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Abstract

Due to their great performance in representing
3D scene geometry and appearance, Neural Radiance
Fields (NeRF) have recently gained a lot of attention
in applications like novel view synthesis. Some exten-
sions of NeRFs to dynamic scenes have been proposed,
but they either require synchronized multi-view video
input or fail for faster motions or longer sequences. In
this paper, we propose a novel dynamic NeRF frame-
work, called TPD-NeRF, which takes a single monocu-
lar video as input and enables high quality synthesis of
novel views for any time point even in highly dynamic
scenes. The idea is to first establish local frame-to-
frame consistency by training a sub-network that pre-
dicts short term offsets and hence generates frame-to-
frame correspondences. Applying this network multi-
ple times allows us to propagate correspondences from
any frame of the input sequence to one global reference
frame. Using the resulting global correspondences as su-
pervision, we can train another sub-network to estab-
lish global consistency for the TPD-NeRF. This network
effectively maps each dynamic state back to a canoni-
cal space, i.e. it captures the global motion in the scene.
To further improve the visual quality, we introduce the
space-time field network as the canonical NeRF to cap-
ture missing dynamic information of the two deforma-
tion networks. We extensively evaluate our method and
compare it with previous work to demonstrate that our
method outperforms existing dynamic NeRF methods.

Keywords: Monocular Dynamic Reconstruction, Tem-
poral Local-to-Global, Dynamic NeRF

1. Introduction

Novel view synthesis is a major task in computer vision
and computer graphics, which can be used in various appli-
cations, such as electronic commerce, virtual/augmented re-
ality (VR/AR), etc. Given a set of input images, traditional
image-based rendering (IBR) methods typically blend sev-
eral input images near the query view to generate a novel
view image. However, they require dense input views
and can struggle to deal with occlusion cases. Recently,
implicit-based methods [55, 9, 49], especially neural ren-
dering methods [77], have received a lot of attention. The
images are directly rendered or synthesized by the neural
network. Among them, Neural Radiance Field (NeRF) [50]
is one of the representative works. It incorporates the multi-
layer perception (MLP) network with the traditional volume
rendering [31], which forms an overall differentiable train-
ing framework supervised by a sparse set of input images.
Its fascinating quality of novel view synthesis has stimu-
lated a series of follow-up works, extending it to handle
re-lighting [105], pose estimation [41], multi-scene gener-
alization [8] and training and inference speedup [99, 51].
However, most of these works, including the original NeRF
itself, focuses on static scenes, while dynamic scenes are
crucial components in our real world. Therefore, it is neces-
sary to bring the synthesis capabilities of NeRF to the novel
view synthesis of dynamic scenes, especially in the chal-
lenging setting where only a monocular video is available,
as it can be easily captured compared with costly multi-
camera setup.

When reconstructing a dynamic 3D scene with NeRF,
the effectiveness of training depends on a proper regular-
ization, which promotes the local and global consistency of
the scene’s geometry and appearance over time and space.
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Figure 1. We propose a novel dynamic neural radiance field (NeRF) framework (TPD-NeRF), taking into account both local and global con-
sistency of scene geometry and appearance. Our novel view synthesis results can better capture dynamic details, and the joint optimization
strategy with the optical flow can in turn predict sharper and more accurate optical flow.

Here, consistency refers to the observation that the geom-
etry and appearance in dynamic scenes are strongly corre-
lated before and after motion. The term local refers to sev-
eral subsequent frames and global refers to the whole dy-
namic sequence. It should be noted that the concepts of ‘lo-
cal’ and ‘global’ are common in the spatial domain, we use
these two terms in the temporal domain. To ensure consis-
tency between different frames, it is necessary to establish
correspondences between them. On establishing correspon-
dence, existing dynamic NeRF works can be roughly di-
vided into two categories, including space-time field-based
methods and ray-bending-based methods. The approaches
based on space-time fields extend the original static NeRF
into a space-time field network that models space infor-
mation and temporal motion simultaneously. The network
takes the positionally encoded time or time-related vector
as an additional input of NeRF. Additional supervision is
then employed during training, such as depth [94] or op-
tical flow [39]. Local consistency can be effectively pro-
moted with the help of optical flow, but global consistency
is difficult to formulate since there is no global reference.
Moreover, they use a single MLP network to store all spa-
tial and temporal information across frames, and may pro-
duce inaccurate detail reconstruction or have poor general-
ization ability when facing long-time image sequences. To
address this, another approach based on ray bending lever-
ages an additional MLP network to encode temporal mo-
tion information [59, 56]. This network, typically named as
the deformation network or offset network, transforms the
sampled points at different time stamps back to a canonical
space (usually the first frame), and then a unified NeRF net-
work is introduced to model density and color fields in the
canonical space. The temporal and spatial information are
modeled separately. The global mapping is learned by only

color supervision [59] or the Jacobian matrix regularization
for mapping fields [79, 56]. In this setting, global consis-
tency is established automatically by mapping all frames
into a common canonical space, but local consistency or
inter-frame continuity is neglected as each frame is warped
independently. On the contrary, our approach aims at in-
cluding both local and global consistency in the training
process by first learning local transformations between suc-
cessive frames and then accumulating these local transfor-
mations in order to generate supervision for the training of
the global network. Recall that in some NeRF-based SLAM
method [106], the scene will be gradually reconstructed and
ultimately optimized as a whole in the spatial domain. We
transfer this local-to-global idea to the temporal domain.

In this paper, we propose a novel dynamic NeRF frame-
work, named TPD-NeRF, which reconstructs dynamic
scenes in a temporal local-to-global manner, helping to cap-
ture dynamic details, and achieve better novel view synthe-
sis results. Our method first adopts the idea of ray bend-
ing, which maps the sampled point from the given frame
to the canonical space. This mapping is equivalent to es-
tablishing correspondences between the given frame and
the canonical space. For longer sequences and faster mo-
tions, finding appropriate correspondences gets increasingly
hard and unreliable. For any two successive frames, how-
ever, these correspondences are relatively easy to establish
via the optical flow since the short-term motion is usually
small. Hence our key idea is to train a local deformation
network to find frame-to-frame correspondences, and then
generate fairly reliable frame-to-canonical space correspon-
dences by concatenating sequences of frame-to-frame cor-
respondences. A global network that predicts the frame-to-
canonical correspondences is also trained with supervision
from the local deformation network, which ensures global



consistency. This local-to-global framework is named as
temporally progressive training (TPT). Further, we adopt
the estimated optical flow between the adjacent frames to
better supervise the training of the local deformation net-
work. However, 2D estimation methods of optical flow typ-
ically rely on pixel differences, and their results may be in-
accurate due to the lack of 3D perception, which may fur-
ther affects the learning of our network. On the contrary,
NeRF incorporates multi-view information into the training
and reconstructs a 3D-aware model. Therefore, we propose
a joint optimization learning strategy for the 3D scene flow
and 2D optical flow. This joint optimization mechanism can
help make local deformation learning more stable. Besides
these, we observe that some dynamic details may still be
lost by the deformation network even with our proposed
temporally progressive training. So as an additional feature,
we set up the canonical space itself as a space-time NeRF
network such that it can take into account finer dynamic
details in shape and appearance that are not captured by the
deformation networks. Based on these, we propose a hybrid
framework that incorporates the deformation network with
space-time field network, which can boost each other and
improve the performance. While a single space-time field
network is unable to handle the long-time sequences, when
most of the temporal information is encoded by the defor-
mation network, the remaining dynamic details can well be
encoded by it. It should be noted that different from the
existing work [57, 15], both deformation networks in our
method have supervisions which prevents possible degra-
dation when combining the ray bending with the space-time
field. In summary, our contributions are three-fold:

• We propose a temporally progressive training frame-
work, named TPD-NeRF, which is able to better cap-
ture the deformation between each frame and the
canonical frame, compared with previous direct global
deformation learning.

• A joint optimization strategy of the 3D scene flow and
2D optical flow is introduced, which helps mutually
improve the deformation learning with the supervision
of optical flow in the early training stage and opti-
mize the optical flow with the 3D-aware information
of NeRF.

• A hybrid modeling strategy that combines a defor-
mation network with a space-time field network both
equipped with proper supervision to prevent possible
degradation.

2. Related Work

Dynamic scene modeling is a fundamental research topic
in 3D computer vision and graphics. In this section, we’ll

take a quick look at the new developments in dynamic NeRF
and scene flow.

2.1. NeRF and General Dynamic NeRF

Neural Radiance Field (NeRF) [50] has achieved im-
pressive results in novel view synthesis. It has been fur-
ther extended for dynamic scenes [39, 94, 59, 79, 56, 57],
better rendering effects [1, 82, 26], generalization on dif-
ferent scenes [65, 88, 8, 95, 104], faster training or infer-
ence speed [22, 99, 24, 62, 52, 7, 71, 16], re-lighting ren-
dering [3, 70, 105, 91], geometry or appearance editing [44,
100, 27, 10, 30, 101], geometry reconstruction [87, 46, 74],
3D generation [21, 43], etc. For more comprehensive and
detailed discussions and comparisons, we refer the readers
to these surveys [11, 20, 78].

Our work focuses on general dynamic scenes, which are
in contrast to specific dynamic objects, e.g., dynamic human
bodies [58, 54, 102] or faces [17, 61], where prior models
such as SMPL [47] and 3DMM [2] are often used to help
establish the correspondences between frames. General dy-
namic scenes lack such a prior.

As mentioned before, the space-time field-based meth-
ods directly take the positionally encoded time [39, 94] or
learnable vectors [37] as one of the NeRF inputs, and use
a single MLP network to encode spatial and temporal in-
formation simultaneously. These methods will additionally
predict the per-point scene flow to adjacent frames, and uti-
lize the estimated depth [94], optical flow [39] and cycle
consistency loss [39, 13] as additional supervision. The per-
point scene flow can be represented in the frequency domain
via a discrete cosine transform [83], which can better con-
form to the inter-frame continuity. The static part and the
dynamic part of the scene can be separately modeled by
a static-dynamic mixed NeRF model [18]. Additional en-
tropy loss function [93] is also introduced to promote more
accurate static/dynamic segmentation. Those methods that
use an additional MLP network to encode the temporal in-
formation and predict the offset [59, 79] or SE(3) transfor-
mation field [56] for each sampled point. Such transforma-
tions can be regularized by an an elastic energy constraint to
constrain the Jacobian matrix of the transformation [56, 79].
Further, to handle topological changes, HyperNeRF [57] re-
gards different topological states as hyperplanes of a high-
dimensional space. NeRFPlayer [69] views a dynamic
scene as the composition of three parts: dynamic, static
and new, which are modeled by corresponding networks,
followed by combining the output feature vectors with the
predicted probabilities. [84] calculates the partial deriva-
tive of forward deformation to time and then integrates over
a local interval to obtain local displacement, which is then
supervised using the optical flow. The idea of this work is
similar to ours, but we explicitly model local displacement
and utilize a progressive training strategy to supervise the



global deformation network. Our method leverages the ben-
efits of ray bending and the space-time field and proposes
temporally progressive training to fully capture the dynamic
details. Although TiNeuVox [15] also incorporates the po-
sitionally encoded time to the ray bending-based NeRF, its
global offset network lacks necessary supervision to prevent
possible degradation. Another type of dynamic NeRF aims
to accelerate training and inference. They introduce an ex-
plicit voxel representation [36] or the combination of vox-
els and implicit networks [23, 66, 29, 85, 32] into dynamic
modeling.

Recently, with the rise of 3D Gaussian Splatting
(3DGS) [34, 92], dynamic modeling methods based on it
have also been extensively proposed. Similar to dynamic
NeRF methods, these works either utilize additional net-
works [96, 40, 67] or a feature representation [90] to encode
dynamic information, or directly define dynamic properties
on 3D Gaussian spheres [48, 97]. The explicit modeling na-
ture of 3DGS allows it to use motion bases to fit dynamic in-
formation [73, 14, 33, 42, 38, 35]. Our temporally progres-
sive modeling idea can be extended to the dynamic 3DGS.

2.2. Scene Flow and Optical Flow

Scene flow [81] is defined on the points in a dynamic
scene and describes their motions. Many space-time field
NeRFs [39, 18, 13] predict the frame-by-frame scene flow
and use optical flow to supervise the training. While our
method also predicts the frame-by-frame scene flow, differ-
ent networks are used for prediction and modeling, and a
global deformation network is introduced to ensure global-
awareness. Optical flow can be obtained by projecting the
scene flow onto the 2D image plane. It talks about the
movement between the observer and the scene, including
the movement of the scene and the camera. Optical flow
is extensively used in action recognition [68] and video-
related applications [86, 80, 6]. The traditional variational-
based methods [25, 72, 4] estimate optical flow through en-
ergy optimization, whereas the neural-based methods [12,
28, 76] directly predict it from two input images via a neu-
ral network. There are also methods that estimate optical
flow from point cloud sequences [45, 53] or scene flow from
RGB-D images [60]. Based on the initial optical flow es-
timated by the 2D method [76], our method proposes to
jointly optimize the scene flow and optical flow to super-
vise each other, which can help obtain better inter-frame
correspondences.

3. Methodology

In this section, we will first briefly overview the prelimi-
naries of our method, Neural Radiance Field (NeRF) [50]
(Sec. 3.1). Then, we propose our novel dynamic NeRF
network, TPD-NeRF, which reconstructs a dynamic scene

from a monocular video in a temporal local-to-global fash-
ion. We first introduce how to capture the local corre-
spondences between adjacent frames which ensures local
consistency of scene geometry and appearance (Sec. 3.2).
This process will be supervised by the estimated optical
flow and a joint optimization strategy is proposed to com-
pensate for the estimation error. After the local training,
we introduce a global network that ensures global tempo-
ral awareness and consistency of scene geometry and ap-
pearance. The local and global networks together develop a
temporally progressive training mechanism, which is super-
vised step-by-step and aggregates information in the tem-
poral domain to achieve temporally local-to-global learning
(Sec. 3.3). Finally, to capture those missing dynamic infor-
mation that cannot be modeled by ray bending, we combine
the two deformation networks with the space-time field net-
work (Sec. 3.4). Fig. 2 illustrates the whole pipeline of our
method.

3.1. Preliminaries

Our method is based on the Neural Radiance Field
(NeRF) [50], which represents scene geometry and appear-
ance using a simple fully-connected network, given a set
of input images. The multi-layer perceptron (MLP) net-
work takes 3-dimensional spatial coordinates p = (x, y, z)
and 2-dimensional viewing direction d = (θ, φ) as in-
puts and outputs the volume density σ and RGB values c:
F (Θ) : (p,d) → (c, σ), where Θ represents the trainable
network weights. The camera intrinsics and extrinsics are
assumed to be known or estimated by some methods, such
as COLMAP [64, 63]. The camera rays are generated from
the camera location to image pixels in the world coordi-
nate system. Some points are sampled along the rays. The
estimated color Ĉ(r) of each ray r(s) is calculated by the
classical volume rendering method [31], and the continuous
integral is approximated by quadrature:

Ĉ(r) =

N∑
i=1

exp(−
i−1∑
j=1

σjδj)(1− exp(−σiδi))ci, (1)

where δi = si+1− si is the distance between adjacent sam-
ples on the ray, and N is the total number of sampled points
on the ray. NeRF also adopts a stratified sampling strategy
that samples uniformly in evenly-spaced bins. The network
is trained under RGB supervision:

LRGB =
∑
r∈R
‖Ĉ(r)− C(r)‖22, (2)

whereR is a collection of rays sampled in a training batch,
Ĉ(r) and C(r) are the estimated color and the ground truth
color of the pixel corresponding to the ray r. To capture
high-frequency details, NeRF also adopts positional encod-
ing [75] on coordinates p and viewing direction d.



Figure 2. Overview on our network architecture which has four distinct components: (1) the local deformation network predicts the
local offset between successive frames of the input video, (2) the global deformation network is trained with the supervision of the global
correspondences between the frame t and the canonical frame that emerge from repeated application of the local deformation network
(Llocal). The network will switch between the cumulative results ∆plocal of the local network and the outputs ∆pglocal of global network
for transforming the sampled point pt, based on the training stage. This formulates our temporally progressive training. The mapping
quality is enhanced by adding (3) a rigidity network that masks out the static part of the scene with the point-wise rigidity value rt. The
motion compensated position is passed on to (4) a space-time NeRF network that captures the fine details of the motion. d is the viewing
direction, θ and c are the output density and color for volume rendering.

Figure 3. The specific process of our local deformation network.
It predicts for each sampled point along a query ray its offset to
the previous frame, conditioned on the current time. The sampled
points are transformed back into the canonical space by query-
ing the shared local network repeatedly. The accumulated offset
∆plocal is obtained by accumulating ∆pt along the time dimen-
sion. The local offset ∆pt is supervised by Lt

flow with the optical
flow under a joint optimization strategy.

3.2. Local Consistency by Local Correspondences

Our method is based on ray bending to model deforma-
tions. The existing ray bending-based NeRF methods di-
rectly predict point-wise correspondences between the ob-
servation frame and the canonical frame, which is hard to
capture, especially for longer sequences and faster motions.
Based on the observation that the motions between adja-
cent frames in a video sequence are much smaller than the
motions between the observation frame and the canonical
frame, we propose to first learn the local deformations be-
tween adjacent frames of dynamic sequences and then ac-
cumulate the local deformations to obtain the global defor-
mations from the observation frame to the canonical frame.

We introduce an additional MLP networkFlocal, referred
to as the local deformation network, to predict the local de-

formations of the sampled points from the current frame to
the previous frame. Our local deformation network takes
the current time step t and the coordinates pt of the sam-
pled point at time step t as inputs. Similar to the previ-
ous work [59], we use positional encoding [50] to embed
pt and t to the high-dimensional vectors for learning high-
frequency details. The output is an offset vector ∆pt that
is added to p and transforms the sampled point to the space
of the previous frame. The transformed point ∆pt−1 and
the previous time step t− 1 will be fed into Flocal again to
obtain the backward offset from t−1 to t−2. Note that, the
local deformation networks for different frames are shared.
When the time goes to 0, the sampled point is finally trans-
formed into the canonical space. In summary, the sampled
point pt in time step t will be transformed to the position
p0 in the canonical space step by step:

pt−1 = Flocal(pt, t) + pt

pt−2 = Flocal(pt−1, t− 1) + pt−1

· · ·
p0 = Flocal(p1, 1) + p1

(3)

Then, the transformed point p0 will be fed to the canonical
NeRF together with the viewing direction d to obtain the
volume density σ and color values c. Finally, the pixel color
corresponding to the ray is calculated by Eq. 1. The process
of the local deformation network is illustrated in Fig. 3.

Although the local deformation between successive
frames is easier to learn, the local deformation network still
needs to transform the sampled points to the canonical space



step-by-step, which remains challenging when the training
relies solely on RGB supervision (Eq. 2). Another advan-
tage of local deformation network is that we can introduce
optical flow to provide supervision. It should be noted that
some space-time field-based methods [39] have adopted the
optical flow as 2D supervision of the predicted forward and
backward offsets. However, for the ray bending-based dy-
namic NeRF, since the predicted offset is from the current
frame to the canonical frame, the optical flow between adja-
cent frames cannot be directly used for supervision. If one
accumulates the optical flow, the estimation errors are also
accumulated, which is not desirable. So on the one hand, we
decompose the global deformation into local ones, which
can directly be supervised by optical flow. On the other
hand, a joint optimization of the local deformation network
and optical flow is further introduced, which prevents the
above issues.

Specifically, we adopt RAFT [76] to estimate the initial
optical flow between every pair of adjacent frames. Denote
the local offset obtained from time step t to time step t− 1
of the sampled point pti as ∆pti, we can accumulate the
overall offsets ∆pt(r) along the ray r in a similar way as
Eq. 1 by replacing the color ci with the offset ∆pti. We
can further project the ray offset ∆pt(r) to the image plane
of time step t − 1 to obtain the translation ∆pt(u) of the
corresponding pixel u by applying the camera projection
matrix Pt−1. Then the backward translation ∆pt(u) of the
pixel u can be supervised by the ground truth optical flow
ft(u) under the following loss:

Lt
flow = ‖∆pt(u)− ft(u)‖22. (4)

The above loss function can be used to supervise the
training of the local deformation network. However, the
estimation of the optical flow only considers the color in-
formation between two adjacent frames, which may be in-
accurate due to a lack of 3D perception. As a result, existing
methods such as NSFF [39] decay the weight of optical flow
loss after certain iterations. On the other hand, the training
of the local deformation network relies on multi-view im-
ages that contain 3D consistency. Therefore, the learned
local deformation network can help optimize the estimated
optical flow and integrate 3D aware multi-view information
and geometry information into the optical flow. To this end,
different from NSFF [39], we propose a joint optimization
strategy of 3D offset and 2D optical flow, which ensures
that the offset learning is not affected while optimizing the
optical flow results. Concretely, at the initial stage of train-
ing, we use optical flow to help with the learning of local
offsets based on Eq. 4. After a certain number of iterations,
the local deformation network has been optimized under the
guidance of optical flow in the coarse level. We then mainly
rely on RGB supervision to optimize the local network, and
use the predicted scene flow to optimize the optical flow

based on Eq. 4. The local offset and optical flow are op-
timized alternately at this stage. Note that only 2D optical
flow maps are optimized here, excluding network parame-
ters for predicting optical flow.

3.3. Temporally Progressive Training

The proposed local deformation network transforms the
sampled points back to the canonical space step-by-step,
but it lacks the ability to perceive the whole motion se-
quence. Therefore, we formulate a temporally progressive
training strategy and introduce a global deformation net-
work Fglobal after the convergence of the local deforma-
tion network Flocal. Fglobal directly predicts the global off-
set ∆pglobal of the sampled point p from the current frame
to the canonical frame. As we have the local deformation
network which provides local correspondence between ad-
jacent frames, in addition to color supervision, the global
deformation network in our work is supervised by the local
deformation network. Specifically, the accumulated offsets
∆plocal of the local deformation networks are used to su-
pervise the global deformation network via the local loss:

Llocal = ‖∆pglobal −∆plocal‖22. (5)

Our local and global deformation networks are optimized
in two stages, which is more conducive to the stability of
training (see the experiments in Sec. 4.2.4). In this way,
the global offset is additionally supervised by the accu-
mulated local offsets, while the local offset is additionally
supervised by the estimated optical flow and a joint opti-
mization strategy is proposed to alleviate estimation errors.
Through this temporal local-to-global procedure, each step
has a direct supervision. Compared with other work [59],
our global deformation network is easier to converge.

Furthermore, in order to distinguish the static sampled
points from the dynamic sampled points for better conver-
gence of the deformation networks, we introduce a rigidity
network [79] to predict a rigidity value r(p) for each sam-
pled point p. The rigidity network takes the coordinates
of the sampled point as input, and the output probability of
rigidity will act as a mask (1 for dynamic and 0 for static)
on the predicted offset of each sampled point to determine
whether to use the offset to transform the point. The pre-
dicted offset is multiplied with the predicted probability of
rigidity and then added to the coordinates of the sampled
point. The rigidity network is shared across the local stage
and the global stage and is trained together with the local
deformation network and the global deformation network.

3.4. Hybrid Modeling with Space-time Field

After being transformed by the local or global deforma-
tion network, the sampled point will go through the canon-
ical NeRF built in the canonical space, which ensures a



Figure 4. Comparisons of the novel view synthesis on the Nvidia dataset [98]. The synthesized images are computed for training camera
poses at specific times not included for training. Our method can better reconstruct dynamic details and preserve the basic scene geometry.

consistent 3D representation of the video sequence. How-
ever, limited by the representation ability, both the local
and global deformation networks may not be able to model
the complete deformation, i.e., some dynamic details can
be lost. Also, the deformation networks only transform the
spatial coordinates and the time-related dynamic details are
not taken into consideration. To address these issues, we
propose a hybrid framework that incorporates the defor-
mation network with space-time field network, which can
boost each other and improve the performance.

Specifically, we introduce positionally encoded time as
the input to the canonical NeRF as a dynamic feature repre-
sentation. Then, our canonical NeRF is turned into a space-
time field network:

F (Θ) : (ζp(p0), ζd(d), ζt(t)) 7→ (c, σ) (6)

where ζp(·), ζd(·) and ζt(·) are the positional encodings of
the position, view direction d, and time t respectively, and
p0 is the transformed coordinates. Note that different from
[15, 57], the training of both local and global deformation
networks have corresponding direct supervisions, which en-
sures that the deformation networks do not degenerate (i.e.,
a poor scenario with deformation networks doing nothing
and the space-time field network modeling all dynamic in-

formation).

3.5. Loss Functions

We use several loss functions to supervise the two-stage
training of our method. We have described the RGB loss
LRGB , the optical flow loss Lflow, and the local loss Llocal.
In addition to these three losses, based on the sparsity of the
motion, we also add the regularization loss Lreg to the pre-
dicted local deformation, global deformation and rigidity
value,

Lreg = ‖∆p‖22 + r(p), (7)

where r(p) is the predicted rigidity value of the sampled
point p, and ∆p denotes the local deformation or global
deformation according to the training stage. So the total
loss function L1 in the local stage is:

L1 = LRGB + wflowLflow + wregLreg. (8)

wflow and wreg are the coefficients of the losses. We set
wflow = 0.02, wreg = 0.01 in all our experiments. The
total loss function L2 in the global stage is:

L2 = LRGB + wlocalLlocal + wregLreg. (9)

We set wlocal = 10, wreg = 0.01. wlocal will gradually
decay by a ratio of 0.01 every 1000 steps during training.



Please refer to the supplementary document for detailed net-
work architecture and training details.

4. Experiments and Evaluations

In this section, we perform extensive experiments on
monocular videos, which come from public datasets [98,
19]. We first compare with the state-of-the-art dynamic
NeRF approaches to prove the superiority of our method.
Then, we evaluate and validate the important role of each
proposed design through the ablation studies. In addition to
the qualitative evaluations, we also adopt three commonly
used metrics to measure the quantitative performance of the
synthesized images, including Peak Signal-to-Noise Ratio
(PSNR), Structure Similarity Image Metric (SSIM) [89] and
Learned Perceptual Image Patch Similarity (LPIPS) [103].
Note that for PSNR and SSIM, the larger the better, while
for LPIPS the smaller the better. For the details of imple-
mentation and dataset, please refer to the supplementary
document.

4.1. Evaluations and Comparisons

After the reconstruction of the dynamic monocular
video, we can change the observation view at a specific
time and synthesize a novel view image. This is the com-
mon evaluation setting for the Nvidia Dataset [98], where
the observation view is sampled from views in the train-
ing set. Similar to the Nvidia dataset, we also generate
some monocular videos from the NeuralVideo dataset [37]
and ST-NeRF dataset [102]. See the supplementary doc-
ument for more details. Since these datasets are gener-
ated from multi-view video sequences, we can switch view
positions on the fly (“teleporting cameras”), according to
DyCheck [19]. For a more realistic scenario, we also
adopt the real monocular video from the DyCheck iPhone
dataset [19].

We compare our method to existing dynamic NeRF
methods. Specifically, we compare it to a space-time field-
based method, NSFF [39], which adopts optical flow as
early supervision, to two ray bending-based methods, D-
NeRF [59] and NR-NeRF [79], which only adopt a global
deformation network, and TiNeuVox [15], which uses time-
aware neural voxels to accelerate the training. It should
be noted that D-NeRF inputs the positionally encoded time
while NR-NeRF inputs the learnable per-frame embedding.

We first synthesize novel view images following the
common setting of Nvidia dataset [98]. The qualitative
comparisons on this dataset are shown in Fig. 4. It is clearly
observed that compared to other methods, our method can
better reconstruct dynamic details (the first two rows) and
maintain the basic geometry of the scene (the third and
fourth rows), owing to our local-to-global temporal frame-
work. The quantitative comparison results are presented
in the left part of Table 1 which also supports this claim.

Table 1. Quantitative comparisons on the novel view synthesis
on Nvidia dataset [98] and Dycheck dataset [19]. Our method
achieves best performance on all three metrics (PSNR, SSIM,
LPIPS), quantitatively superior to the existing methods.

Methods
Nvidia Dataset Dycheck Dataset

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑
NSFF [39] 24.17 0.1467 0.7370 25.54 0.3560 0.6226
D-NeRF [59] 20.16 0.2616 0.4974 27.76 0.2691 0.7262
NR-NeRF [79] 19.81 0.2973 0.4905 23.26 0.3723 0.6448
TiNeuVox [15] 20.45 0.3758 0.5274 24.16 0.4757 0.5573

Ours 26.91 0.098 0.7963 29.87 0.1665 0.8204

Table 2. Quantitative comparisons on the novel view synthesis on
Nvidia dataset [98] with 4DGaussians [90]. Our method achieves
better performance on all three metrics (PSNR, SSIM, LPIPS).

Methods PSNR↑ LPIPS↓ SSIM↑
4DGaussians [90] 23.35 0.2169 0.7724
Ours 26.91 0.098 0.7963

Our approach obtains the best scores on all three met-
rics. We show more results on the self-generated monocular
videos from the ST-NeRF dataset [102] and NeuralVideo
dataset [37] in the supplementary document.

As pointed out by Dycheck [19], the above datasets have
a somewhat artificial setup of “teleporting cameras”. So we
additionally evaluate our TPD-NeRF and other methods on
the Dycheck iPhone dataset which contains real-captured
monocular videos. The qualitative comparisons are shown
in Fig. 5. In this case, our method still beats other meth-
ods and can synthesize clear hand movement details, which
shows good generalization ability. The quantitative com-
parison results are shown in the right part of Table 1, and
we can see that our method achieves the best performance
on all three metrics. We also leave a camera out when gen-
erating the monocular video from [37, 102] and show the
corresponding qualitative comparisons in Fig. 6. The syn-
thesized images come from the left-alone view that does
not appear in the training set. Compared with other meth-
ods, our method can synthesize clearer dynamic details. For
more results, please see the supplementary document.

Moreover, we also compare with a 3DGS-based dynamic
modeling method, 4DGaussians [90], which uses the Hex-
Plane feature representation [5] to encode dynamic infor-
mation. The qualitative and quantitative comparison results
are shown in Fig. 7 and Table 2, respectively. These results
demonstrate the advantages of our method.

4.2. Ablation Studies

To validate and prove the important role of each key de-
sign, we perform several ablations to illustrate the effec-
tiveness of each component in our method, including tem-
porally progressive training (TPT), joint optimization of op-
tical flow, and hybrid modeling with space-time field. The
qualitative and quantitative results are shown in Fig. 8 and



Figure 5. Comparisons of the novel view synthesis on the DyCheck dataset [19]. The synthesized images come from validation views that
do not appear in the training set. Compared with other methods, our method can synthesize clearer dynamic details.

Figure 6. Comparisons of the novel view synthesis with unseen cameras. The synthesized images come from the left-alone view that does
not appear in the training set. Compared with other methods, our method can synthesize clearer dynamic details.

Table 3, respectively. From the results, we can see that all
our key designs indeed help improve the performance for
dynamic NeRF reconstruction from monocular video.

4.2.1 Temporally progressive training

We propose to use both local and global deformation net-
works and adopt a temporally progressive training (TPT)



Figure 7. Comparisons of the novel view synthesis with 4DGaus-
sians [90] on Nvidia dataset [98]. The results show that our
method can synthesize clearer details in novel views.

Table 3. Ablation studies on the Dycheck dataset. From left to
right, we remove one component from our full model respectively.
‘TPT’ stands for temporally progressive training.

Methods w/o TPT w/o joint w/o hybrid Full Model

PSNR↑ 25.30 26.03 25.77 29.82
LPIPS↓ 0.1945 0.2012 0.1426 0.1045
SSIM↑ 0.7694 0.7532 0.8077 0.8609

strategy to ensure both local and global consistency of the
scene geometry and appearance. This strategy can help
the network capture more dynamic details. We compare
the TPT strategy with a ablated strategy that directly uses
a global deformation network which is supervised by the
accumulated optical flow and adopts the joint optimization
mechanism. The results are presented in Figs. 8 (a) and
(d). The ablated version will lead to blurry synthesized im-
ages. The quantitative comparisons are shown in the first
and last columns of Table 3, and it can be clearly seen that
our method outperforms the ablated version by a large mar-
gin.

4.2.2 Joint optimization of optical flow

We use optical flow to supervise the training of our local de-
formation network and propose a joint optimization mech-
anism of 3D offsets and 2D optical flow, intending to make
extensive use of optical flow to help with the learning of 3D
offset and alleviate estimation errors. As shown in Fig. 8,
compared with our full model without optimizing optical
flow (column (b)), the joint optimization of 3D offset and
optical flow (column (d)) achieves better performance. The
quantitative comparison is presented in the second and the
last columns in Table 3.

4.2.3 Hybrid modeling with space-time field

To compensate for the dynamic details not captured by
the deformation networks, as well as some environmental
changes, we incorporate the ray bending with the space-
time field network to introduce time-related features into
the canonical NeRF. As shown in Fig. 8, compared with the
ablated version without hybrid modeling (column (c)), the
synthesis quality has been improved and enhanced after hy-
brid modeling with the space-time field (column (d)), which
is also reflected in the improvement of quantitative evalua-
tion in the last column of Table 3.

Table 4. Ablation studies on training strategy.

Methods PSNR↑ LPIPS↓ SSIM↑
Joint 26.29 0.1539 0.8180

Progressive (Ours) 29.82 0.1045 0.8609

4.2.4 Training strategy

When training local and global deformation networks, we
adopt a progressive training strategy, which trains the two
networks in separate stages. There is another training strat-
egy, which trains two networks simultaneously. In prac-
tical operation, in order to ensure the stability of Llocal,
these two networks are trained in an alternating optimiza-
tion manner. We compare our progressive training strategy
with the joint training strategy. The qualitative comparison
is shown in Fig. 9. It can be seen that the joint training is not
stable which causes blurry results. The quantitative results
are shown in Table 4 which also illustrates that progressive
training is better than joint training.

5. Discussions and Conclusions

In this paper, we propose a novel method (TPD-NeRF)
for modeling monocular dynamic video. Based on the ob-
servation that the motion between adjacent frames is smaller
and easier to learn, we propose a temporally progressive
learning strategy that captures the correspondences in a
local-to-global manner by considering both local and global
consistency of the scene geometry and appearance. This
strategy can help better capture dynamic details. In order
to provide additional supervision for the local deformation
network, we employ a joint optimization of the 3D offset
and estimated optical flow during the training, which is able
to compensate for estimation errors in the 2D optical flow.
Finally, we incorporate the ray bending with the space-time
field, and introduce a hybrid modeling strategy. Exten-
sive experiments demonstrate that our method is superior
to the existing monocular dynamic video NeRF reconstruc-
tion methods. However, our method still has some short-
comings. The biggest issue is that our network is still based



Figure 8. Ablation study. The different alternatives are formed by removing one component from our full model respectively. ‘TPT’ stands
for temporally progressive training. It can be seen that each component is essential.

Figure 9. Ablation study on training strategy. We compare our
progressive training with the joint training. It shows that the joint
training leads to worse results.

on pure MLP networks, which suffers from the burden of
expensive training computation, compared to recent work
based on voxel representations [52]. The timing bottleneck
in training and inference could be overcome by leverag-
ing these explicit and implicit mixed representations, such
as [7]. Another issue is that our method cannot handle com-
plex object motions from a unconstrained camera motions.
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