
0.903

Rectangle Window
(2,4)

(4,16)
(8,16)

(4,2)
(16,4)
(16,8)

23.029
23.154
23.226

0.907
0.909
0.915

Axial Window
(2,W)
(4,W)
(8,W)

(H,2)
(H,4)
(H,8)

24.037
24.101
24.102

0.914
0.916
0.916

Table 2. The effects of different widths and heights of the rectangle window

α
Test-90

PSNR SSIM
0 24.351 0.917

0.001 24.354 0.917
0.01 24.412 0.918
0.1 24.467 0.920
1 24.361 0.919

Table 3. Effects of the fusion factor XXX in CEM

Loss Test-90
PSNR SSIM

LC 23.894 0.898
LC , LMS 24.210 0.911
LC , LGP 24.415 0.916

LC , LGP , LMS 24.467 0.920
Table 4. Effects of different loss functions

Method Venue Test-90
PSNR SSIM

Ucolor[28] TIP 21 21.093 0.872
URSCT[14] TGRS 22 22.720 0.910
FiveA+[10] BMVC 23 23.061 0.911
U-shape[16] TIP 23 22.910 0.910
PuGAN[17] TIP 23 21.670 -

Semi-UIR[33] CVPR 23 23.590 0.901
X-CAUNET[20] ICASSP 24 24.121 0.871
PixMamba[29] arXiv 24 23.587 0.921

Ours - 24.467 0.920
Table 5. The performance indicators of different methods on the
test set Test-90 of UIEB

This highlights the method’s effectiveness in enhancing di-
verse underwater images and providing high visual quality,

especially in challenging color-biased conditions.
Table 6 also compares the performance differences be-

tween our model and the current state-of-the-art models.
From the metrics of parameters and FLOPs, it can be seen
that our model outperforms most of the current state-of-the-
art models.

5. Qualitative Comparison

To further verify the superiority of the proposed method,
the visual enhancement effects on Test-90, C60, and UCCS
were compared against mainstream underwater image en-
hancement algorithms, including URSCT [20], U-shape
[12], PuGAN [18], X-CAUNET [3], and Pixmaba [22].

Fig. 7 illustrates the enhancement results of different
methods on Test-90. For example, URSCT shows issues of
insufficient contrast and blurry details in the enhancement
results of rows 1, 2, and 3. X-CAUNET produces an image
with an overall reddish color cast in row 1, while the result
in row 4 has a greenish tint and lacks clarity. Pixmaba pro-
duces dark images in row 4 and introduces yellow artifacts
in the enhanced image in row 6.

The proposed method effectively avoids these issues,
achieving higher contrast while enhancing detail informa-
tion and improving color realism. This demonstrates the
robustness and effectiveness of the method in providing vi-
sually superior enhancement results compared to existing
approaches, especially in challenging underwater environ-
ments.

Fig. 8 visualizes the output results of different methods
on the C60 dataset. PuGAN shows issues of local over-
enhancement and poor color balance in rows 1 and 2. X-
CAUNET results in darkened areas in the enhanced images
of rows 1 and 3. Pixmamba produces images with low con-



Table 6. The performance indicators of different methods on the challenge set C60 of UIEB and UCCS

Method Venue C60 UCCS Params FLOPsUIQM UCIQE UIQM UCIQE
Ucolor[12] TIP 21 2.482 0.553 3.019 0.55 157.4M 34.68G
URSCT[21] TGRS 22 2.642 0.543 2.947 0.544 11.41M 18.11G
MFEF[33] EAAI 23 2.652 0.566 2.977 0.55 61.86M 26.52G
PuGAN[4] TIP 23 2.652 0.566 2.977 0.53 95.66M 72.05G

Semi-UIR[7] CVPR 23 2.667 0.574 3.079 0.55 1.65M 36.44G
X-CAUNET[20] ICASSP 24 2.683 0.564 2.922 0.541 31.78M 261.48G
PixMamba[15] arXiv 24 2.868 0.586 3.053 0.561 8.68M 7.60G

Ours - 2.872 0.572 3.066 0.564 8.52M 9.84G

Figure 7. Visual comparison of differernt methods on the test set of UIEB named Test-90

trast in rows 3 and 5. In contrast, the proposed method im-
proves image contrast while avoiding issues of over-bright
or overly dark regions.

Fig. 9 shows the enhancement results of different meth-
ods on the UCCS dataset. The first two rows, the middle
two rows, and the last three rows respectively show visual
results from underwater environments with blue, green, and
blue-green color casts in the UCCS dataset. It can be ob-

served that the proposed method effectively removes the
blue-green background and reduces color bias, resulting in
images that are more consistent with human visual percep-
tion. These visual comparisons demonstrate the capabil-
ity of the proposed method to handle different color cast
environments effectively, ensuring balanced color distribu-
tion, improved contrast, and enhanced overall visual qual-
ity, thereby making the enhanced images more natural and



Figure 8. Visual comparison of differernt methods on the challenge set of UIEB named C60

appealing to the human eye.

6. Conclusion

To address issues of color distortion, low contrast, and
blurred details in underwater images, this paper proposed a
Multiple Attention Aggregation U-Net for Underwater Im-
age Enhancement (MAAU-UIE). The model combines Ax-
ial Rectangle Window Attention (ARWA) and Shift Axial
Rectangle Window Attention (SARWA), leveraging their
respective advantages in extracting local features and en-
hancing global information. The convolutional operations
further enhance the ability of window attention to learn lo-
cal details, while the Channel Enhanced Module (CEM) al-
lows the network to focus more on important channel infor-
mation. Additionally, gradient loss and multi-scale struc-

tural similarity loss are used to optimize the network’s abil-
ity to recover edges and structures. Experimental results
demonstrate that the proposed improvements effectively en-
hance the performance of underwater image enhancement.
Compared to state-of-the-art methods, the proposed ap-
proach achieves superior results in PSNR, SSIM, UIQM,
and UCIQE metrics, while also providing reconstructed im-
ages with realistic colors, high sharpness, and good con-
trast. Currently, the network’s foundational modules are de-
signed based on the Transformer architecture. Future work
will focus on exploring more advanced Mamba architec-
tures to further improve performance metrics and inference
efficiency.



Figure 9. Visual comparison of different methods on the UCCS
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