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Abstract

With advancements in geometric deep learning tech-
niques, neural signed distance functions (SDFs) have
gained popularity for their flexibility. Recent studies
show that neural SDFs can retain geometric details and
encode sharp features. However, during the mesh ex-
traction stage, methods like marching cubes may de-
grade these geometric details and sharp features, thus
compromising the expressiveness of neural SDFs.

In this paper, we aim to develop a general-purpose
mesh extraction method for both freeform and CAD
models, assuming the availability of a SDF. Our goal is to
produce a well-triangulated, resolution-adjustable mesh
surface that preserves rich geometric details and distinct
feature lines. Our approach is inspired by Centroidal
Voronoi Tessellation (CVT) but introduces two key mod-
ifications. First, we extend CVT computation to implicit
representations, where explicit surface decomposition is
not available. Second, we propose a measure for estimat-
ing the likelihood that a point lies on feature lines, en-
abling the extraction of feature-aligned triangle meshes
using power diagrams (with site weights positively cor-
related to the likelihood values). Comprehensive com-
parisons with state-of-the-art methods demonstrate the

superiority of our approach in both feature alignment
and triangulation quality.

Keywords: centroidal Voronoi tessellation signed dis-
tance function power diagram mesh extraction feature
alignment.

1. Introduction

The Signed Distance Function (SDF) is a form of im-
plicit surface representation, where the zero level set defines
the underlying surface. It plays a crucial role in various
geometric processing tasks, such as surface reconstruction
[23, 49], generative modeling [7, 21, 17], shape completion
[5, 27], and differentiable rendering [25, 46, 31]. A typi-
cal inverse process involves first inferring the SDF of the
underlying shape and then extracting a mesh using existing
solvers, most commonly the marching cubes algorithm.

In recent years, advancements in geometric deep learn-
ing have made neural SDFs [30, 38, 9] an expressive and
flexible representation for these tasks. However, when ex-
tracting mesh surfaces from a neural SDF, the marching
cubes algorithm often fails to capture the full expressiveness
of the neural SDF due to limitations like poor triangulation
quality and misaligned feature lines. Even improved mesh
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extraction techniques like Dual Contouring (DC) struggle to
maintain geometric details and preserve sharp feature lines.
This highlights the need for better mesh extractors, espe-
cially for both freeform and CAD models, assuming a SDF
is available.

In this paper, we propose a set of strategies to address
the aforementioned challenges, assuming the base surface
is represented by a SDF. Our approach builds on the con-
cepts of CVT and QEM. First, we introduce a numerical
scheme for performing the integration of the objective func-
tion at each step. The key operation is to quickly create an
umbrella-shaped triangle set for each movable site to suf-
ficiently approximate the implicit surface. Second, while
the dual of CVT generates a triangle mesh surface, it does
not inherently guarantee feature alignment (as discussed
above). To address this, we assign weights to the movable
points based on the likelihood of their being located on fea-
ture lines. These weights enable the dual of the resulting
power diagram to better align with the feature lines.

Our contributions can be summarized as follows:

1. We develop a general-purpose mesh extractor for
both freeform and CAD models, assuming the avail-
ability of a signed distance function (SDF). It is
optimization-driven and simultaneously considers tri-
angulation quality and feature alignment.

2. Given the difficulty of decomposing an implicit sur-
face using a Voronoi diagram, we propose a numerical
integration scheme to estimate the objective function,
which also supports running Centroidal Voronoi Tes-
sellation (CVT) on implicit representations.

3. We transform the likelihood of a point being located
on feature lines into a weight, enabling the extraction
of a feature-aligned triangle mesh through power dia-
grams. Comprehensive comparisons with state-of-the-
art methods show that our approach retains rich geo-
metric details and distinct feature lines, yielding high-
quality triangulations.

2. Related work

In this section, we review two categories of research
works. The first category pertains to isosurface extraction
from SDFs, while the second category focuses on mesh op-
timization that preserves features.

2.1. Isosurface Extraction

According to De Araújo et al. [8], we can further catego-
rize the relevant methods for isosurface extraction into two
groups: Spatial Decomposition and Surface Tracking.

Spatial Decomposition. This kind of approaches in-
volves dividing the space into cells like cubes or tetrahe-

dra. While the Marching Cubes (MC) algorithm serves as a
fundamental technique, it struggles with topological ambi-
guities and sharp feature representation. Several improve-
ments have been introduced to address these issues through
enhanced lookup tables, precise interpolation, and increas-
ing vertex/edge counts. Techniques like Dual Contouring
[18] place vertices on boundaries for accurate isosurfaces,
while Dual Marching Cubes [28] combines methods for
better accuracy. Additionally, with advancements in geo-
metric deep learning, network-based methods have shown
promising results. Approaches like Deep Marching Cubes
(DMC) [22], MeshSDF [32], Neural Marching Cubes [3],
and FlexiCubes [34] use neural networks to provide differ-
entiable isosurfacing procedures. Another common strategy
is to integrate isosurfacing into end-to-end deep learning
pipelines for applications such as shape completion [5, 27],
model generation [7, 21, 17], or single-view reconstruction
[23, 49].

Surface Tracking. This approach directly extracts the
surface without spatial subdivision, starting from an iso-
surface vertex and generating triangles that satisfy specific
constraints. Marching Triangles [15, 16] extends triangle
edges to create new vertices while maintaining Delaunay
constraints, forming a mesh that covers the entire surface.
Subsequent studies have explored triangulation adaptivity
[2, 19] and feature preservation [26].

2.2. Mesh Optimization

In fact, the requirements for mesh generation essentially
align with those for mesh extraction. Common criteria for
evaluating mesh quality include accuracy, triangle quality,
and feature alignment.

High-Quality Triangulation. By minimizing the Cen-
troidal Voronoi Tessellation (CVT) energy [10], it is pos-
sible to achieve an even distribution of movable points on
the surface. There is substantial literature on using CVT to
generate high-quality mesh surfaces [36, 37]. A notable im-
plementation is proposed in [24], where high-quality mesh-
ing is accomplished by combining Restricted Voronoi Di-
agrams (RVD) with L-BFGS optimization. Additionally,
various CVT variants [35, 12, 44, 11, 39] aim to improve
triangulations in specific scenarios. However, most of these
methods encounter difficulties in aligning with features.

Feature Preserving. Several approaches [40, 43, 45,
48] begin by pre-detecting features and then perform re-
meshing to preserve them. For instance, VoroCrust [1] sug-
gests placing points symmetrically along pre-detected fea-
ture lines. However, feature line detection is impractical
for organic models, as identifying weak features is signifi-
cantly more challenging than detecting strong ones. A more



Figure 1. Algorithm Overview. Our algorithm iteratively optimizes a set of movable sites on the implicit surface until convergence. It
concludes by constructing a power diagram, yielding a well-triangulated, feature-aligned polygonal surface.

promising strategy involves ensuring that movable points
naturally align with underlying features. Many existing al-
gorithms leverage the inherent property of the Quadric Error
Metric (QEM), which effectively captures strong features.
For example, Valette et al. [37] utilized QEM to guide the
placement of Voronoi vertices, ensuring feature alignment.
Similarly, Chiang et al. [6] proposed mesh quality enhance-
ment through quadric error-based mesh relaxation. Addi-
tionally, Gao et al. [14] extended Optimal Delaunay Tri-
angulation (ODT) to surface meshes by solving a quadratic
optimization problem. While recent works [29, 47, 41] have
employed QEM to preserve sharp features, they cannot deal
with implicit representations. Furthermore, weak feature
preservation remains a challenge for QEM-based methods.

3. Overview

We formulate isosurface extraction as an energy mini-
mization problem. Similar to CWF [42], our objective func-
tion consists of two terms: ECVT and EQE, where ECVT
measures vertex uniformity, and EQE represents feature
alignment. As shown in Figure 1, the optimization process
begins with sampling the implicit surface. During each it-
eration, we construct the approximate Voronoi partition of
the implicit surface and estimate the objective function. At
convergence, we compute the likelihood of a point being
located on feature lines and transform it into a weight, then
extract the final polygonal surface by computing the power
diagram.

4. Algorithm

In this section, we will elaborate on the technical details
of our algorithm, including the objective function , Voronoi

decomposition, numerical integration, and the construction
of the power diagram.

4.1. Objective function

Like CWF, the objective function is defined as follows:

E({xi}Ni=1) = λCVTECVT + λQEEQE

where ECVT represents the energy of the Centroidal Voronoi
Tessellation (CVT), and EQE measures normal anisotropy.
During optimization, ECVT attracts each movable site to-
wards the centroid of its corresponding cell, while EQE en-
courages each site to align with nearby feature points or
lines. The weights λCVT and λQE balance these two effects.

The objective function can be rewritten in the following
form:

E({xi}Ni=1) =

N∑
i=1

∫
Ωi

(x− xi)
TM(x− xi) ds,

where the kernel matrix M is defined as:

M = λCVTMCVT + λQEMQE.

More specifically,

MQE = nxn
T
x

and we simply set MCVT to an identity matrix, which
defines the Euclidean distance.

Gradient. The gradient of our objective function is [42]:

∇xiE = λCVT∇xiECVT + λQE∇xiEQE, (1)



where

∇xiECVT =

∫
Ωi

−2MCVT(x− xi)ds, (2)

and
∇xiEQE ≈

∫
Ωi

−2MQE(x− xi)ds. (3)

4.2. Decomposition and numerical integral

Suppose a set of movable points {xi}Ni=1 determines a
Voronoi diagram, where each site xi dominates a 3D con-
vex polyhedral cell. We can traverse the edges of these cells
to identify all intersections with the implicit surface. Gen-
erally, the intersections form a polygonal loop v1v2 · · · vk
that approximately encloses the dominating region of xi.
However, this polygonal cell does not adhere to the implicit
surface.

Figure 2. In this example, the polygonal loop consists of 6 vertices
(see the left figure). We add a central vertex (yellow) and 6 bound-
ary vertices (blue); See the right figure. The resulting polygonal
cell is more accurately adhering to the surface.

Adding k+1 vertices. In the following, we will present a
simple technique to quickly generate a more accurately ad-
hering polygonal cell. Let v1v2 · · · vk denote the polygonal
loop (see Figure 2), where vj represents the intersection be-
tween an edge of the cell and the implicit surface, and nj is
the normal vector of vj’s tangent plane. The operation re-
quires two steps. First, using the vertices v1, v2, . . . , vk and
their corresponding normal vectors, we can predict a new
vertex that best fits the surrounding planes, similar to the
approach used in QEM. Second, we add a vertex between
each pair of successive vertices vj and vj+1 in a similar
manner.

Least squares solution using the Moore-Penrose inverse.
As discussed in QEM method, the newly added vertices can
be computed by solving a small-sized linear system. How-
ever, the coefficient matrix A may not be full rank, partic-
ularly when adding a vertex between a pair of successive
vertices vj and vj+1. In this case, the solution is not unique,
but we aim to find a position that is as close to vj+vj+1

2 as

possible. Recall that the Moore-Penrose pseudo-inverse A+

provides the minimum norm solution (closest to the origin).
By reshaping Av = b into

A

(
v − vj + vj+1

2

)
= b−A

vj + vj+1

2
,

we can obtain the least squares solution:

v = A+

(
b−A

vj + vj+1

2

)
+

vj + vj+1

2
.

Numerical integral. As mentioned above, we add k + 1
vertices, one of which is the central vertex. It is straight-
forward to divide the polygonal cell into 2k triangles, each
rooted at the central vertex. As shown in Figure 2, the re-
sulting polygonal representation better adheres to the sur-
face. For computing the numerical integral, we use the
Albrecht-Collatz quadrature over each triangle, which in-
volves 6 points: 3 at the midpoints of the edges and 3 lo-
cated inside the triangle.

4.3. Feature aligned mesh extraction

When the optimization terminates, some points are
moved to feature lines while others are uniformly dis-
tributed elsewhere. According to CWF, the Delaunay tri-
angulation among these points produces a feature-aligned
polygonal surface. However, an occasional failure may oc-
cur where four sites—two (p1, p2) are located on the fea-
ture line and the other two (q1, q2) are on opposite sides. If
these four sites share a common Voronoi vertex (also on the
feature line), two possible triangulation configurations can
result, each being a minimizer of our objective function. In
fact, feature preservation is also violated if q1 and q2 share
a common segment that aligns with the feature line. Conse-
quently, connecting the movable sites based on the Voronoi
diagram may lead to feature misalignment; See the inset
figure.

Figure 3. Power diagram and its dual.
To measure how the site xi is positioned relative to a

feature point or line, we compute the difference between
xi’s normal and the normal vectors of the boundary curve:

Wi =

∫
∂Ωi

∥x− xi∥2
(
1−

(
nT
xnxi

)2)
ds∫

∂Ωi
ds

. (4)



Figure 4. Comparison with state-of-the-art methods on the two CAD models.

It can be observed that when the cell is situated on a planar
region, Wi = 0. Conversely, when the cell is located in a
curved region, the use of squared distance in Wi aligns with
the definition of power diagrams. Figure 3 illustrates that in
the resulting power diagram, the feature-line sites control a
larger region, making them more easily connectable.

5. Experimental Results and Evaluation

All of our experiments were conducted on a computer
equipped with an AMD Ryzen 5995WX CPU and 128 GB
of memory. The tests were performed on a total of 100 CAD
models with distinct features, taken from the ABC dataset
[20], and 21 organic models with weak features. For CAD
models, we set the target vertex count to 2500, while for
organic models, we set the target vertex count to 5000.

Evaluation Metrics. To assess triangle quality, we utilize
the TriangleQ indicator [13], with a value closer to 1.0 in-
dicating proximity to an equilateral triangle, i.e.,

TriangleQ(t) =
6√
3

St

ptht
(5)

where St, pt, and ht represent the area, half-perimeter, and
the longest edge length of the triangle t, respectively. More-
over, three indicators: Chamfer Distance (CD), F-score
(F1), and Normal Consistency (NC) are employed to mea-
sure the difference between the extracted surface and the
original version. In addition, OpenB represents the num-
ber of open mesh edges in the simplification result, and
NMV denotes the number of non-manifold vertices. For
CAD models, we employ Edge Chamfer Distance (ECD)
and Edge F-score (EF1), proposed by NMC [3], to measure
the extent to which the feature lines are preserved.

Parameters. In our experiments, the same parameters are
set for all the models in this paper, including CAD models
and organic models. At the beginning of the optimization,
we set λQE = λmetric = 1.0, where λQE remains unchanged
throughout the optimization, but λmetric undergoes a decay-
ing process. The L-BFGS solver is utilized to solve the op-
timization problem, where the termination condition is set
by referring to the gradient norm, with a tolerance of 1e−8.

Table 1. Quantitative comparison on 100 CAD models, taken from
the ABC dataset [20]. Each CAD model has strong features. The
best scores are emphasized in bold with underlining, while the
second best scores are highlighted only in bold.

Resolution MC DC NDC NDCx DMC Flexicubes RFS Ours

CD
(
×104

)
↓

32 0.4310 0.1366 0.2463 0.2435 0.5519 2.7038 38.497 0.0855
64 0.2308 0.5048 0.1048 0.1051 0.2399 25.8899 27.2147 0.0855

F1 ↑
32 0.7610 0.8401 0.8614 0.8661 0.7101 0.3975 0.3583 0.9328
64 0.8830 0.8979 0.9303 0.9302 0.8716 0.4813 0.5656 0.9328

NC ↑
32 0.9575 0.9833 0.9731 0.9746 0.9546 0.9335 0.8488 0.9873
64 0.9789 0.9842 0.9857 0.9865 0.9777 0.9242 0.8925 0.9873

ECD
(
×102

)
↓

32 15.97 0.3123 0.3345 0.3237 21.32 0.6124 2.932 0.1431
64 12.37 0.2013 0.1732 0.2193 21.96 1.837 2.998 0.1431

EF1 ↑
32 0.0503 1.0000 0.3906 0.3974 0.0518 0.1590 0.0401 0.5665
64 0.1123 0.5547 0.5484 0.5514 0.0597 0.2886 0.0963 0.5665

TriangleQ ↑
32 0.6373 0.5591 0.6668 0.6640 0.7033 0.6136 0.8241 0.8876
64 0.6520 0.6739 0.6772 0.6761 0.7046 0.6259 0.8253 0.8876

HD
(
×102

)
↓

32 0.2732 0.5400 0.2215 0.2201 0.3759 1.376 2.155 0.0328
64 0.1544 0.0989 0.1327 0.0716 0.1464 2.182 1.384 0.0328

OpenB ↓
32 0 38 207 206 0 64 111 0
64 0 78 618 617 0 105 50 0

NMV ↓
32 10 41 67 65 6 42 1404 0
64 77 96 201 224 4 88 6626 0

5.1. Comparison Methods

We compare our method with seven state-of-the-art
(SOTA) methods: MC, DC, NDC, NDCx, DMC, Flexicude,
and RFS. Marching Cubes (MC) [15] traverses voxel grids
cube by cube, determining the surface based on vertex val-
ues and predetermined patterns. The resulting mesh ver-
tices are guaranteed to lie on the voxel grid. Dual Contour-
ing (DC) [18] transitions to a dual representation, extracting



Figure 5. Comparison with state-of-the-art methods on the bunny model and duck model.

Table 2. Quantitative comparison on 21 organic models with weak
features.

Resolution MC DC NDC NDCx DMC Flexicubes RFS Ours

CD
(
×104

)
↓

32 3.958 21.86 50.283 0.2151 4.309 2.646 92.28 0.0479
64 0.4352 2.877 73.045 53.54 0.4667 48.27 109.8 0.0479

F1 ↑
32 0.6236 0.2649 0.6379 0.7219 0.4358 0.6152 0.1910 0.9923
64 0.9350 0.5576 0.5713 0.6094 0.8591 0.7189 0.2717 0.9923

NC ↑
32 0.9340 0.8804 0.8956 0.9314 0.9064 0.9458 0.8241 0.9855
64 0.9724 0.9367 0.8974 0.8971 0.9620 0.9076 0.8374 0.9855

ECD
(
×102

)
↓

32 0.0741 0.0347 0.0355 0.1045 0.0668 0.0479 0.0572 0.0193
64 0.0370 0.0211 0.0508 0.0661 0.0356 0.0269 0.0747 0.0193

EF1 ↑
32 0.3457 0.3456 0.4083 0.0000 0.3473 0.3402 0.3350 0.5294
64 0.3929 0.3662 0.3032 0.2489 0.3587 0.4248 0.2878 0.5294

TriangleQ ↑
32 0.5853 0.4705 0.6683 0.6498 0.6966 0.6233 0.8018 0.8873
64 0.5919 0.5019 0.6800 0.6733 0.7074 0.6318 0.8428 0.8873

HD
(
×102

)
↓

32 1.283 1.943 1.986 1.995 1.120 0.7008 4.206 0.0698
64 0.2609 1.066 0.1023 2.297 0.2511 0.6113 4.432 0.0698

OpenB ↓
32 0 289 5 3 0 24 631 0
64 0 504 6 5 0 25 919 0

NMV ↓
32 21 226 15 13 6 51 7062 0
64 14 645 14 12 4 74 9042 0

mesh vertices that typically locate within grid cells to more
effectively capture sharp geometric features. Neural Dual
Contouring (NDC) [4] replaces QEF solving with neural
networks, enhancing the extraction quality from imperfect
yet fixed scalar functions. NDCx is basically NDC with
a more complex backbone network, which is slower than
NDC but has better reconstruction accuracy. Dual March-
ing Cubes (DMC) [28] enhances the connectivity of the
extracted mesh by extracting a mesh along the dual con-
nectivity of the grid compared to Dual Contouring. Flexi-
Cubes [34] adopt a specific Dual Marching Cubes formu-
lation and introduce extra degrees of freedom to position
each extracted vertex within its dual cell flexibly. In con-
trast to other methods, RFS [33] begins with a triangle mesh
encompassing the surface and then shrinkwraps the under-
lying surface using a gradient flow to minimize an energy
function.

We present the statistics of quantitative comparisons for
the 100 CAD models and the 21 organic models with weak
features in Table 1 and Table 2, and illustrate the qualita-
tive comparisons in Fig 4 and Fig 5. In comparison with
these methods, our approach simultaneously achieves the
best performance in terms of accuracy, triangle quality, and

feature alignment.

5.2. Comparsion with CWF.

The CWF[42] method can effectively preserve weak fea-
tures during triangular mesh simplification and has a cer-
tain ability to recover features. Therefore, it is an intuitive
idea to reconstruct the mesh by traditional reconstruction
methods, and then simplify it while preserving features us-
ing CWF. However, the traditional RVD method used by
CWF is sensitive to the number and quality of input meshes.
Because the mesh extraction from SDFs always has an ex-
cessive number of triangles, CWF requires a considerable
amount of time for intersection operations. Additionally, it
may encounter non-manifold or self-intersecting situations,
leading to algorithm failure. Therefore, our method based
on direct SDF reconstruction is more efficient.

5.3. Using Trilinear Interpolation.

To further reduce the number of SDF evaluations, we
can use trilinear interpolation instead of differentiable dis-
tance queries, although this may have a certain impact on
the accuracy of our algorithm. We demonstrate this effect
through two experiments. In one set, only the positions at
the vertices of a regular grid are provided, while in the other
set, we augment the fandisk model with additional normal
information at each vertex. By comparing the visual re-
sults in Figure 6, we find that using trilinear interpolation
can also yield good results. However, compared to differ-
entiable distance queries, there is a potential risk of losing
feature information.

5.4. Run-time Performance.

The run-time performance statistics are presented in Fig-
ure 7. The tests were conducted on the block model and
bunny model, each with varying target numbers ranging
from 0.5K points to 10K points. The total running time
primarily includes those for the construction of RVDs and



Figure 6. Comparing with Trilinear Interpolation.

the optimization, with the optimization being the most time-
consuming operation. Additionally, it can be observed that
the optimization typically requires 40 to 50 iterations. The
practical timing cost is approximately O (kn), where n is
the target number of vertices, and k is the number of itera-
tions.

6. Limitations and Conclusion

Limitations In its current form, our method has at least
four limitations. Firstly, we have not demonstrated its
potential for generating anisotropic meshes with feature
alignment, as anisotropic Voronoi solvers are not yet avail-
able. Secondly, our implementation requires further GPU-
based acceleration in the future. Additionally, due to the
non-differentiability of the proposed meshing process, it is
not suitable for integration into end-to-end learning frame-
works that utilize neural SDFs as internal shape representa-
tions. Therefore, the proposed meshing technique can only
function as a post-processing step following SDF learning.
Lastly, our method is limited to closed surfaces. In the fu-
ture, it is planned to extend the method to open surfaces by
leveraging Unsigned Distance Fields (UDF).

Conclusion In this paper, we propose an iso-surface ex-
traction method that simultaneously considers the require-
ments of triangle quality and feature alignment, by extend-
ing the mesh-based functional optimization framework to
SDFs. The proposed method naturally supports running
CVT on implicit surfaces. Moreover, a set of strategies
are introduced to improve robustness, including surface-
adhering projection and feature line consolidation using
power diagrams. Finally, extensive comparison experi-
ments validate its advantages over existing state-of-the-art
(SOTA) methods.
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