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1. Overview

This supplementary document accompanies our main
paper and provides the implementation details and more re-
sults. It contains five parts, including implementation de-
tails, more results, and some intermediate results.

e Section 2 provides the implementation details, includ-
ing dataset details, network architecture and training
details.

e Section 3 provides more results on dynamic novel view
synthesis.

e Section 4 provides the visualization of the predicted
3D offsets on the image plane.

e Section 5 provides the visualization of the optical flow
before and after the joint optimization.

e Section 6 provides the visualization of the predicted
masks on both training views and test views.

2. Implementation Details
2.1. Datasets.

We use the monocular videos from the Nvidia Dynamic
Scene Dataset [10] and Dycheck dataset [2]. We further
generate some monocular videos from NeuralVideo [4] and
ST-NeRF [11] datasets which are captured under a multi-
camera system. We assign a camera trajectory for these
cameras, which simulates the motion of a monocular cam-
era and extract the images according to the time stamp to
obtain the training set. Note that there is a 10 frame gap
between the two cameras to avoid rapid camera movement
and try to avoid the teleporting issue. We leave a camera

alone to provide an evaluation view not seen during train-
ing. Other images are randomly selected as the test set. We
use COLMAP [8, 7] to estimate the intrinsic and extrinsic
parameters of the camera.

2.2. Network Architecture.

There are four networks in our method, including a lo-
cal deformation network, a global deformation network, a
rigidity network, and a space-time field network. All of
them are multi-layer perceptron (MLP) networks. There are
4,6, 5, and 9 fully connected layers in the local deformation
network, global deformation network, rigidity network, and
space-time field network, respectively.

2.3. Training details.

Our temporal progressive training consists of two defor-
mation networks, which are trained in two stages. We first
train the local deformation network for 300,000 iterations
and then train the global deformation network with super-
vision from the fixed local network. During the training of
the local network, we jointly optimize scene flow and op-
tical flow, starting at 200,000 iterations. The rigidity net-
work and space-time field network in the canonical space
are shared in both stages and trained together with the corre-
sponding deformation network. We use a warm-up strategy
at the beginning of the training of the local deformation net-
work. Specifically, we train from the first frame to the last
frame in chronological order, with each frame trained for
500 iterations. After the warm-up training ends, we start to
randomly sample frames for training. We randomly sample
1024 rays for training. Adam optimizer [3] with learning
rate 0.0005 is used for the optimization.
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Figure 1. We visualize the aggregated 3D scene flow on the image
plane. After adding the jointly optimized optical flow and the hy-
brid modeling of a space-time field network, the predicted scene
flow conforms to the scene motions and is with fewer artifacts.
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Figure 2. We visualize the optical flow before and after the joint
optimization. The joint optimization can eliminate the inconsis-
tent optical flow estimation in the static background and make the
optical flow in the dynamic foreground sharp.

3. More Results

In this section, we show more comparison results on dif-
ferent monocular videos generated from [4] and [ 1] with
existing methods (NSFF [5], D-NeRF [6], NR-NeRF [9],
TiNeuVox [1]) in Figs. 3, 4, 5, 6 and 7. Among these fig-
ures, Fig. 3 shows the image synthesis results on the fully
unseen views, and others show the results at different time
stamps on the training views. These comparisons show that
our method is superior to existing methods in maintaining
dynamic details.

4. Visualizations of Offset

We project the aggregated 3D scene flow onto the im-
age plane for visualization, and the results are shown in
Fig. 1. Without the supervision of optical flow, the scene
flow between two adjacent frames captured by the local
deformation network is not meaningful. After adding the
jointly optimized optical flow, the scene flow predicted by
the network is more in line with the scene motion, but there
are some artifacts at the edge of the human, which may be
caused by the continuity of the network prediction. After
adding the hybrid modeling strategy of a space-time field
network, these artifacts disappear, and the scene flow still

conforms to the human motions.

5. Visualizations of Optical Flow

Although the 2D-based optical flow estimation method
has been extensively studied and is able to obtain good re-
sults, the lack of 3D perception will lead to artifacts in some
details, which may affect the learning of scene flow. We
propose a joint optimization strategy that allows 3D offsets
and 2D optical flow to be jointly optimized. Although our
goal is to achieve better image synthesis quality, we also
bring in the multi-view constraint of NeRF to the optical
flow. We visualize the optical flow before and after opti-
mization in Fig. 2. As can be seen from the first row, we
can eliminate the inconsistent optical flow estimation in the
static background, while the result of the second row shows
that we can make the optical flow in the dynamic foreground
sharper.

6. Mask Visualizations

We use a rigidity network [9] to distinguish dynamic
sampled points from static ones and decide whether to use
the predicted offset to transform the sampled points. In or-
der to verify that the rigidity network works well, we visu-
alize the predicted mask on both training and novel views.
Similar to the conversion from scene flow to optical flow, we
first use volume rendering to aggregate the rigidity values at
the sampled points of a ray and then project them onto the
image plane. The visualization results are shown in Fig. 8.
It can be seen that the predicted mask can better distinguish
the dynamic part from the static part of the image.
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Figure 3. More comparisons on the novel view synthesis with the left-alone camera.
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Figure 4. More comparisons on the ST-NeRF dataset [1 1]. The synthesized images are obtained based on training cameras at specific times
not included for training.
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Figure 5. More comparisons on the novel view synthesis with training cameras at specific times not included for training.
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Figure 6. More comparisons on the novel view synthesis with training cameras at specific times not included for training.
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Figure 7. More comparisons on the novel view synthesis with training cameras at specific times not included for training.
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Figure 8. We visualize the predicted mask on both training views and novel views.



