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Abstract

As the core cornerstone of building an efficient med-
ical care system, especially promoting accurate disease
diagnosis and treatment, medical image segmentation
is of great importance. However, medical segmenta-
tion faces many challenges, including complex back-
ground, shape and size changes, resulting in inaccu-
rate or fuzzy segmentation boundaries. To meet these
challenges, this paper proposes a multiscale edge-guided
polynomial approximation network (AMEPANet). The
well-designed edge guided bridge module in this paper
uses the Laplacian operator to accurately capture and
strengthen the edge information in the image, and real-
izes the robust preservation of edge information across
multiple scales. At the same time, by building an in-
formation mixed attention mechanism, the network can
further mine and use the subtle features of the bound-
ary area to further improve the segmentation accu-
racy. In order to maximize the use of rich feature in-
formation at different scales and stages, this paper com-
bines Kolmogorov–Arnold theorem to build an efficient
decoder architecture, which can seamlessly integrate
multi-source features to achieve comprehensive fusion
and optimization of feature information. In addition,
this paper also proposes an innovativeC1 continuous ac-
tivation function, which shows significant advantages in
reducing the fluctuation of model calculation and pro-
moting the stable convergence of the model, and fur-

ther enhances the comprehensive processing ability of
the model for complex medical image features. Through
extensive and in-depth experiments on multiple author-
itative data sets such as Synapse, the excellent perfor-
mance of AMEPANet has been verified.

Keywords: Segmentation Boundary Detection Piece-
wise Polynomial Curve Medical Image Polynomial Ap-
proximation.

1. Introduction

In medical image segmentation, while traditional meth-
ods have established a strong foundation, their performance
is often hindered by factors such as inconsistent image qual-
ity, complex anatomical structures, and the high variabil-
ity of lesion areas, making accurate and robust segmenta-
tion challenging in dynamic clinical environments. In re-
cent years, with the vigorous rise of deep learning technol-
ogy, especially the extensive application of convolutional
neural networks (CNN)[8, 56], it has brought revolutionary
progress for medical image segmentation. Among them,
UNet, with its unique jumping connection mechanism,
has shown outstanding performance in fusing multi-scale
features to generate high-resolution segmentation images,
which has inspired the emergence of many variants (such as
CE-Net[17]), which have made remarkable achievements in
further improving segmentation accuracy.

However, the inherent limitations of CNN are also grad-
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ually emerging, especially its convolution operation is lim-
ited by the local receptive field, and it is difficult to effec-
tively capture the long-distance dependency between pixels
in the image, which is particularly obvious when dealing
with pathological areas with complex backgrounds, signifi-
cant changes in shape and size. In addition, CNN is also in-
sufficient in dealing with fuzzy boundaries, which limits its
further application in complex medical image segmentation
tasks. In order to overcome the above problems, researchers
tried to expand the receptive field by introducing dilated
convolutions (such as CPFNet[16]), and to strengthen key
feature mapping by integrating attention mechanisms (such
as BCDU-Net[2], Ms-red[13]), but these methods failed to
fundamentally solve the problems of remote dependency
and local detail capture.

significant breakthroughs have been made not only in
image field [41, 51, 52], but also in other fields [24, 53,
61, 27, 34, 58]. With the great success of Transformer in
the field of natural language processing, its powerful global
modeling capability has attracted widespread attention[49,
60]. The proposal of Vision Transformer (ViT)[14] marks
a new chapter of Transformer in image recognition and
analysis. Researchers began to explore its potential appli-
cations in image processing and medical image segmenta-
tion. In order to improve computing efficiency and meet
the processing requirements of high resolution medical im-
ages, hierarchical transformer architectures such as Swin
Transformer[29] based on window attention came into be-
ing. Parallel MERIT[37] and other models are designed
with dual transformer encoders, which increases the ac-
curacy and model complexity at the same time. In ad-
dition, Pyramid Vision Transformer (PVT)[47] based on
space reduction attention and TransDeeplab[3] integrat-
ing Transformer and DeepLab further expand the applica-
tion boundary of Transformer in medical image segmenta-
tion. MISSFormer[19], DAEformer[1], Swin-Unet[7] and
TransUNet[8] use different transformer blocks to replace
the convolution part in UNet, and enhance the remote cap-
ture capability of the model. These methods alleviate the
remote dependency problem to a certain extent by combin-
ing the global view of Transformer and the local feature ex-
traction ability of CNN. However, the pure Transformer ar-
chitecture still has shortcomings in capturing local context
information of images, and it is difficult to accurately pro-
cess the complex details in medical images.

In order to remedy this defect, PVTv2[48] and other
models embed convolutional layers in the Transformer en-
coder, aiming to enhance the ability of local feature learn-
ing. At the same time, CASCADE and its variants (e.g.,
EMCAD [38], G-CASCADE [36], PVT-CASCADE [35])
enhance the model’s ability to detect multi-scale targets in
complex medical images by integrating attention-driven de-
coders and multi-scale processing techniques. However, al-

though these improvements have enhanced the local learn-
ing and global modeling capabilities of the model to a cer-
tain extent, they still fail to meet the challenges of com-
plex background, shape and size changes, and fuzzy bound-
aries in medical images. At the same time, in recent years,
the trend of revealing the black box behavior of neural net-
works has attracted extensive attention. The interpretability
of neural networks is crucial[30].

In view of this, this paper aims to propose an innovative
medical image segmentation method, which deeply mines
the complementary advantages of Transformer and CNN,
and introduces a new mechanism to better deal with the di-
versity and uncertainty in complex medical images. Specif-
ically, we propose an edge guided bridge, which uses the
Laplacian operator to retain the edge information, so that
the model can emphasize the complete edge information on
various scales. Mixed attention is used in the encoder and
decoder, combining the advantages of channel attention and
spatial attention to improve attention scores and obtain more
boundary information. Based on Kolmogorov Arnold the-
orem, an efficient decoder architecture is designed to inte-
grate multi-source features and achieve comprehensive fu-
sion and optimization of feature information. At the same
time, a new C1 continuous activation function is designed.
In general, the contributions of this paper are as follows:

1.We designed Edge Guided Bridge (EGB) module. The
EGB module robustly maintains edge information on mul-
tiple scales, and retains initial high-frequency information,
especially boundary information, through the Laplacian op-
erator to better fill the semantic gap between low-level fea-
tures extracted by the encoder and high-level features gen-
erated by the decoder.

2.This paper proposes an information mixed attention
module (IMAM), which skillfully combines the internal Q,
K and V of the two attention mechanisms for hybrid oper-
ations, so that it can focus on multiple levels and different
parts of the input data at the same time. Furthermore, com-
bining Kolmogorov Arnold representation theorem, a high-
performance decoder architecture is carefully constructed.
The multi-source feature information from the encoder is
integrated to realize the deep fusion and optimization of fea-
ture information.

3.In this paper, we address issues such as the existence
of non-differentiable points in commonly used activation
functions like LeakyReLU. We propose a novel C1 contin-
uous activation function, which reduces fluctuations in the
model’s computational process, leading to more stable con-
vergence and better integration of different features.

4.Our proposed AMEPANet has demonstrated superior
performance on multiple different types of datasets.



2. Related works

The UNet architecture is renowned for its effectiveness
in medical segmentation and has been widely applied in
fields such as organ segmentation and polyp segmentation.
In this section, we will focus on introducing the relevant
background of our proposed model, including boundary de-
tection algorithms, Kolmogorov-Arnold and Vision Trans-
former.

2.1. Boundary detection algorithm

Boundary detection algorithms aim to precisely lo-
cate object boundaries or contours in the field of images,
with widespread applications including image segmenta-
tion, edge enhancement, and various other computer vi-
sion tasks[57]. To improve boundary perception accuracy,
research has focused on optimizing network training with
novel loss functions, including advanced techniques like
Boundary Loss [25] and HD Loss [23], which directly guide
the network to enhance boundary discrimination. Addi-
tionally, some classical techniques continue to play impor-
tant roles in capturing boundary information. The Sobel
operator, as a classical gradient-based algorithm, relies on
computing image pixel gradients to identify edges, estimat-
ing horizontal and vertical gradients through simple con-
volution and synthesizing an edge intensity map. How-
ever, its high sensitivity to image noise may lead to edge
misjudgment. In contrast, the Canny edge detection algo-
rithm follows a more complex multi-step process, including
Gaussian smoothing, gradient computation, non-maximum
suppression, and hysteresis thresholding, to achieve pre-
cise edge detection and connection, although this process is
computationally intensive and highly parameter-dependent.
The Prewitt operator, as a homologous technique to the So-
bel operator, employs different convolution kernel config-
urations to estimate gradients and also faces the issue of
false-positive edges. The Laplacian operator, by performing
second-order derivative operations on the image, exhibits
higher sensitivity to details and is adept at revealing subtle
edges, but this may also increase sensitivity to image noise.
As multi-task learning paradigms are increasingly applied
in medical image segmentation, new approaches have been
explored to integrate boundary detection as an auxiliary
task, boosting the model’s boundary perception abilities
[46, 32]. Furthermore, advanced network structures dynam-
ically highlight key boundary features through the integra-
tion of spatial attention mechanisms[50], further enhancing
the expressiveness of boundary regions and demonstrating
fine-grained processing of boundary information. In this
context, our research takes a novel approach, aiming to in-
tegrate the essence of traditional boundary detection with
insights from modern deep learning, proposing an Edge-
Guided Bridge mechanism that robustly maintains and en-
hances image boundary information across multiple scales.

2.2. Kolmogorov-Arnold

Kolmogorov-Arnold theory[30] is based on multivari-
able continuous functions, and any multivariable continu-
ous function f can be expressed as a combination of finite
single variable continuous functions.

f(x) = f(x1, x2, ...xn) =

2n+1∑
q=1

ψq(

n∑
p=1

ϕq,p(xp)) (1)

Where ϕq,p : [0, 1] → R, ψq : R → R. This theo-
rem has laid a solid theoretical foundation for the construc-
tion of Kolmogorov-Arnold Network (KAN). Unlike tradi-
tional neural networks, which use fixed activation functions,
KANs introduce learnable activation functions at the edge
of the network. This design allows each weight parame-
ter in the network to be replaced by a highly flexible sin-
gle variable function, which is usually parameterized in the
form of a spline function. This feature not only significantly
improves the flexibility of the model, but also effectively
simulates complex functional relationships by reducing the
number of parameters, thus enhancing the interpretability
and generalization ability of the model. In the develop-
ment process of KANs, Azam et al.[4] conducted in-depth
research on their effectiveness in visual tasks such as im-
age recognition, which promoted the application of KANs
in this field. Vaca et al.[43] further expanded the application
scope of KANs, introduced them into the time series predic-
tion and control problem, and verified the strong learning
ability and wide applicability of KANs. Although KANs
have made significant progress in theoretical research and
preliminary application, their deep integration and applica-
tion in the general vision network architecture are still in-
sufficient, especially in the complex real vision tasks, which
lack extensive practice and verification. In view of this, this
paper explores and designs a general vision network archi-
tecture integrating KANs, aiming to give full play to KANs’
advantages in flexibility and interpretability, and promote
their innovative applications in visual recognition, analysis
and broader computer vision tasks.

2.3. Transformer

The Transformer architecture and its various variants
have emerged prominently in the domain of medical imag-
ing analysis, particularly in segmentation, demonstrating
extraordinary potential applications. In particular, ViT
represents a groundbreaking advancement in visual data
processing, challenging the dominant paradigm of tradi-
tional Convolutional Neural Networks. ViT revolution-
izes the image processing pipeline by fully adopting self-
attention mechanisms: it first divides the image into small
patches and then processes these sequences through the
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Figure 1. The main architecture of AMEPANet is shown in the figure.

Transformer architecture for in-depth analysis. This in-
novation not only competes with CNNs on core visual
tasks such as object detection but in some scenarios sur-
passes them, redefining the paradigm of visual informa-
tion processing. Building upon this foundation, TransUnet
ingeniously integrates Transformer and Unet structures to
broaden the applicability and efficacy of image segmenta-
tion tasks, showcasing the advantages of cross-architecture
integration. However, the inherent high computational com-
plexity of the original Transformer, especially the resource
consumption of quadratic computations, hinders its broader
applications. Addressing this challenge, Swin Transformer
emerges with a core focus on introducing a sliding window
attention mechanism, significantly reducing computational
overhead by confining self-attention calculations within
non-overlapping windows. This simultaneously ensures
effective capturing of long-range dependencies, achieving
dual optimization of efficiency and performance. Fur-
thermore, MaxViT takes an important step in exploring a
new dimension of fusion between Transformer and convo-
lution, innovatively integrating self-attention mechanisms
with convolutional elements to create a novel architectural
unit. By integrating a streamlined multi-scale architecture,
this framework empowers MaxViT to dynamically adjust
to diverse vision challenges, demonstrating the efficacy of
combined computational strategies in advancing visual per-
ception systems.

3. Proposed Method

3.1. Network Architecture

The Vision Transformer (ViT) architecture has emerged
as a prominent research focus within computer vision stud-

ies, with various ViT-derived methodologies demonstrating
exceptional performance across multiple visual recognition
tasks. MaxViT[42] effectively combines attention with con-
volution on the basis of ViT to generate a new architectural
element, enhancing segmentation performance. Building
upon MaxViT, we propose a multiscale edge-guided poly-
nomial approximation network —AMEPANet to accurately
segment medical images. The overall architecture of our
model is illustrated in Figure 1.

3.2. Edge Guided Bridge

Currently, most methods[1, 8, 33] employ pooling or
convolution in the encoder to downsample feature maps,
reducing the amount of information to be processed.
While this operation offers significant advantages in con-
structing deep architectures, it often leads to information
loss as downsampling layers accumulate at deeper lev-
els. LOD-Net[11] refines boundary prediction by learning
adjustable directional derivatives for each pixel, selecting
large-derivative pixels as boundary candidates, and com-
bining high-level semantic features. BATFormer[28] gener-
ates boundary-aware windows through entropy-based adap-
tive windowing, applying local self-attention within these
windows to preserve boundary details. CSAP-UNet[15]
strengthens edge features by introducing a boundary en-
hancement module (BEM) in the shallow layers, integrat-
ing local and global features via an attention fusion mod-
ule. These methods still have some limitations in preserving
edge information and integrating boundary and background
features. To better address this issue and robustly preserve
edge information at multiple scales, we propose an Edge-
Guided Bridge (EGB), as shown in the Figure 2. At the ith
layer, this module takes three inputs: the features Xe

i from
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Figure 2. Edge Guided Bridge takes feature Xe
i from the encoder, edge information Xα

i extracted by Laplacian operator and more advanced
prediction feature Xd

i+1 as input.

the encoder, the high-frequency edge features Xα
i obtained

through the Laplacian operator, and the more advanced fea-
tures Xd

i+1 ∈ RHi × Wi ×1 from the decoder. To simplify
calculations and reduce channel numbers, we apply a con-
volution to the feature maps at each layer, obtaining the final
input Xe

i ∈ RHi×Wi×Ci for the EGB module.
We utilize Laplacian pyramid, an effective technique for

preserving image edge information. The Laplacian opera-
tor is a gradient-based second-order derivative operator that
can detect finer edges and is more sensitive to details. In
practical applications, we initially smooth the original im-
age using a Gaussian filter, i.e., employing the Laplacian
of Gaussian function. The Laplacian pyramid encompasses
crucial low-level details at different scales:

Pk = P, if k = 0

Pk = d (g (Pk−1)) , if k ≥ 1

Gk = Pk − µ(P k+1)

(2)

Where, P represents the input image, g represents the Gaus-
sian filtering convolution operator, d represents downsam-
pling by a factor of 2, Gk represents the k-th level of the
Laplacian pyramid, and µ represents the corresponding up-
sampling operation. The Laplacian operator detects second-
order variations in the image, such as edges, contours, and
other high-frequency details, which are crucial for medical
segmentation. Therefore, the feature Xα

i ∈ RHi×Wi×1

from the i-th layer of the Laplacian pyramid is provided to
the i-th layer of the EGB module. The calculation formula
for Xα

i is as follows:

Xα
0 = G1

Xα
i = (d(Xα

0 ))
i
, if i ≥ 1

(3)

Where (d(X))
irepresents downsampling X by a factor of 2

for i times. Inspired by[10], we decompose the advanced
features generated by the decoder into two different atten-
tion maps, Xd1

i+1 and Xd2
i+1. We then perform element-wise

multiplication and concatenation of Xe
i and Xα

i with these
two features as shown in Figure 2. Finally, after passing
through the attention module, we extract the feature rela-
tionships between the background and boundary regions.

3.3. Piecewise Activation Function

Activation functions play a crucial role in improving
the accuracy of the model. In our model, LeakyReLU
demonstrates a significant advantage over activation func-
tions such as Sigmoid, Tanh, and ReLU in enhancing model
accuracy. However, LeakyReLU is C0 continuous, and its
lack ofC1 continuity causes discontinuity during backprop-
agation, leading to fluctuations in computations and affect-
ing the stability of model convergence. To address this is-
sue, we propose an activation function, PAF (x), constructed
from piecewise polynomial curves, as shown in Figure 3.
The design principles of PAF (x) are as follows: it is similar
in shape to LeakyReLU, it is C1 continuous, and it con-
sists of four segments of curves. Specifically, in the inter-
vals (−∞,−1) and (1,+∞), it consists of two segments of
linear polynomial functions, while in the intervals [−1, 0)
and (0, 1], it consists of two segments of cubic polynomial
functions. First, let’s discuss the construction in the inter-
vals [−1, 0) and (0, 1]. From this, we can construct Hermite
interpolation functions P1(x) and P2(x) over the intervals
[xi, xi+1], where i=1,2:

Pi(x) = m0(x)Fi + d0(x)
dFi

dx
+m1(x)Fi+1 + d1(x)

dFi+1

dx

m0(x) = (xi+1 − x)2 (2 (x − xi) + h) / h3

m1(x) = (x − xi)
2 (2(xi+1 − x) + h) /h3

d0(x) = (xi+1 − x)2(x − xi)/h
2

d1(x) = −(x− xi)
2 (xi+1 − x) /h2

h = xi+1 − xi
(4)

Based on the similarity with LeakyReLU, the function
values of P(x) at points x1 = −1, x2 = 0, and x3 = 1 are
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F1 = −0.125, F2 = 0, and F3 = 1, respectively. Then,
based on the design by interaction, the first derivatives of
PAF(x) at x1, x2 and x3 are set to F1

dx = 0.0313, F2

dx =

0.3125, and F3

dx = 0.35. From equations (4), P1(x) and
P2(x) are uniquely determined. To reduce computational
complexity, we express P1(x) and P2(x) in terms of power
series:

P1(x) = ((0.0938x+ 0.2813)x+ 0.3125)x

P2(x) = ((−1.3375x+ 2.025)x+ 0.3125)x
(5)

Let’s discuss the construction of the linear function P0(x)
on the interval (−∞,−1). The function value and the first
derivative of P1(x) at x = −1 are -0.125 and 0.0313, re-
spectively. Since P0(x) and P1(x) are C1 continuous at
x = −1, we have P0(x) = 0.0313(x + 1) − 0.125. Sim-
plifying this, we get P0(x) = 0.0313x− 0.0937. Similarly,
by ensuring the C1 continuity of P2(x) and P3(x) at x = 1,
we can obtain:

P3(x) = 0.35x+ 0.65 (6)

Therefore, PAF(x) can be defined as:

PAF (x) =


P0(x), x < −1,

P1(x), −1 ≤ x < 0,

P2(x), 0 ≤ x ≤ 1,

P3(x), x > 1.

(7)

3.4. PAF-KAN Block

A significant amount of research has found that both spa-
tial attention and channel attention play important roles in
the field of segmentation. However, we have observed that

the current usage of these two attention mechanisms is lim-
ited to simple serial or parallel implementations[13, 33],
which may not fully exploit the advantages of both. There-
fore, we propose an Information Mixed Attention Module,
as shown in Figure 4. This module is based on the cross
mixing of spatial attention and channel attention, which
makes spatial attention and channel attention cross com-
plement each other, and further excavates and utilizes the
subtle features of boundary areas to further improve the ac-
curacy of attention.
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Figure 4. The architecture of Information Mixed Attention Mod-
ule.

This module takes an input Y ∈ RH×W×C . First, spa-
tial attention and channel attention are applied separately
to the input data Y, resulting in Y s ∈ RH×W×C and
Y c ∈ RH×W×C . Y s is chosen as the anchor data, and Y c

as the complementary data. The following formulas were
used to calculate Q, K, and V :

Qs = Y s · PQ
1

Kc = Y c · PK
1

V s = Y s · PV
1

(8)

where PQ
1 , PK

1 , PV
1 ∈ RC×D represent the learned weight

matrices, whereD is the number of channels after the linear
transformation. The mixed attention was calculated using
the following formula:

SA(Qs,Kc, V s) = SoftMax(Qs · (Kc)
T
/
√
D)·V s

(9)
where SoftMax represents the row-wise SoftMax operation.
Similarly, Xc as the anchor data and Xs were chosen as the
complementary data, and another set of Q, K, and V was
calculated:

Qc = Xc · PQ
2

Ks = Xs · PK
2

V c = Xc · PV
2

(10)

The mixed attention for this instance can be calculated using
the following formula:

CA(Qc,Ks, V c) = SoftMax(Qc · (Ks)
T
/
√
D)·V c

(11)



Therefore, the global-local cross-mix attention module can
be represented as follows:

IMAM = SA(Qs,Kc, V s) + CA(Qc,Ks, V c) (12)

In the segmentation task, effective use of multi-source
information is crucial to improve the recognition and seg-
mentation performance of various size objects. Multi-scale
information fusion strategy has been proved to be the key to
improve performance[54, 41, 45, 55]. For this reason, this
paper uses the information mixed attention module to de-
sign an efficient decoder architecture, integrate multi-source
features, achieve comprehensive fusion and optimization of
feature information, and further enhance the model’s ability
to understand and represent complex scenes. Specifically,
the decoding architecture accepts data t1 and t2 from dif-
ferent processing stages as inputs. Except for the first layer
encoder, t1 in other layers is the edge information output
from the edge guidance bridge, and t2 is the high-level se-
mantic information from the upper layer decoder. First, the
high-level semantic information t2 is normalized,

t2 = LayerNorm(t2) (13)

Then it is spliced with the edge information t1, and IMAM
is used to mine and utilize features in a deeper level, and
normalization processing is carried out.

t = LayerNorm(IMAM(t1 + t2)) (14)

When extracting key information, we innovatively use KAN
to calculate, using the following formula definition.

ϕ(t) = ω(b(t) + spline(t)) (15)

b(t) = PAF (t) (16)

spline(t) =
∑
n

cnBn(t) (17)

Where cn is a trainable parameter, ω is a constant, Bn(x) is
a B-spline, and PAF is the activation function above. The
flexibility of spline enables it to adaptively model complex
relationships in data by adjusting the shape, make full use
of spline to optimize the extracted features, and enhance the
learning ability of subtle features.

3.5. Loss function

We use a combination of binary cross-entropy (BCE)
loss and Dice loss as the loss function for network training.
The definitions of BCE loss and Dice loss are:

LBCE = − 1

N

N∑
i=1

yi · log (pi) + (1− yi) · log (1− pi)

Dice =
2
∑N

i=1 yi · pi + ϵ∑N
i=1 yi +

∑N
i=1 pi + ϵ

LDice = 1−Dice
(18)

Where, pi ∈ 0, 1 represents the predicted value of the
model, yi ∈ 0, 1 represents the true label, andN =W ∗ H
represents the number of pixels.

4. Experiments

4.1. Datasets

Synapse Multi-Organ Segmentation: First, we use the
Synapse Multi-organ Dataset [26] to evaluate the perfor-
mance of our method. This dataset comprises 30 abdom-
inal CT scans consisting of a total of 3779 axial contrast-
enhanced abdominal CT images. Each CT scan contains 85
to 198 slices with a size of 512×512 pixels. The voxel spac-
ing is ([0:54-0:54]×[0:98-0:98]×[2:55:0])mm3. Our evalu-
ation follows the settings outlined in [8], where we segment
eight anatomical structures including the gallbladder (Gal),
aorta (Aor), left kidney (LK), liver (Liv), right kidney (RK),
stomach (Sto), pancreas (Pan) and spleen (Spl).

Automated Cardiac Diagnosis Challenge (ACDC):
The ACDC dataset [6] is designed for automatic cardiac di-
agnosis and consists of 100 cardiac MRI scans, each con-
taining three cardiac structures: the myocardium (Myo),
right ventricle (RV) and left ventricle (LV). In line with the
methodology presented in [38], we use 20 for testing, 20
samples for validation, and 70 for training.

Polyp Segmentation: To better validate the generaliza-
tion ability of our proposed model, we further evaluated it
on a polyp segmentation dataset. For fair comparison, we
followed the same experimental settings as [59],selecting
1450 images from the Kvasir[22] and CVC-ClinicDB[5]
datasets as the training set, and testing on the EITS and
CVC-300 datasets[40].

Skin Lesion Image Segmentation: The ISIC2018
dataset [12] is a public collection for skin lesion segmen-
tation, consisting of 2594 skin lesion images with varying
resolutions. The PH2 dataset [31] contains 200 color im-
ages of skin lesions. For fair model comparison, in line with
previous work [13], both datasets are resampled to 224×320
pixels. PH2 is split into 80 training images, 100 test images,
and 20 validation images, while The ISIC2018 dataset is di-
vided into training, test sets, and validation in a 7:2:1 ratio.

4.2. Implementation Details

The network uses AdamW, with an initial learning rate
of 0.001, momentum of 0.001, and weight attenuation of
0.0001. The batch size is set to 12. For CT datasets such
as Synapse and ACDC, we train 400 epochs. For polyp
segmentation datasets and skin lesion image segmentation-
datasets, we train 200 epochs to prevent network overfitting.
All experiments were conducted on a single NVIDIA A100.



Table 1. We compare AMEPANet with several competing models on the Synapse dataset, emphasizing the best-performing results in bold.

Methods Spl RK LK Gal Liv Sto Aor Pan Average
DSC HD95

UNet [39] 81.48 62.64 72.41 56.70 86.98 67.96 84.00 48.73 70.11 44.69
TransUNet [8] 85.08 77.02 81.87 63.16 94.08 75.62 87.23 55.86 77.49 31.69
Swin-UNet [7] 90.66 79.61 83.28 66.53 94.29 76.60 85.47 56.58 79.13 21.55
TransDeeplab [3] 89.00 79.88 84.08 69.16 93.53 78.4 86.04 61.19 80.16 21.25
MISSFormer [20] 91.92 82.00 85.21 68.65 94.41 80.81 86.99 65.67 81.96 18.20
HiFormer [18] 90.99 79.77 85.23 65.23 94.61 81.08 86.21 59.52 80.39 14.70
DAEFormer [1] 91.82 82.39 87.66 71.65 95.08 80.77 87.84 63.93 82.63 16.39
PVT-CASCADE [35] 90.10 80.37 82.23 70.59 94.08 83.69 83.01 64.43 81.06 20.23
TransUnet [9] 88.14 69.73 81.11 76.95 93.64 77.84 88.01 61.22 79.58 28.73
Parallel MERIT [37] 91.21 84.31 87.21 73.48 95.06 84.15 88.38 69.97 84.22 16.51
EMCAD [38] 92.17 84.10 88.08 68.87 95.26 83.92 88.14 68.51 83.63 15.68
G-CASCADE [36] 90.52 82.38 85.64 74.86 95.33 83.65 88.27 71.99 84.08 18.89
Ours 91.19 85.61 89.29 77.13 95.16 85.99 88.52 70.79 85.55 14.39

GT Ours G-CASCADE EMCAD HiFormer Swin-UNet

Spl RK LK Gal Liv Sto Aor PanSpl RK LK Gal Liv Sto Aor Pan

Figure 5. A qualitative comparison of various visualization meth-
ods on the Synapse dataset is shown. Our approach demonstrates
fewer false predictions and preserves more detailed information.

4.3. Performance Comparisons

Synapse Dataset: Synapse Dataset: Table 1 presents
a comprehensive comparison of the proposed method’s
performance with other SOTA approaches. The results
show that our method significantly surpasses the previous
SOTA method. Specifically, compared with the EMCAD
method, our method achieves 1.92% performance improve-
ment; Compared with G-CASCADE method, it shows an
advantage of 1.47%. In the task of segmentation of specific
regions such as kidney, aorta and stomach, our method has
also achieved remarkable results. It is particularly worth
mentioning that our method has achieved a performance

leap of up to 2.27% compared with the second ranking
method for small and difficult to accurately segment pancre-
atic regions, which marks a critical step in achieving more
accurate segmentation results. The qualitative comparison
results between different methods are shown in Figure 5.

Polyp Segmentation: The comparison results of this
method and other SOTA methods in polyp segmentation
dataset are shown in Table 3. It is worth noting that our
method is superior to the competitive method in all indica-
tors of ETIS and CVC-300 data sets. This advantage ob-
served on different data sets emphasizes the powerful gen-
eralization ability of this method. The qualitative compar-
ison of results is shown in Figure 6. It can be seen that
our method has excellent performance in maintaining a low
false positive rate, which accurately avoids mistakenly clas-
sifying healthy areas as tumors.

ACDC Dataset: Table 2 shows the DICE scores of our
method and other SOTA methods for heart organ segmenta-
tion on MRI images of ACDC dataset. Our method achieves
the highest average DICE score of 92.68%, which is about
0.45% higher than that of G-CASCADE. At the same time,
the segmentation of the left ventricle, the right ventricle and
the myocardium achieves about the same result.

Skin Lesion Segmentation: The data presented in Ta-
ble 3 highlights the excellent performance of our method in
PH2 and ISIC2018 skin lesion segmentation data sets, es-
pecially in PH2 data sets. Our method outperforms other
competitive methods in all evaluation indicators. Specif-
ically, we achieved 90.37% of the DICE score on the
ISIC2018 dataset, 0.8% higher than the nearest competi-
tive method G-CASCADE; In another data set, the DICE
score reached 94.82%, 0.42% ahead of G-CASCADE. In
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Figure 6. Qualitative comparison of different visualization methods on polyp segmentation dataset. It can be seen that our method can
accurately locate the lesion area and achieve more accurate segmentation.

Table 2. Our Method compared with various competing models
on the ACDC dataset.

Methods Avg Dice RV Myo LV

UNet [39] 87.55 87.10 80.63 94.92
TransUNet [8] 89.71 86.67 87.27 95.18
nnU-Net [21] 92.34 90.67 90.30 96.04
MISSFormer [20] 90.86 89.55 88.04 94.99
Swin-UNet [7] 88.07 85.77 84.42 94.03
MT-UNet [44] 90.43 86.64 89.04 95.62
BATFormer [28] 91.14 87.99 89.48 95.97
PVT-CASCADE [35] 91.46 89.97 88.90 95.50
TransCASCADE [35] 91.63 90.25 89.14 95.50
nnFormer [62] 91.78 90.22 89.53 95.59
Parallel MERIT [37] 92.32 90.87 90.00 96.08
EMCAD [38] 92.14 90.65 89.68 96.02
G-CASCADE [36] 92.23 90.64 89.96 96.08
Ours 92.68 91.64 90.33 96.08

addition, in terms of accuracy, our method also showed
significant advantages. Compared with G-CASCADE, it
improved 0.31% on ISIC2018 dataset and achieved 1.22%
growth on PH2 dataset. Figure 7 visualizes the results of
our method alongside other competing approaches on both
datasets. The figure clearly shows that our method exhibits
superior generalization performance compared to the others
on both datasets.

ISIC-IoU

ISIC-DICE

ISIC-ACC

PH2-IoU

PH2-DICE

PH2-ACC

Ours

G-CASCADE

EMCAD

Ms-Red

CPF-Net

CE-Net

BCDU-Net

UNet

Figure 7. Visual comparison of indicators between our method and
other competitive methods on ISIC2018 and PH2.

4.4. Ablation Study

To evaluate the effectiveness of each module in our pro-
posed network, we conducted a large number of ablation
experiments. We referred to the network without the EGB,
IMAM, and PAF modules as the baseline model.

Qualitative Study: Figure 8 illustrates the advantages
of the baseline model and the other three models mentioned
by us on the Synapse dataset. It can be clearly seen from the
figure that the organic combination of various modules ef-
fectively improves the segmentation performance, can more
accurately locate the organ position, and make the segmen-
tation boundary more accurate and clear.

Quantitative Study: Table 4 shows the experimental re-



Table 3. The comparison results between our method and other competitive methods on polyp segmentation dataset and skin lesion
segmentation dataset.

Methods ETIS CVC-300 ISIC2018 PH2

DSC IoU MAE DSC IoU MAE IOU DICE ACC Recall IOU DICE ACC Recall
UNet [39] 39.80 33.50 3.60 71.00 62.70 2.20 81.69 88.81 95.68 88.58 87.07 92.62 95.57 92.86
BCDU-Net [2] 64.71 26.72 3.10 74.01 42.86 2.05 80.84 88.33 95.48 89.13 87.41 93.06 95.61 91.11
CE-Net [17] 65.65 32.62 13.16 85.10 61.57 2.79 82.82 89.59 95.97 90.54 89.62 94.36 96.68 94.51
CPF-Net [16] 77.75 50.82 4.32 88.08 69.41 1.55 82.92 89.63 96.02 90.62 89.91 94.52 96.72 93.74
Ms-Red [13] 73.95 44.17 4.72 90.45 73.83 1.77 82.13 89.05 95.71 90.82 90.14 94.65 96.80 94.73
PVT-CASCADE [35] 79.28 68.43 2.03 88.34 82.30 0.84 82.83 90.21 95.62 92.38 89.87 94.51 96.30 95.91
Parallel MERIT [37] 69.73 62.82 1.74 88.21 81.23 1.12 83.44 90.05 95.66 91.92 89.70 94.30 96.81 95.43
EMCAD [38] 80.68 68.53 1.72 88.71 81.33 0.83 82.81 89.46 95.55 93.81 90.25 94.69 96.69 96.11
G-CASCADE [36] 78.13 67.34 2.24 88.15 80.69 1.42 82.98 89.57 95.74 93.27 89.69 94.40 95.69 94.93
Ours 81.51 68.82 1.70 90.92 83.34 0.61 83.82 90.37 96.05 93.25 90.41 94.82 96.91 96.24

Spl RK LK Gal Liv Sto Aor PanSpl RK LK Gal Liv Sto Aor Pan

Baseline Model 1 Model 2 Model 3 GT

Figure 8. Visual comparison of segmentation by different mod-
els on the Synapse dataset, where Model 1 represents Baseline +
IMAM; Model 2 represents Baseline + IMAM + EGB; Model 3
represents Baseline + IMAM + EGB + PAF.

Table 4. Research on ablation of each module on Synapse dataset.

Network Dice HD95IMAM EGB PAF
× × × 82.22 18.82
✓ × × 82.59 17.98
× ✓ × 83.74 16.99
× × ✓ 83.22 17.87
✓ ✓ × 84.27 15.71
✓ × ✓ 84.17 16.83
× ✓ ✓ 84.36 16.91
✓ ✓ ✓ 85.55 14.39

sults of the detailed quantitative study of the baseline model
and the three modules proposed by us. In order to ensure
that the effectiveness of our proposed method is fully veri-

fied, we have implemented a thorough experimental strat-
egy, including the independent application of these three
modules and the pairwise combination between them. From
the experimental data in the table, it can be seen that the
proposed method can significantly improve the segmenta-
tion accuracy of the model, whether used alone or in com-
bination. Finally, compared with Baseline, Dice increased
by 3.33% and HD95 decreased by 4.43%, significantly im-
proving the performance of the entire model. Table 5 shows
the study on parameters and time efficiency.

Table 5. Research on parameters and time efficiency.

Network Params(M) Flops(G) Infer-Times(ms)IMAM EGB
× × 86.92 17.88 49.69
✓ × 87.95 18.17 51.64
✓ ✓ 93.21 20.95 57.30

Significance Analysis: We conducted five experiments
with two models: one using the method proposed in this
paper and the other without it. The five sets of DSC data
obtained were [85.53, 85.50, 85.48, 85.55, 85.52] for the
model using the proposed method, and [82.10, 81.95, 82.00,
82.22, 82.15] for the model without it. We performed an
analysis of variance (ANOVA) on these two groups of data,
calculating an F-statistic of 4615.45 and a p-value of 2.45×
10−12. The p-value is far smaller than the significance level
(0.05), which means we can reject the null hypothesis. The
null hypothesis suggests there is no difference between the
groups, but the results indicate that the performance of the
model with the proposed method is significantly different
from that of the model without it. The extremely small p-
value further supports that the effectiveness of the proposed
model is highly reliable and stable.

Activation Function: Our proposed PAF is a novel C1

continuous activation function. To fully validate its per-
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Figure 9. The figure (a) shows the impact of our proposed PAF and several other commonly used activation functions on model training.
Figure (b) shows the impact of several methods on the loss during the training process. It can be clearly seen that our PAF can better reduce
the fluctuation in the model training process.

Table 6. A comparative study of our proposed PAF and several
commonly used activation functions on the Synapse dataset.

Activation Function Dice HD95Relu LeakyRelu Gelu PAF
✓ × × × 83.57 16.33
× ✓ × × 83.91 15.55
× × ✓ × 81.81 31.23
× × × ✓ 85.55 14.39

formance, we compared it with activation functions like
LeakyRelu, Relu, Gelu, etc. As shown in Table 6, it is
evident that our PAF achieves better segmentation perfor-
mance. As can be seen from Figure 9, compared with these
commonly used activation functions, PAF can better reduce
the fluctuation of the model, make the training process more
stable, and improve the segmentation performance better.

Research on ablation within the IMAM: Research on
ablation within the IMAM module: In the exploration of
the internal mechanism of IMAM, we innovatively com-
bined two different types of attention mechanisms for hy-
brid computing. In order to comprehensively evaluate the
effectiveness of this design decision, we carefully designed
a group of experiments to compare the performance of dif-
ferent attention combinations. The experimental results are
shown in Table 7, from which we can intuitively see that
the IMAM design proposed in this paper shows the most
outstanding performance compared with other architecture
configurations, fully verifying the correctness and superior-
ity of our design ideas.

Comparison with Different Backbone Networks: To
validate our choice, we expanded ResNet101 and ResNet50
networks to have a comparable number of parameters to
MaxVit and applied the same pre-training regimen. We then
replaced the backbone with these networks. The results in

Table 7. Research on ablation within the IMAM on the Synapse
dataset.

Methods Attention Parallel Attention Serial Ours
Dice 83.64 83.94 85.55

HD95 19.34 17.46 14.39

Table 8. An analysis of the effect of different backbones on the
network performance.

Backbone ResNet50 ResNet101 Maxvit
Dice 77.39 82.89 85.55

HD95 20.87 20.06 14.39

Table 8 demonstrate the soundness of our decision to use
MaxVit.

Image GT Stage 1 Stage 2 Stage 3

Figure 10. Visualization of the EGB module’s specific functions is
presented. In every stage, the left side depicts the model’s output
without EGB, while the right side shows the result after applying
EGB. Stages 1 to 3 correspond to the three EGBs in the deeper to
shallower layers of the network.



Research on the EGB Module: This paper proposes
an edge guided bridge module to capture edge information
robustly on multiple scales. We show the specific function
of this module in the form of thermodynamic diagram, as
shown in Figure 10. It can be clearly seen from the figure
that EGB can make the model focus more on the boundary
of the lesion area in each stage, and pay more attention to
the edge information, so that the model can more accurately
segment the boundary.

Table 9. Study on sensitivity analysis of super parameters.

lr
batch size

4 8 12 16

0.00001 94.08 92.24 92.07 91.76
0.0001 94.54 94.76 94.82 94.79
0.001 94.73 94.78 94.55 94.60
0.01 82.34 90.78 83.62 89.62

Sensitivity Analysis: In this study, we conducted a sen-
sitivity analysis on the learning rate and batch size to eval-
uate the impact of different hyperparameter combinations
on model performance. The experimental results are shown
in Table 9. Overall, this sensitivity analysis confirms the
appropriateness of the learning rate and batch size settings
used in this study.

5. Conclusion

In this paper, we propose a multiscale edge guided poly-
nomial approximation network (AMEPANet). The well-
designed EGB module in the network uses the Laplacian
operator to accurately capture and enhance the edge in-
formation in the image, and realizes the robust preserva-
tion of edge information across multiple scales. By build-
ing an information mixed attention mechanism, the network
can further mine and use the subtle features of the bound-
ary area, and combine it with Kolmogorov-Arnold theorem
to build an efficient decoder architecture, seamlessly inte-
grate multi-source features, and achieve comprehensive fu-
sion and optimization of feature information. In addition,
this paper also proposes a C1 continuous activation func-
tion using polynomial approximation, which shows signifi-
cant advantages in reducing model calculation fluctuations
and promoting model stability and convergence. Through
extensive and in-depth experiments on several authoritative
data sets such as Synapse, the advanced performance of our
proposed model is proved. However, our model also has
some limitations. Our main concern is how to improve the
segmentation performance, while ignoring whether it can be
deployed in real life scenarios. Therefore, our future work
will improve this aspect.
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M. Soljačić, T. Y. Hou, and M. Tegmark. Kan: Kolmogorov-
arnold networks. arXiv preprint arXiv:2404.19756, 2024. 2,
3

[31] T. Mendonça, P. M. Ferreira, J. S. Marques, A. R. Marcal,
and J. Rozeira. Ph 2-a dermoscopic image database for re-
search and benchmarking. In 2013 35th annual international
conference of the IEEE engineering in medicine and biology
society (EMBC), pages 5437–5440. IEEE, 2013. 7

[32] Y. Meng, H. Zhang, Y. Zhao, X. Yang, Y. Qiao, I. J. Mac-
Cormick, X. Huang, and Y. Zheng. Graph-based region
and boundary aggregation for biomedical image segmenta-
tion. IEEE transactions on medical imaging, 41(3):690–701,
2021. 3

[33] L. Mou, Y. Zhao, H. Fu, Y. Liu, J. Cheng, Y. Zheng, P. Su,
J. Yang, L. Chen, A. F. Frangi, et al. Cs2-net: Deep learning
segmentation of curvilinear structures in medical imaging.
Medical image analysis, 67:101874, 2021. 4, 6

[34] J. Peng, Q. Chang, H. Yin, X. Bu, J. Sun, L. Xie, X. Zhang,
Q. Tian, and Z. Zhang. Gaia-universe: Everything is super-
netify. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(10):11856–11868, 2023. 2

[35] M. M. Rahman and R. Marculescu. Medical image segmen-
tation via cascaded attention decoding. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 6222–6231, 2023. 2, 8, 9, 10



[36] M. M. Rahman and R. Marculescu. G-cascade: Efficient
cascaded graph convolutional decoding for 2d medical im-
age segmentation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
7728–7737, 2024. 2, 8, 9, 10

[37] M. M. Rahman and R. Marculescu. Multi-scale hierarchi-
cal vision transformer with cascaded attention decoding for
medical image segmentation. In Medical Imaging with Deep
Learning, pages 1526–1544. PMLR, 2024. 2, 8, 9, 10

[38] M. M. Rahman, M. Munir, and R. Marculescu. Emcad: Effi-
cient multi-scale convolutional attention decoding for medi-
cal image segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11769–11779, 2024. 2, 7, 8, 9, 10

[39] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18, pages
234–241. Springer, 2015. 8, 9, 10

[40] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado.
Toward embedded detection of polyps in wce images for
early diagnosis of colorectal cancer. International journal of
computer assisted radiology and surgery, 9:283–293, 2014.
7

[41] H. Tao, J. Li, Z. Hua, and F. Zhang. Dudb: Deep unfolding
based dual-branch feature fusion network for pan-sharpening
remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing, 2023. 2, 7

[42] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik,
and Y. Li. Maxvit: Multi-axis vision transformer. In
European conference on computer vision, pages 459–479.
Springer, 2022. 4

[43] C. J. Vaca-Rubio, L. Blanco, R. Pereira, and M. Caus.
Kolmogorov-arnold networks (kans) for time series analysis.
arXiv preprint arXiv:2405.08790, 2024. 3

[44] H. Wang, S. Xie, L. Lin, Y. Iwamoto, X.-H. Han, Y.-W.
Chen, and R. Tong. Mixed transformer u-net for medical
image segmentation. In ICASSP 2022-2022 IEEE interna-
tional conference on acoustics, speech and signal processing
(ICASSP), pages 2390–2394. IEEE, 2022. 9

[45] M. Wang, H. Wang, and F. Zhang. Famc-net: Frequency
domain parity correction attention and multi-scale dilated
convolution for time series forecasting. In Proceedings of
the 32nd ACM International Conference on Information and
Knowledge Management, pages 2554–2563, 2023. 7

[46] S. Wang, K. He, D. Nie, S. Zhou, Y. Gao, and D. Shen.
Ct male pelvic organ segmentation using fully convolutional
networks with boundary sensitive representation. Medical
image analysis, 54:168–178, 2019. 3

[47] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu,
P. Luo, and L. Shao. Pyramid vision transformer: A versa-
tile backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 568–578, 2021. 2

[48] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang,
T. Lu, P. Luo, and L. Shao. Pvt v2: Improved baselines with

pyramid vision transformer. Computational Visual Media,
8(3):415–424, 2022. 2

[49] X. Wang, H. Wang, M. Zhang, and F. Zhang. Combin-
ing optical flow and swin transformer for space-time video
super-resolution. Engineering Applications of Artificial In-
telligence, 137:109227, 2024. 2

[50] H. Wu, J. Pan, Z. Li, Z. Wen, and J. Qin. Automated
skin lesion segmentation via an adaptive dual attention mod-
ule. IEEE transactions on medical imaging, 40(1):357–370,
2020. 3

[51] Y. Xin, J. Du, Q. Wang, Z. Lin, and K. Yan. Vmt-adapter:
Parameter-efficient transfer learning for multi-task dense
scene understanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 16085–16093,
2024. 2

[52] Y. Xin, S. Luo, X. Liu, H. Zhou, X. Cheng, C. E. Lee,
J. Du, H. Wang, M. Chen, T. Liu, et al. V-petl bench:
A unified visual parameter-efficient transfer learning bench-
mark. Advances in Neural Information Processing Systems,
37:80522–80535, 2025. 2

[53] H. Yu, L. Zhang, W. Wang, S. Li, S. Chen, S. Yang, J. Li, and
X. Liu. State of charge estimation method by using a simpli-
fied electrochemical model in deep learning framework for
lithium-ion batteries. Energy, 278:127846, 2023. 2

[54] F. Zhang, G. Chen, H. Wang, J. Li, and C. Zhang. Multi-
scale video super-resolution transformer with polynomial ap-
proximation. IEEE Transactions on Circuits and Systems for
Video Technology, 2023. 7

[55] F. Zhang, G. Chen, H. Wang, and C. Zhang. Cf-dan: Facial-
expression recognition based on cross-fusion dual-attention
network. Computational Visual Media, pages 1–16, 2024. 7

[56] F. Zhang, T. Guo, and H. Wang. Dfnet: Decomposi-
tion fusion model for long sequence time-series forecasting.
Knowledge-Based Systems, 277:110794, 2023. 1

[57] F. Zhang, H. Wang, H. Fan, and C. Zhang. Rational polyno-
mial image magnification based on edge and distance con-
straints. Sci. Sin. Inform., 51:1270–1286, 2021. 3

[58] F. Zhang, M. Wang, W. Zhang, and H. Wang. Thatsn:
Temporal hierarchical aggregation tree structure network for
long-term time-series forecasting. Information Sciences,
692:121659, 2025. 2

[59] R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu. Adap-
tive context selection for polyp segmentation. In Medi-
cal Image Computing and Computer Assisted Intervention–
MICCAI 2020: 23rd International Conference, Lima, Peru,
October 4–8, 2020, Proceedings, Part VI 23, pages 253–262.
Springer, 2020. 7

[60] W. Zhang, H. Wang, and F. Zhang. Skip-timeformer: Skip-
time interaction transformer for long sequence time-series
forecasting. 2

[61] W. Zhang, H. Wang, and F. Zhang. Skip-timeformer: Skip-
time interaction transformer for long sequence time-series
forecasting. In International joint conference on artificial
intelligence, pages 5499–5507, 2024. 2

[62] H.-Y. Zhou, J. Guo, Y. Zhang, L. Yu, L. Wang, and Y. Yu.
nnformer: Interleaved transformer for volumetric segmenta-
tion. arXiv preprint arXiv:2109.03201, 2021. 9


