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Abstract

Human facial expressions are a vital form of non-
verbal communication that convey significant emotional
information. Occasionally, individuals exhibit facial
expressions that do not correspond to their genuine
emotions, which are termed masked facial expressions
(MFEs). Automatic recognition of MFEs can reveal in-
dividuals’ real feelings. However, the complexity inher-
ent in MFEs, resulting from various factors, poses a
significant challenge for extracting discriminative rep-
resentations from MFE videos. In this study, we inno-
vatively designed a multi-task learning network to de-
compose the challenging task of mixed expression recog-
nition task into two simpler sub-tasks, thereby allevi-
ating the learning burden on the network. Further-
more, we propose a method called spatiotemporal fea-
ture modulation (STFM), which comprises a spatiotem-
poral feature extractor (STFE) and feature weighting
module (FWM), aiming to enable the network to focus
on features that are beneficial for classification. Ad-
ditionally, we developed an adaptive spatial attention
module (ASAM) to eliminate redundant data in videos
and enhance model efficiency by leveraging the action
information embedded in dynamic images. The exper-
imental results demonstrate that our method excels in
most challenging 36-class task, achieving an accuracy
improvement of 4.75% and 0.77% on the 36-class task
and 6E task respectively compared to the current state-
of-the-art methods.

Keywords: Masked facial expression, Emotion recogni-
tion, Multi-task learning, Dynamic image, Transformer.

1. Introduction

Humans have the remarkable ability to convey a wide
range of emotions through complex facial muscle move-
ments, which are commonly known as facial expressions [2,
10, 18]. Studies have indicated that 55% of human emo-
tional information is communicated through facial expres-
sions [15]. Facial expressions provide a direct insight into
an individual’s internal emotional state. Occasionally, fa-
cial expressions are consistent with genuine emotions, but
in certain situations, individuals may disguise their real feel-
ings by employing specific facial expressions due to social
strategies, cultural habits, or personal defense mechanisms.
For instance, during a negotiation, even if someone feels
angry at the other party’s provocation, they may choose to
smile instead of showing anger in order to avoid reveal-
ing their vulnerability [4]. These inconsistent expressions,
which arise from conscious control of facial muscles that
do not reflect genuine emotions, are termed masked facial
expressions (MFEs) [8]. Research suggests that MFEs oc-
cur quite frequently in human daily life [20]. Even chil-
dren are capable of distinguishing between real emotions
and those deliberately expressed [7]. In MFEs, individ-
uals are unable to fully suppress the leakage of their real
emotions [21]. Consequently, by accurately identifying and
interpreting individuals’ MFEs, it is possible to infer their
current emotional state. This technology has a multitude of
applications, including medical diagnosis, business negoti-
ation, judicial interrogation, and human-computer interac-
tion.

In recent years, the rapid advancement of computer vi-
sion technology has significantly propelled the field of auto-
matic expression recognition. In addition to the traditional
automatic expression recognition, novel research areas such
as micro-expression recognition have also emerged [26, 19,
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Figure 1. A segment of the “sad to happy” sequence for subject 18

11]. As a new challenge in this field, the progress of re-
search on MFEs has historically been constrained by the
lack of dataset resources. It was not until 2021 that the
Institute of Psychology of the Chinese Academy of Sci-
ences established the first masked facial expression dataset
(MFED) [16], effectively addressing this shortage. In the
dataset, participants would first be induced with the expe-
rienced emotion through an emotional video. Then they
would be asked to immediately complete some required ex-
pressions. The required expression may or may not be con-
sistent with the experienced emotion. The combination of
6 experienced emotions and 6 required expressions gives
a total of 36 mixed expressions. Among these, when the
experienced emotion is consistent with the required expres-
sion, they form ordinary macro-expressions, totaling of six.
The remaining 30 expressions, where the experienced emo-
tion does not match the required expression, are categorized
as masked facial expressions. The MFED uses video clips
from the moment participants received an emotional cue
(onset) to the moment their expression ended (offset). For
each sequence of MFEs, for example, “sad to happy” indi-
cates that the experienced emotion is sad and the required
expression is happy. Figure 1 shows a segment of the “sad
to happy” sequence for subject 18 from the MFED and the
apex frame marking the moment when the required expres-
sion reaches its highest intensity.

After the publication of MFED, Zhou et al. [32] firstly
conducted a further study and found that the onset frames
do not necessarily contain the leakage of the experienced
emotion, while the apex frames are more likely to contain
the features of the required expressions. Therefore it is dif-
ficult to accurately identify MFEs by simply using the onset
and apex frames. Subsequently, through statistical testing
of LBP-TOP features, Zhou et al. demonstrated that even
when the required expression is the same, there are sig-
nificant differences in the facial action units (AUs) move-
ment patterns when participants use a different expression
to mask their experienced emotions. In the task of recogniz-
ing masked expressions, the key lies in how to extract dis-
criminative features from expression sequences. This pro-
cess should make full use of the AU movement pattern char-

acteristics of different masked expressions.
Traditional facial expression recognition tasks typically

involve classifying the basic six categories of facial ex-
pressions [22], including happiness, sadness, anger, sur-
prise, disgust, and fear. Despite the intricate nature of fa-
cial muscle movements, the six expressions exhibit recog-
nizable patterns of facial muscle activity [3]. However, in
contrast to typical facial expressions, masked facial expres-
sions (MFEs), as illustrated in Figure 2, are often domi-
nated by the required expression’s spatial features. This
dominance results in more similar spatial characteristics
among mixed expressions when the required expression is
the same, thereby making them more challenging to differ-
entiate. Moreover, the required expression and the expe-
rienced emotion are deeply coupled. Throughout the se-
quences of MFEs, the leakage of the experienced emotion
can happen at any moment and appear in various forms. For
instance, it might only influence the display of AUs related
to the required expression, whereas in other cases, it could
also show AUs that consistent with the experienced emo-
tion. Although CNN-based methods have achieved good
recognition performance in macro-expressions and micro-
expressions, they can not effectively capture long-range de-
pendencies and lack the ability to address deep coupling is-
sues.

(1)an to ha (2)di to ha (3)fe to ha (4)ha to ha (5)sa to ha (6)su to ha

Figure 2. The onset frames of the six mixed expressions for subject
18 when required expression is happy, where (1)-(6) represent the
experienced emotions of anger, disgust, fear, happiness, sadness,
and surprise, respectively.

In this study, we propose a transformer-based multi-task
spatial-temporal weighting network (MTSTWN) for recog-
nizing MFEs. To address the issue of spatial feature similar-
ity in MFEs under the same required expression, MTSTWN
introduces the spatiotemporal feature modulation(STFM)
method. In the STFM, the spatiotemporal feature extractor
(STFE) explores the spatiotemporal features within the fea-
ture maps, enabling the network to fully leverage temporal
information. Subsequently, the feature weighting module
(FWM) applies spatiotemporal feature weights to the ex-
tracted features, aiming to enable the network to focus on
learning critical features while ignoring irrelevant ones. To
solve the challenge of deep coupling between genuine emo-
tions and posed expressions, MTSTWN applies a multi-
task learning framework to MFEs recognition task. This
framework simplifies the complex task of 36 mixed expres-
sions classification into two simpler sub-tasks: 6 experi-
enced emotions classification and 6 required expressions



classification. This approach not only significantly reduces
the difficulty of classification but also effectively separates
the two types of expression features, thereby enhancing the
robustness of the features learned by the model. Further-
more, by utilizing the Transformer architecture, MTSTWN
can efficiently capture long-range dependencies, enabling
more accurate extraction of cues related to the experienced
emotion from the overall features. MTSTWN also includes
an adaptive spatial attention module (ASAM) based on dy-
namic images. It generates dynamic images from sequential
data and uses a lightweight network to learn a mask, which
is applied to the feature map. This ensures that the extracted
features focus on the regions where actions occur, reducing
redundant information in the video.

The contributions of this paper are summarized as fol-
lows:

1.The STFM module is proposed to enhance the model’s
ability of learning spatiotemporal features while suppress-
ing the impact of inter-class similar features in the spatial
domain.

2.A multi-task learning framework is innovatively intro-
duced into the field of masked facial expression recognition.
It enables the network to more effectively learn the disen-
tangled features of two types of expressions.

3.We propose the ASAM module, which directs the net-
work to focus on expression-related regions while minimiz-
ing the impact of irrelevant areas, thereby further improving
the model’s attention to key features.

2. Related work

2.1. Automatic recognition of masked facial expression

When emotions arise, people can adopt different strate-
gies to conceal their true feelings. If they choose to maintain
a neutral expression, micro-expressions will appear when
the suppression of genuine emotions fails. If they use an-
other expression to replace the one that corresponds to their
genuine emotions, this is referred to as a masked expres-
sion [32]. After the release of MFED, Zhou et al. [32] con-
ducted further research. Using statistical testing methods, it
was demonstrated that the AU movement pattern of differ-
ent masked expressions exhibit distinct differences. Based
on this, they proposed a special spatiotemporal handcrafted
feature called dynamic AU intensity feature (DAIF). This
feature captures the intensity of different AUs in each frame
of the masked expression sequence and uses a weighting
module to amplify the pattern differences between various
expressions. The DAIF is then fed into a network with
a visual transformer architecture to perform the classifica-
tion task, achieving a significant improvement in recogni-
tion accuracy compared to the baseline. In addition, there
are other works that further contribute to this field. Zhang
et al. [29] employ CNNs (VGGNet, GoogLeNet, ResNet,

MobileNet) along with data augmentation and regulariza-
tion techniques, achieving a notable improvement in recog-
nition performance compared to traditional methods. Sim-
ilarly, Liu et al. [13] introduce a transfer learning approach
using pre-trained ResNet18, combined with data augmenta-
tion, to enhance the model’s generalization ability.

2.2. Multi-task Learning

Multi-task Learning (MTL) is a paradigm in machine
learning. Unlike the traditional approach where tasks are
executed independently, MTL simultaneously optimizes
multiple related tasks, uncovering and leveraging the com-
mon features required by these tasks. This encourages
the model to learn shared representations that can gener-
alize across tasks, thereby improving the model’s learn-
ing efficiency and generalization ability [30]. In MTL,
the total loss is a combination of the losses from various
related tasks. For each task, the other related tasks can
be viewed as constraints on that task, which effectively
narrows the hypothesis space of the MTL model by han-
dling multiple tasks at once, thereby reducing the risk of
over-fitting [27]. Multi-task Learning is also widely ap-
plied in expression recognition. For example, Li et al. [12]
introduced the poker face vision transformer (PF-ViT) in
facial expression recognition, simultaneously performing
emotion recognition and generating emotionless faces, inte-
grating multi-task learning to achieve disentanglement be-
tween emotion-related and emotion-irrelevant features. Hu
et al. [9] designed a new sparse multi-task learning frame-
work that combines handcrafted features and deep features
to achieve micro-expression recognition. Zheng et al. [31]
proposed DDMTL, which utilizes deep multi-task learning
to integrate category label information and sample space
distribution information for recognizing facial expressions,
demonstrating superior performance even with less training
data. Savchenko [23] researched the application of multi-
task learning in facial recognition and attribute classifica-
tion (including age, gender, and ethnicity), achieving ex-
cellent emotion classification performance on the Affect-
Net dataset. Nie et al. [17] introduced the GEME network,
which treats gender recognition as an auxiliary task to as-
sist the main task of micro-expression recognition, thereby
improving the accuracy of micro-expression recognition.

2.3. Dynamic image

Obtaining precise representations of videos is a core
challenge in the field of video understanding. Fernando
et al. [6] argue that if a function can accurately order the
frames of a video in time based on the video’s appearance,
then this function can effectively capture the evolution of
appearance within the video. By learning such an order-
ing function, the parameters of these functions can be used
as a new representation of the video. Based on this idea,
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Figure 3. Structure diagram of the multi-task spatial-temporal weighting network (MTSTWN)

Bilen et al. [1] proposed the concept of dynamic image,
where the temporal average features of each frame in the
video are treated as vectors to be ordered. They learn to
find a target vector (i.e. the dynamic image) such that the
inner product between this target vector and the average fea-
ture vectors at each time point reflects the temporal order of
the video frames. Since the target vector has the same di-
mensions as the frames, it can be represented as a standard
RGB image, namely the dynamic image. The dynamic im-
age not only succinctly captures the main visual content of
the video but also retains important temporal information.
The advantage of this method lies in its ability to compress
the spatiotemporal information of the video into a single
image, allowing traditional image processing techniques to
be directly applied to video analysis tasks. For example,
Verma et al. [25, 24] introduced the dynamic image into
the field of micro-expression recognition. They employed
convolutional neural networks to process the dynamic im-
ages generated by micro-expression sequences, extracting
multi-scale features that contain both temporal and spatial
information, thereby significantly improving the accuracy
of micro-expression recognition.

3. Method

3.1. Overview

In the task of masked facial expressions (MFEs) recog-
nition, it is crucial to accurately classify two distinct types
of facial expressions. One is the individual’s genuine in-
ner emotions, also known as the experienced emotion.
The other is the false expressions that individuals deliber-
ately present to conceal their true feelings, referred to as
the required expression. The framework of the proposed
MTSTWN is shown in Figure 3. Specifically, this study uti-
lizes a multi-task learning framework that combines knowl-
edge learned from two recognition tasks: required expres-

sions and experienced emotions, to classify 36 types of
mixed expressions. As shown in Figure 3, after image
preprocessing, the video sequences are normalized to 30
frames. Next, a fast dynamic image algorithm [1] is uti-
lized to compute the dynamic image for each sequence (see
section 3.3). Subsequently, the dynamic images are input
into a lightweight network to generate the attention mask.
Meanwhile, the sequence data is converted into grayscale
images and sent to the CNN network, where 3D convo-
lution is used to extract primary features. The attention
mask is then applied to the obtained feature map, and the
results are sent into the multi-task learning framework for
further feature extraction and classification. For the multi-
task learning framework, this study adopts a hard param-
eter sharing strategy. The input data first passes through
layers with shared parameters to extract features common
to both tasks. Within the shared layers, a spatiotemporal
feature modulation mechanism is incorporated (see section
3.5). This mechanism is composed of two components. The
first is the spatiotemporal feature extractor (STFE), which
is capable of comprehensively extracting the spatiotempo-
ral features hidden within the video sequences. The second
component is the spatiotemporal feature weighting module
(FWM). This module enables the model to focus on the
features that are conducive to classification. At the out-
put stage, task-specific methods are applied to extract task-
relevant features and complete the classification. The model
is optimized by combining the weighted losses from both
tasks.

3.2. Preprocessing

Before feeding the video frame data into the network,
this study applies a series of preprocessing strategies aimed
at ensuring the network focuses on facial information while
removing background and other irrelevant features. First,
the MTCNN algorithm [28] is used to detect faces in each



video frame and crop them to a uniform size, effectively
eliminating background and unrelated content. Next, three
landmarks of a standard facial model are selected as refer-
ences to construct an affine transformation matrix, aligning
the faces to mitigate issues caused by inconsistent facial an-
gles or head movements during the experiments. Following
that, the temporal interpolation model (TIM) [33] is applied
to interpolate the data, standardizing all video sequences to
the optimal 30 frames [16]. Finally, the preprocessed data
is structured into dimensions of 3×30×224×224 to serve
as the input for the network.

3.3. Adaptive spatial attention module (ASAM)

Unlike image classification tasks, video understanding
involves a significant amount of redundant information. In
the case of MFEs sequences, preprocessing video frames
can help eliminate background clutter, allowing the model
to focus more on facial muscle movement features. Even
within the facial region, some features, like those around the
tip of the nose, may not contribute much to expression clas-
sification. Thus, for the task of recognizing MFEs, the net-
work needs to concentrate on areas where significant mo-
tion changes occur. To achieve this, this study introduces
an adaptive spatial attention module based on dynamic im-
ages. This module guides the network in identifying which
facial features are most relevant for classifying MFEs, ulti-
mately enhancing recognition performance.

3.3.1 Dyanmic image

Dynamic image, a concept first introduced by Bilen et al.
[1] for action recognition, serve as an effective representa-
tion of video frame sequences. They encapsulate the fea-
tures of actions, including the spatial features of the areas
where those actions occur. Compared to using onset frames
to predict action location information, dynamic images can
capture more relevant action information.

（1）anger to anger （2）anger to surprise

Figure 4. Illustration of dynamic images. The experienced emo-
tion and required expression for (1) are both anger, (2) has a expe-
rienced emotion of anger and required expression is surprise. For
both (1) and (2), the left side shows the sequence onset frame, and
the right side displays the dynamic image.

Figure 4 illustrates a comparison between the onset
frame of a sequence sample and the dynamic image gener-
ated from that sequence. In Figure 4 (1), movement occurs
in the eyebrow and mouth regions, which is also reflected in

the dynamic image. Conversely, for pixels where no move-
ment occurs, the dynamic image tends to average out the
information. Moreover, in Figure 4, when observing the
mouth region in (1) and (2), it is evident that the greater and
more intense the movement, the more pronounced the rele-
vant areas appear in the dynamic image. Therefore, we can
utilize the dynamic image to localize facial action regions.

Given a video data V = {I1 , I2 , . . . , In} with n frames,
where i is the index of the i-th frame in the video, the dy-
namic image can be computed using a fast algorithm. The
process is as follows:

DI (V ) =

n∑
t=1

αtIt (1)

Where αt is computed using the following formula:

αt = 2(n− t+ 1)− (n+ 1)(Hn −Ht−1) (2)

Here, Ht =
∑t

j=1 1/j is the j-th harmonic number, with
H0 = 0. After obtaining the dynamic image, we further at-
tempt to learn the spatial attention mask for each sequence’s
dynamic image.

3.3.2 Mask Generator

To learn which parts of the facial area deserve more atten-
tion, we first extract the dynamic image for each sequence.
Then, we use a mask generator to create a mask for the fea-
ture map and apply it to the feature map. This study em-
ploys a lightweight network design, specifically a 2D con-
volutional layer, as the mask generator to avoid introducing
excessive additional parameters. The specific process is as
follows:

Matt = Expand(2DConv(DI)) (3)

Here, Matt is the generated attention mask. Applying the
attention mask to the feature map Fp can be expressed as:

F̂p = Matt × Fp (4)

Here, F̂p is the feature map after applying the attention
mask.

3.4. Multi-task learning framework

In MFEs, experienced emotions and required expres-
sions are deeply coupled, and this coupling manifests in var-
ious ways. For example, the leakage of genuine expression
may occur or not occur in the first frame of the sequence.
Furthermore, the extent to which experienced emotions in-
fluence required expressions varies throughout the entire
frame sequence, making it challenging to directly extract
features from the 36 types of mixed expressions. To ad-
dress this challenge, this study employs a multi-task learn-
ing framework with hard parameter sharing, dividing the
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Figure 5. Structure diagram of the shared encoder

network structure into shared layers and task-specific lay-
ers. The shared layers extract common emotional features
from the frame sequences, while the two task-specific layers
focus on mining effective features from the outputs of the
shared layers, allowing for a certain level of decoupling be-
tween required expressions and experienced emotions. This
approach reduces the complexity of classification.

3.4.1 Shared layers

The shared layers are divided into two parts, as shown in
Figure 3. The first part consists of the 3D convolutional
neural network (CNN) and the mask generator, while the
second part is the shared encoder. Given a video sequence,
after preprocessing and grayscale conversion we obtain a
video V ∈ R1×30×224×224 that is sent to the 3D CNN to
extract primary features from the frame V while reducing
the scale of the feature map in both spatial and temporal di-
mensions. The feature map Fp ∈ RC×T×H×W is derived
from the CNN, where C is the number of channels in the
feature map after CNN, T is the size in the temporal dimen-
sion, and H and W are the height and width of the feature
map. After applying the attention mask to the feature map,
the results are fed into the patch embedding module to ob-
tain Fe ∈ RTHW×D, where D is the dimension of the em-
bedding vector. Finally, Fe serves as the input to the shared
encoder.

The structure of the shared encoder is shown in Fig-
ure 5. The shared encoder is responsible for extracting
the shared features of experienced emotions and required
expressions from the frame sequences while eliminating
emotion-irrelevant features from the data. Considering
that the characteristics of genuine emotions are embedded
within the entire sequence, the network must possess strong
long-range modeling capabilities. To balance model perfor-
mance with computational complexity, this study employs
multiscale vision transformers (MViT) [5] as the backbone.

The shared encoder consists of three stages, with the first
block of each stage being an MViT block that includes
the spatiotemporal feature modulation module, called the
STFM-MViT block. Each block includes a multi-head
pooling attention (MHPA) module, which differs from the
traditional multi-head attention module. Before performing
the multi-head attention calculations, the MHPA module
first pools the query, key, and value. The output length of
the MHPA is determined solely by the length of the query.
Moreover, if the length of the query decreases, the channel
dimension of the output features will increase. The compu-
tation process of the self-attention mechanism in the MHPA
module of the first block of the k-th stage is summarized as
follows:

Firstly, the input is passed through a linear transforma-
tion, which can be represented by the following formula:

Q̂ = LN(fk
i )WQ (5)

K̂ = LN(fk
i )WK (6)

V̂ = LN(fk
i )WV (7)

where, As shown in Figure 5, fk
i represents the input

feature of the k-th stage, and LN stands for the layer-
normalization, WQ,WK ,WV ∈ Rdk

i ×dk
o (dki is the input

feature dimension of the k-th stage) are all embedding ma-
trices. Then, the input is processed through a pooling layer
and performs self-attention calculations, which can be rep-
resented by the following formula:

Q = P (Q̂; ΘQ), K = P (K̂; ΘK), V = P (V̂ ; ΘV ) (8)

Attention(Q,K, V ) = Softmax

(
QKT /

√
dko

)
V (9)

where The operator P (·; Θ) performs a pooling kernel com-
putation on the input tensor along each of the dimensions.
Θ represents the parameters of the pooling operation and



consists of three parts: the pooling kernel k, the stride s,
and the padding p. As shown in Figure 5, for the first Block
of each stage in MHPA, the pooling stride of the Query is
set higher than 1, which reduces the input feature dimen-
sions from tki h

k
iw

k
i × dki to tkoh

k
ow

k
o × dko , To keep the fea-

ture sizes consistent in the residual connections, linear and
pooling layers are applied to adjust the feature dimensions
accordingly. For the last three blocks of each stage, the
query’s pooling stride is 1, so the input dimensions remain
unchanged. Additionally, the first block includes an STFM
module to further capture spatiotemporal features and en-
hance classification performance (see Section 3.5). Overall,
as shown in Figure 5, the computation process for the kth
stage is as follows:

zk =DropPath(MHPA(LN(fk
i )))

+ Pooling(Linear(LN(fk
i ))) (10)

xk =DropPath(MLP (LN(STFM(zk))))

+ STFM(zk) (11)

fk
o = MV iTBlockn(xk), n = 3 (12)

Here, DropPath(·) is a commonly used regularization
technique in transformers, Linear(·) is a linear transfor-
mation layer used to change the feature dimension from dki
to dko , and Pooling(·) is a pooling layer used to reduce the
feature length from tki h

k
iw

k
i to tkoh

k
ow

k
o . And zk represents

the output of the MHPA module in the first block of the k-
th stage, and xk represents the output of the first block in
the k-th stage. MV iTBlockn(·) refers to a sequence of n
consecutive MViT blocks. Finally, Fe is processed by the
shared encoder to produce Fs which is then passed to the
subsequent task-specific layers.

3.4.2 Task-specific layers

As shown in Figure 3, the data passes through the shared
layers to generate a shared representation Fs for both the
required expression and experienced emotion. In traditional
single-task learning, Fs would go through global average
pooling and a classification head. However, with 36 types
of mixed expressions, identifying discriminative features is
challenging because the leakage way of genuine expres-
sions are different across samples. MFEs are already en-
coded by the human brain as a blend of required expressions
and genuine expression, which can be seen as prior knowl-
edge for the network. This helps the network analyze MFEs
from both perspectives, making classification easier. Addi-
tionally, neural networks are prone to over-fitting, which re-
duces the test accuracy. Studies show that multi-task learn-
ing can effectively reduce the risk of over-fitting [27].

To effectively extract useful features from the shared
representation Fs, which comes from a transformer-based
network, both task-specific layers utilize the original trans-
former encoder structure, with parameters that are indepen-
dent of each other. The computation process can be ex-
pressed as follows:

Fex = MHA(Fe) (13)
Fre = MHA(Fe) (14)

Here, MHA(·) stands for multi-head attention mechanism.
Fex and Frerepresent the features output from the experi-
enced emotion branch and the required expression branch,
respectively. Each feature is processed through a global av-
erage pooling layer and a fully connected (FC) layer to ob-
tain the classification results pex and pre for 6 categories.
To obtain the classification results for 36 categories, this
study defines a matrix M = {mij |0 ≤ i ≤ 5, 0 ≤ j ≤
5,mij ∈ R}, and let mpexpre

= p36. meaning that the pre-
dicted results pex and pre are mapped to the corresponding
36-category prediction result.

Both tasks are classification tasks, and this study em-
ploys the cross-entropy loss function to calculate the loss
for each task individually. The two losses are then com-
bined using a weighted sum to obtain the final loss. The
calculation process can be expressed as follows:

First, the cross-entropy loss function is defined as:

CELoss = − 1

N

N∑
j=1

K∑
i=1

yji log (ŷji) (15)

Here, N is the number of samples, K is the number of ex-
pression types, the labels are represented as Y = {yji},
and the predicted results are denoted as Ŷ = {ŷji}, where
j = 1 , 2 , · · · ,N , i = 1 , 2 , · · · ,K .Then, by applying the
cross-entropy loss function, we can obtain Lossex and
Lossre , and calculate the final loss as follows:

Loss = β × Lossex + α× Lossre (16)

Where β and α are the weights used to adjust the contri-
butions of the experienced emotion task and the required
expression task, respectively.

3.5. Spatiotemporal feature modulation (STFM)

Another factor that hinders the improvement of the
recognition rate for 36 types of mixed expressions is the
inter-class similarity of these expressions under the same
required expression. And this similarity is primarily con-
centrated in the spatial features. For example, in Figure 2,
when the required expression is happiness, AU12 is acti-
vated across all instances. This similarity makes it chal-
lenging for the network to effectively extract distinguishing
features for each category. Zhou et al. [32] conducted a
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Figure 6. Structure diagram of spatiotemporal feature extractor (STFE)

comparative study by extracting the intensity of action units
(AUs) from video frames and found that when the required
expression is happy, AU12 is activated, but the degree of ac-
tivation varies. For instance, when the real emotion is sad,
the activation level of AU12 is significantly lower than when
the real emotion is happy. To learn these features more ef-
fectively, this study proposes a spatiotemporal feature mod-
ulation module comprising a spatiotemporal feature extrac-
tor (STFE) and a feature weighting module (FWM). The
feature extractor is responsible for further extracting spa-
tiotemporal features, while the feature weighting module
focuses on identifying which features are most beneficial
for recognizing mixed expressions.

3.5.1 Spatiotemporal feature extractor (STFE)

To extract spatiotemporal features more effectively from se-
quential data, this study introduces a dedicated temporal
and spatial feature extraction module. This module splits
the input data into three parts along the channel dimension,
with one part for extracting temporal features, another for
extracting spatial features, and the remaining the left part
unchanged. Finally, the three outputs are concatenated in
their original order to create the module’s final output. Fig-
ure 6 illustrates the structure of the STFE.

In the STFM-MViT Block, the output of the first resid-
ual structure zk ∈ Rtk0h

k
0w

k
0×dk

0 (where k indicates the stage
in the shared encoder) will serve as the input to the STFE.
First, to enable operations along the temporal and spatial
dimensions, zk needs to be reshaped into ẑk, changing the
data dimensions from tkoh

k
ow

k
o × dko to dko × tko × hk

o × wk
o .

Next, ẑk is split into three parts along the channel dimen-

sion, a process that can be expressed as:

ẑk1 = S(ẑk; 0,
1

3
dko) (17)

ẑk2 = S(ẑk;
1

3
dko ,

2

3
dko) (18)

ẑk3 = S(ẑk;
2

3
dko , d

k
o) (19)

Where S(x; start, end) denotes slicing x along the channel
dimension, starting from start and ending at end− 1. ẑk1 is
directed to the temporal feature extractor to extract temporal
features. ẑk2 is sent to the spatial feature extractor to extract
spatial features. ẑk3 is retained as a part of output.

The cues for experienced emotions are distributed along
the entire sequence, requiring a focus on global temporal
features. Although traditional convolutional neural network
can extract temporal features, their limited receptive fields
may prevent them from fully capturing these global fea-
tures, impacting the performance. Inspired by DTF [14],
this study replaces one-dimensional time domain convolu-
tion with frequency domain modulation for temporal fea-
ture extraction. This approach is based on the principle that
time domain convolution is equivalent to multiplication in
the frequency domain. Specifically, the method involves
learning the frequency domain filters from the time domain
data, multiplying it with the result obtained from applying
the fast fourier transform (FFT), and then using the inverse
fast fourier transform (IFFT) to return to the time domain.
The detailed process for extracting temporal features is as
follows:

As shown in Figure 6, in temporal feature extractor, be-
fore applying the FFT on the time axis of the feature map,



a 3D convolution with a kernel size of 3 is used to aggre-
gate local spatiotemporal features at each spatial location,
enabling the extraction of richer temporal features at every
spatial position. Then, the FFT is applied to the time do-
main data, which can be expressed as follows:

SF = FFT (3DConv(ẑk1 )), SF ∈ Cc×m×hk
o×wk

o (20)

Here, SF is the feature transformed into the frequency do-
main and c = dko/3 represents the number of channels in
ẑk1 , and m = ⌊tko/2⌋ + 1 denotes the number of frequency
domain filters’ point number after applying the FFT to the
time domain data. Additionally, the time domain data is
processed through a convolution layer to learn parameters
with dimensions dk

o ×m × hk
o × wk

o × 2 , which are ulti-
mately combined to form FilterS ∈ Cdk

o×m×hk
o×wk

o . The
frequency domain modulation is then performed, followed
by the IFFT to obtain the processed time domain data, ex-
pressed as follows:

yk1 = IFFT (SF × FilterS) + ẑk1 (21)

where yk1 is the output of the temporal feature extractor.
In MFEs recognition, spatial features are equally impor-

tant, requiring the network to capture subtle differences in
spatial information. To achieve this, this study employs a
multi-scale convolution approach to further extract effec-
tive spatial features from the feature maps. Specifically, the
input data will merge the time dimension and the batch size
dimension before being fed into convolutional layers with
kernel sizes of 3 × 3, 5 × 5, 7 × 7 to extract multi-scale
spatial features. The outputs from these layers are then con-
catenated along the channel dimension. Finally, to main-
tain consistency between the input and output dimensions,
a 1 × 1 convolution is used for downsampling along the
channel dimension. The above process can be summarized
as follows:

yk2 =Conv1×1{Concat[Conv3×3(ẑ
k
2 ),

Conv5×5(ẑ
k
2 ), Conv7×7(ẑ

k
2 )]} (22)

Here, yk2 represents the output of the spatial feature extrac-
tor. Finally, the outputs from the three parts are concate-
nated to obtain the output of the STFE module, expressed
as follows:

yk = Concat(yk1 , y
k
2 , ẑ

k
3 ) (23)

Here, yk represents the output of the STFE.

3.5.2 Feature weighting module (FWM)

After passing through the STFE module, the features pro-
duce the output yk. Next, the FWM module learns which
parts of the features are more beneficial for classification.
The structure of the FWM is illustrated in Figure 7.
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Figure 7. Structure diagram of feature weighting module (FWM)

The FWM consists of two stages. The first stage fo-
cuses on learning the weights for each time point in the
feature map, while the second stage learns the weights for
each spatial location. Specifically, the FWM takes yk ∈
Rdk

o×tko×hk
o×wk

o as input. It first applies average pooling
to compress the spatial information, resulting in a data di-
mension of dko × tko × 1 × 1 This data is then fed into a
one-dimensional convolution to learn the weights for each
time point, followed by a sigmoid activation function to
obtain the final weights. Once the weights are acquired,
they are broadcasted across the spatial dimension to yield
WT ∈ Rdk

o×tko×hk
o×wk

o . Finally, the weights WT are ap-
plied to yk, a process that can be expressed as:

ykt = WT × yk (24)

Here, ykt is the output of yk after applying temporal weight-
ing.Similarly, ykt undergoes spatial weight learning. First,
the temporal dimension information is compressed by sum-
ming along the time dimension, resulting in data with di-
mensions dko × hk

o × wk
o . This data is then passed through

a 2D convolution to learn spatial weights, followed by sig-
moid function to obtain the spatial weights. After broad-
casting, the final weight Ws is obtained, and this weight is
applied to ykt . This process can be expressed as:

yk
ts = WS × yk

t (25)

Here, ykts is the result of applying both temporal and spatial
weighting to yk. Finally, a residual connection is added to
obtain the final output yk.

4. Experiments

4.1. MFED

The Masked Facial Expression Database (MFED) con-
sists of 778 masked facial expression sequences contributed
by 22 participants (including 10 males and 12 females).
Each video sequence in this dataset has a resolution of
1280×720 pixels and is recorded at a frame rate of 25 frames
per second. There are four classification tasks within this
dataset: one for classifying 36 types of mixed expressions,



one for classifying 6 types of experienced emotions (re-
ferred to as 6E), one for classifying 6 types of required ex-
pressions (referred to as 6R), and a binary classification task
to distinguish whether facial expressions are disguised.

4.2. Experimental setup

All experiments in this study were conducted using the
leave one-subject-out (LOSO) strategy for validation. The
36-class classification task served as the primary task for
module ablation experiments. Model performance was
evaluated using accuracy, F1 score, and recall as metrics.
During the training phase, random rotation was employed
for data augmentation, and the SGD optimizer was cho-
sen.The learning rate of the SGD optimizer is set to 0.0001,
the momentum is set to 0.9, and the weight decay is set to
0.0005.

4.3. Ablation experiment

4.3.1 Ablation of MTL

As shown in Table 1, firstly, we conducted baseline ex-
periments using a traditional single-task learning approach
based on MViT. The results showed an accuracy of 19.28%,
an F1 score of 18.70%, and a recall of 19.18%. These re-
sults indicate that relying solely on a single-task expression
recognition approach is insufficient to effectively capture
the complexity of MFEs. To improve the model’s perfor-
mance, we introduced a multi-task learning (MTL) strategy,
dividing the original 36-class mixed expression classifica-
tion task into two subtasks: requested expression recogni-
tion and experienced emotion recognition. With MTL, the
model’s accuracy increased to 21.08%, the F1 score reached
20.32%, and the recall rose to 21.03%. Compared to single-
task learning, multi-task learning improved accuracy, F1,
and recall by 1.8%, 1.62%, and 1.85%, respectively. This
significant improvement demonstrates that MTL helps the
model better understand MFEs from multiple perspectives
and enhances its ability to distinguish complex expressions.
Building on this, we further incorporated the spatiotempo-
ral feature modulation (STFM) module and the adaptive
spatial attention module (ASAM) to improve model perfor-
mance and conducted an ablation study with MTL. The re-
sults showed that, with the integration of both two modules
and MTL, the model’s accuracy improved to 26.86%, the
F1 score increased to 26.25%, and recall rose to 26.85%.
Compared to the results without MTL, accuracy, F1, and
recall improved by 2.57%, 3.09%, and 2.59%, respectively.
These results indicate that our model achieved state-of-the-
art (SOTA) performance in the most challenging 36-class
classification task.

To directly demonstrate the performance of our method
on the 36-classification task, Figure 8 shows the confusion
matrix of the experimental results using multi-task learning

Task Methods Accuracy F1 Recall

36 Mixed
Expressions

Baseline 19.28% 18.70% 19.18%
MTL 21.08% 20.32% 21.03%

ASAM+STFM 24.29% 23.16% 24.26%
ASAM+STFM+MTL 26.86% 26.25% 26.85%

Table 1. Ablation experiments of Multi-task learning.

along with the ASAM and STFM modules, from which it
can be intuitively seen that our method performs best in the
“sad to happy” category.

Figure 8. Confusion matrix of the mixed expression recognition

To further validate the effectiveness of multi-task learn-
ing, we conducted ablation studies on both task 6E and task
6R using MTL. The experimental results are detailed in Ta-
ble 2. Notably, when performing task 6E, the loss function
weight for the 6R task branch was set to 0.1, similarly, when
handling task 6R, the loss function weight for the 6E task
branch was also set to 0.1. This design is intended to prevent
the auxiliary task from overly influencing the main task.

Task Methods Accuracy F1 Recall

6E ASAM+STFM 39.08% 38.53% 38.99%
ASAM+STFM+MTL 42.93% 42.78% 42.88%

6R ASAM+STFM 58.94% 58.42% 58.94%
ASAM+STFM+MTL 62.34% 61.88% 62.39%

Table 2. Comparison of single-task learning and multi-task learn-
ing for 6E and 6R

In the first group, the experimental results of the network
on the 6E task are presented. When using the ASAM and
STFM modules with multi-task learning, the accuracy, F1
score, and recall achieved improvements of 3.85%, 4.34%,
and 3.89%, respectively. This indicates that for the 6E task,
introducing a task branch for required expressions helps the
network learn the features of the genuine expressions hid-
den under the required expressions. In the second group,



the experimental results of the network on the 6R task are
presented. The results show that when employing multi-
task learning, the accuracy, F1 score, and recall improved by
3.40%, 3.46%, and 3.45%, respectively. This also demon-
strates that introducing auxiliary branches with appropriate
weights benefits the classification of required expressions.
By incorporating multi-task learning, the risk of over-fitting
in the neural network can be reduced, which is also an im-
portant reason for the improvement in recognition accuracy.

To investigate the contribution of different tasks to the
overall recognition rate, we conducted a series of experi-
ments to examine the impact of varying loss weights on the
performance of the 36-class classification. The experiments
did not employ any additional modules but instead intro-
duced multi-task learning based on MViT. The results are
shown in Table 3.

β / α Accuracy F1 Recall
0.8/1.2 19.54% 18.87% 19.55%
0.9/1.1 18.38% 17.75% 18.35%
1.0/1.0 21.08% 20.32% 21.03%
1.1/0.9 20.44% 19.93% 20.37%
1.2/0.8 19.67% 19.17% 19.65%

Table 3. Experiment on the values of β and α

when the loss weights of the two tasks are equal, the
overall recognition accuracy reached its highest point at
21.08%. Furthermore, the results shows that when the
weight of experienced emotions is set to 1.1 and 1.2,
the recognition performance is better than when the same
weights are applied to required expressions. This sug-
gests that when the weights of experienced emotions and
required expressions are not equal, increasing the weight
of experienced emotions is more beneficial for improving
the classification accuracy of 36 types of mixed expres-
sions, compared to increasing the weight of required ex-
pressions. Moreover, to balance the two tasks, setting their
loss weights to be equal is a more reasonable choice.

4.3.2 Ablation of STFM

In this section, we explore the impact of the STFM module
on the 36-class classification task. First, we conducted a
series of ablation experiments to verify the effectiveness of
the STFM module. The results are shown in Table 4.

Task Methods Accuracy F1 Recall

36 Mixed
Expressions

Baseline 19.28% 18.70% 19.18%
STFM 22.11% 21.35% 22.07%

ASAM+MTL 22.50% 22.10% 22.55%
ASAM+STFM+MTL 26.86% 26.25% 26.85%
Table 4. Ablation of the STFM module

As shown in Table 4, The results show that, compared
to MViT without any methods, introducing the STFM mod-
ule improves the accuracy, F1 score, and recall by 2.83%,

2.65%, and 2.89% respectively in the 36-class classification
task. When combined with ASAM and multi-task learn-
ing (MTL), adding the STFM module further boosts accu-
racy, F1 score, and recall by 4.36%, 4.15%, and 4.30%, re-
spectively. This demonstrates that using the STFM module
for temporal feature extraction significantly enhances the
model’s performance.

Next, we evaluated the impact of different structure of
STFM. The results are shown in Table 5. The results indi-
cate that when only use temporal features yields an accuracy
of 21.08%, while relying solely on spatial features results in
a slight decline in performance. These findings indicate that
a single feature type is insufficient and that temporal fea-
tures play a more critical role. After implementing the spa-
tiotemporal feature extractor (STFE), the model’s accuracy
improves to 21.21%. Moreover, compared to using only
the FWM or STFE module, simultaneously employing both
(STFM) leads to a more significant improvement, with the
recognition accuracy reaching 22.11%. This suggests that
integrating temporal feature extraction with feature weight-
ing techniques can significantly improve the model’s perfor-
mance. By leveraging the strengths of both approaches, the
model can better capture essential patterns and dynamics in
the data, leading to more accurate predictions and enhanced
overall effectiveness.

Task Methods Accuracy F1 Recall

36 Mixed
Expressions

Only Temporal Feature 21.08% 19.93% 21.04%
Only Spatial Feature 20.82% 20.07% 20.93%

Only STFE 21.21% 20.50% 21.26%
Only FWM 20.44% 20.06% 20.48%

STFM 22.11% 21.35% 22.07%
Table 5. Analysis of the different structures of the STFM module

4.3.3 Ablation of ASAM

In this section, we will investigate the impact of the ASAM
module on model performance. First, we conducted a se-
ries of ablation experiments, and the results are presented
in Table 6.

Task Methods Accuracy F1 Recall

36 Mixed
Expressions

Baseline 19.28% 18.70% 19.18%
ASAM 20.18% 19.95% 20.13%

STFM+MTL 25.45% 24.99% 25.41%
ASAM+STFM+MTL 26.86% 26.25% 26.85%

Table 6. Ablation of ASAM

In the Table 6, After introducing the ASAM module into
MViT, the model’s accuracy, F1 score, and recall improved
by 0.9%, 1.25%, and 0.95%, respectively. When combined
with MTL and STFM, the introduction of the ASAM mod-
ule further enhanced the accuracy, F1 score, and recall, with
increases of 1.41%, 1.26%, and 1.44%, respectively. These
results indicate that the spatial attention mechanism of the
ASAM module enables the network to focus more on the



critical regions where expression actions occur, effectively
reducing the negative impact of redundant information in
the video on the model’s performance.

To visually demonstrate the effect of ASAM, we selected
several samples of the spatial attention masks for visualiza-
tion, and the results are shown in Figure 9. As shown in the
picture, The apex frames of different samples under six dif-
ferent required expressions are displayed, along with their
corresponding visualized attention masks. Redder colors
indicate higher attention levels, while bluer colors signify
lower attention from the model in that area. As shown in
Figure 9 (1), when the required expression is anger, AU4
is activated in the apex frame, and the corresponding mask
indicates that more attention is focused on the eyebrow area
of the face. Similarly, as shown in Figure 9 (5), when the
required expression is happiness, AU12 is activated in the
apex frame, resulting in increased attention on the mouth
area of the face in the mask. This indicates that ASAM,
through dynamic images and a lightweight network, enables
the model to operate more effectively.

(5)happy(anger to happy)

(1)anger(disgust to anger) (2)fear(happy to fear) (3)disgust(surprise to disgust)

(4)sad(fear to sad) (6)surprise(disgust to surprise)

Figure 9. Visualization results of the ASAM module attention
mask

4.4. Comparison with other state-of-the-art methods

In this section, we compare our method with other state-
of-the-art methods. The results are shown in Table 7

Task Methods Accuracy F1 Recall

36 Mixed
Expressions

Ours 26.86% 26.25% 26.85%
MFED[16] 11.25% - -

ResNet34[29] 20.82% 19.96% 20.82%
Zhang[29] 22.11% 21.15% 22.11%

Liu[13] 21.21% 19.83% 21.21%
3DCNN[32] 10.95% 10.94% 10.94%

Zhou[32] 21.20% 21.12% 21.03%

6E

Ours 42.93% 42.78% 42.88%
MFED[16] 26.83% - -

ResNet34[29] 37.66% 35.38% 37.66%
Zhang[29] 39.97% 38.93% 39.97%

Liu[13] 42.16% 41.47% 42.16%
3DCNN[32] 25.19% 25.38% 25.60%

Zhou[32] 42.08% 43.13% 42.37%
Table 7. Comparison with state-of-the-art methods

In Table 7, we conducted a comparative analysis of the
recognition performance in the 36 mixed expression task,

as well as the 6 expressions of experienced emotions (6E).
The results highlight the performance differences between
our method and other existing approaches. To compare
the performance differences between image-based meth-
ods and video-based methods, we have listed a series of
image-based methods. Among them, ResNet34, the meth-
ods proposed by Zhang et al. [29] and Liu et al. [13] are
image-based methods. Specifically, Zhang et al. achieved
the best results by leveraging GoogLeNet in combination
with data augmentation techniques. Liu et al., on the other
hand, adopted transfer learning methods in an attempt to
enhance the model performance. When conducting the 6E
task and the 36-mixed expression classification task, the
image-based methods use the apex frame at which the ex-
pression reaches its maximum intensity as the input to the
network. The remaining methods are video-based methods.
Among them, 3DCNN is a common method for extracting
spatio-temporal features. Zhou et al. [32], in view of the
characteristics of MEFs, proposed a dynamic AU intensity
feature and achieved very good results.

In the 36 mixed expression task, our method achieved
the best performance, with an accuracy of 26.86%, an F1
score of 26.25%, and a recall of 26.85%. Compared to
the method of Zhang et al., which was previously the best
approach, our method achieves improvements of 4.75%,
5.10%, and 4.74% in accuracy, F1 score, and recall, respec-
tively, for the 36-class classification task. This indicates that
the apex frames can hardly fully contain all the informa-
tion of MEFs. Using video sequences as input and employ-
ing multi-task learning in conjunction with the ASAM and
STFM modules can more effectively extract discriminative
features, significantly enhancing recognition accuracy. In
the 6E task, our method also demonstrated exceptional per-
formance, achieving an accuracy of 42.93%, an F1 score of
42.78%, and a recall of 42.88%. Compared to the previous
best result, our model achieves an improvement of 0.77% in
accuracy.

In summary, across the various tasks compared in the
tables, our method consistently performed well in recog-
nizing 36 mixed expressions, 6 experienced emotions. It
particularly excelled in mixed emotion classification tasks,
highlighting the effectiveness and potential of the models
we employed in the field of MFEs recognition.

5. Conclusion

In this study, we propose a multi-task spatiotemporal
feature weighting network based on the multiscale vision
transformer, designed for masked facial expression recog-
nition. By using a multi-task learning strategy, we sim-
plify the complex 36-class classification task into two more
direct tasks: required expression recognition and experi-
enced emotion recognition. This approach allows the net-
work to learn from both perspectives, capturing more ro-
bust features. Additionally, the two tasks act as mutual



regularizers, reducing over-fitting. We also introduce a
spatiotemporal feature modulation (STFM) module, con-
sisting of a spatiotemporal feature extractor (STFE) and
a feature weighting module (FWM). STFE efficiently ex-
tracts spatiotemporal features, addressing spatial similarity
among mixed expressions with the same required expres-
sion, while FWM emphasizes features that aid classification
and suppresses irrelevant ones. Moreover, An adaptive spa-
tial attention module (ASAM) enhances the network’s fo-
cus on regions with significant expression changes, further
reducing the impact of irrelevant information. Experimen-
tal results demonstrate that our method outperforms exist-
ing approaches, improving accuracy by 4.75% on the 36-
class task and 0.77% on the 6E task. However, recognizing
masked facial expressions remains challenging due to their
complexity, suggesting a need for further research. Future
research can explore the use of targeted feature extraction
methods for different tasks within a multi-task framework,
in order to fully leverage the advantages of multi-task learn-
ing.
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