
Degradation-Aware Frequency-Separated Transformer for Blind
Super-Resolution

Hanli Zhao
Wenzhou University, Wenzhou, China

hanlizhao@wzu.edu.cn

Binhao Wang
Wenzhou University, Wenzhou, China

binhaowangfun@163.com

Wanglong Lu�
Wenzhou University, Wenzhou, China

wanglongl@mun.ca

Juncong Lin
Xiamen University, Xiamen, China

jclin@xmu.edu.cn

Abstract

Blind image super-resolution involves reconstructing
high-resolution images from low-resolution inputs with
various unknown degradations. It is a challenging task
due to the limited information available from the de-
graded images. While existing methods have achieved
impressive results, they often overlook high-frequency
or low-frequency features, reducing their effectiveness.
To solve this problem, we propose a frequency-separated
Transformer framework with degradation-aware learn-
ing for blind super-resolution. We first introduce a
multi-patch contrastive learning approach to implic-
itly learn discriminative degradation representations.
To fully utilize degradation representations as guid-
ance information, a frequency-separated self-attention
mechanism is introduced to extract global structural
and local detail features separately. Our degradation-
aware frequency-separated Transformer progressively
restores high-quality images using successive frequency-
separated self-attention blocks. Extensive experiments
demonstrate that our approach outperforms state-
of-the-art methods on four benchmark blind super-
resolution datasets, while also achieving lower GPU
memory usage during training and faster inference
speed.

Keywords: Image super-resolution, Blind super-
resolution, Contrastive learning, Degradation representa-
tion, Transformers

1. Introduction

Blind image super-resolution (BSR) aims to reconstruct
high-resolution (HR) images from low-resolution (LR) in-
put images with unknown degradation. This challeng-
ing task is a crucial subset of the broader field of image
restoration [24] in computer vision, including image de-

noising [42], dehazing [37], and various forms of super-
resolution [3], all sharing the common goal of reconstruct-
ing high-quality images from degraded inputs.

In the realm of super-resolution, numerous outstanding
approaches have been developed, leveraging both convo-
lutional neural networks (CNN) [6, 52] and Transformer
architectures [19, 4]. However, these methods are primar-
ily non-blind and operate under the assumption of a spe-
cific, predefined degradation type, such as bicubic down-
sampling. When confronted with degradations that deviate
from this assumption, models trained on fixed degradation
conditions, often struggle to deliver satisfactory outcomes.

To achieve high-quality BSR, two widely recognized
challenges dominate recent literature. The first one is ac-
curately predicting the degradation type from a given im-
age, which is crucial for providing more effective guid-
ance during the subsequent super-resolution process. How-
ever, existing methods typically rely on limited perspectives
to learn implicit degradation representation, potentially re-
stricting their ability to capture the degradation representa-
tions [36, 17]. The exploration of multi-patch approaches
for BSR remains relatively underexplored in current re-
search. The second challenge is efficiently utilizing the pre-
dicted degradation representations to extract deep-level fea-
tures. While the goal is to fully leverage the obtained rep-
resentations to handle complex degradations, CNN-based
methods [36, 17] often lack the large receptive field nec-
essary for capturing long-range dependencies in features.
On the other hand, Transformer-based methods [22, 30] are
better at modeling global context but often compromise by
using moderately sized windows to balance the computa-
tional demands. Some methods further utilize high- and
low-frequency features [28] to boost the extraction of global
and local information. However, research for the modeling
of high- and low-frequency features based on degradation
guidance remains limited.

In this paper, we explore the ways to address these chal-
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lenges. We first leverage multiple patches from a single
image, to gain diverse perspectives, leading to more robust
representations and reducing overfitting risks [2, 53]. Sec-
ond, recognizing that image features include high frequen-
cies for fine details and low frequencies for global struc-
tures [28], we propose a conditional dual-path self-attention
mechanism guided by degradation representations. The
high-frequency path captures local details with small win-
dows, while the low-frequency path models global interac-
tions on compact feature maps. This approach boosts effi-
ciency and both local and global feature modeling.

To this end, we propose a novel degradation-aware
frequency-separated Transformer (DAFST) for blind super-
resolution. First, we introduce a multi-patch contrastive
learning approach to learn discriminative degradation repre-
sentations implicitly. These representations serve as degra-
dation information to guide the super-resolution process in
our proposed frequency-separated attention blocks. Each
block utilizes a frequency-separated self-attention mecha-
nism to extract global structural and local detail features
separately. The frequency-specific features are then fused
in each block, progressively restoring high-quality images
through successive blocks. We have extensively compared
our method against the SOTA models and conducted com-
prehensive experiments to demonstrate its superiority. The
contributions of this paper are as follows:

• We introduce a novel degradation-aware frequency-
separated Transformer (DAFST) that effectively lever-
ages implicit degradation representations to en-
hance feature extraction for high-quality blind super-
resolution.

• We propose a degradation-guided frequency-separated
attention mechanism that decouples global and local
detail modeling, enhancing both modeling capabilities
and inference efficiency.

• We design a multi-patch contrastive learning approach
to capture degradation representations from diverse
perspectives, leading to more robust features.

• Our method achieves state-of-the-art performance
across multiple datasets and degradation types while
maintaining faster inference speeds.

2. Related work

2.1. Non-blind image super-resolution

Image super-resolution is a fundamental problem in
computer vision, aiming to reconstruct an HR image from
an LR image. Early methods for image super-resolution
predominantly relied on CNN, extensively discussed in the
literature [45]. CNN-based SR methods, such as studies

like [7, 48, 18, 10], gained prominence due to their excel-
lent local inductive bias. SRCNN [8], a seminal work in im-
age super-resolution, employed a simple three-layer CNN
to learn the LR-HR mapping for image super-resolution,
catalyzing numerous subsequent advancements in the field.

Typically, super-resolution methods comprise three pri-
mary modules: shallow feature extraction, deep feature ex-
traction, and super-resolution reconstruction modules. In
recent years, significant enhancements have been made to
the deep feature extraction and super-resolution reconstruc-
tion modules, with network processing strategies such as
upsampling [9], residual learning [15], and sub-pixel con-
volutional upsampling [31] becoming standard paradigms
for constructing super-resolution networks. With advance-
ments in methods such as RCAN [52], SAN [6], and
SwinIR [19], the performance of non-blind image super-
resolution on fixed degradation types, like bicubic down-
sampling, has reached a plateau. Recent works, such as
CAMixer [39], propose sampling convolution or visual at-
tention based on the complexity of image regions, and
MambaIR [12] utilizes 2D-selective-scan to replace tradi-
tional attention mechanisms. While these methods have
achieved remarkable results, non-blind approaches often
struggle to generalize effectively to unknown degradations
beyond their predefined scope.

2.2. Blind image super-resolution

Networks designed for fixed bicubic downsampling of-
ten suffer significant performance drops when faced with
real-world degradations. Several blind super-resolution
methods were proposed to tackle this challenge. Currently,
three primary methods are employed for obtaining degra-
dation: (1) Adapted non-blind super-resolution, which as-
sumes known degradation and uses it as a prior. (2) Blind
super-resolution based on explicit kernel estimation. (3)
Blind super-resolution based on implicit degradation rep-
resentation.

Adapted non-blind super-resolution methods. These
methods explicitly incorporate blur kernels as additional in-
puts to guide the SR process. For instance, SRMD [50]
and UDVD [43] introduced degradation kernels as inputs
to handle varying degradation conditions, while DPSR [51]
and USRNet [47] leveraged variable splitting techniques to
optimize energy functions, treating blur kernels as inde-
pendently optimized terms. However, these methods are
highly dependent on the accurate input from the blur ker-
nel, limiting their generalization to a broader degradation
space. When faced with unseen degradations or without
precise kernel information, their performance significantly
degrades.

Explicit kernel estimation methods. Other methods
aim to guide the network by estimating blur kernels di-
rectly from the LR image. For example, Liang et al. [20]
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(a) The architecture of our degradation-aware frequency-separated Transformer (DAFST).

Figure 1: Our DAFST integrates degradation representations with image features through multi-patch contrastive learning,
the images are encoded into embeddings with the degradation encoder, aiming to maximize the similarity between query
embeddings and positive embeddings while minimizing the similarity with negative embeddings. Guided by these represen-
tations, the frequency-separated self-attention blocks extract global and local features, which are then merged using depthwise
convolutions and reconstructed via the image reconstruction module.

proposed using multiple mini super-resolution network ex-
perts to estimate diverse degradations. Gu [11] introduced
an iterative kernel correction (IKC) method that refines the
estimated degradation based on intermediate SR results.
ZSSR [32] leverages internal image recurrence, utilizing
repetitive structures within the LR image for iterative opti-
mization. However, these methods often incur high compu-
tational costs due to multiple iterations of kernel estimation
and correction during testing. To address this, DCLS [25]
and MZSR [33] build upon IKC and ZSSR, respectively,
reducing the number of iterative optimizations. Similarly,
Luo et al. [26] developed a deep alternating network (DAN)
to iteratively estimate degradation and restore SR images.
Despite these advancements, these methods remain highly
sensitive to the accuracy of kernel estimation, and inac-
curate estimations can lead to suboptimal results, limiting
their robustness in real-world scenarios.

Implicit degradation representation methods. Re-
cently, some studies have shown that implicit degradation
representation is better suited to handle complex degrada-
tion scenarios. DASR [36] pioneered the integration of con-

trastive learning to guide deep feature extraction. Wei et
al. proposed [40] unsupervised domain gap-aware train-
ing networks. Additionally, DSSR [17] introduced a de-
tail structure modulation module to enhance details cycli-
cally. KDSR [41] introduced knowledge distillation to en-
able a student model to learn degradation representations
from another teacher model. DSAT [22] introduced residual
Swin-Transformer blocks [23] to address the limited recep-
tive field issue of CNN, setting a new benchmark in BSR.
This paper proposes a novel degradation-aware frequency-
separated Transformer with multi-patch contrastive learning
to improve implicit degradation representation learning.

3. Methods

3.1. Overview

Fig. 1 (a) shows the overall pipeline of our degradation-
aware frequency-separated Transformer (DAFST) for blind
super-resolution. Our DAFST takes a low-resolution im-
age ILR as input and produces a super-resolution image ISR,
which is obtained as ISR = DAFST(ILR). The DAFST
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Figure 2: The details of our degradation-aware modulation (DAM), depthwise convolution block (DWCB), DWMLP, and
degradation encoder. The DWConv means depthwise convolution.

network consists of four key components: degradation en-
coder, shallow feature extraction, deep feature extraction,
and image reconstruction modules.

Degradation encoder. We apply a degradation encoder
and a linear projection to learn distinctive degradation rep-
resentations. The learned degradation representations guide
the subsequent modules in extracting deep features. It can
be represented as:

Fdr = Linear(Encoder(ILR)), (1)

where Fdr ∈ R256 signifies the degradation representa-
tions; Encoder(·) denotes the degradation encoder. We em-
ploy multi-patch contrastive learning to train our degrada-
tion encoder.

Shallow feature extraction module. To extract shallow
features, a simple 3×3 convolution layer is used as the shal-
low feature extraction module HSE(·). It can be represented
as:

Fse = HSE(I
LR), (2)

where ILR ∈ RH×W×3 ; Fse ∈ RH×W×C denotes the
extracted shallow features.

Frequency-separated Transformer. The deep fea-
ture extraction involves a novel frequency-separated Trans-
former for BSR. It consists of a depthwise convolution
block (DWCB) and groups of frequency-separated self-
attention blocks (FSAB). Each block aims to extract deep
features for reconstruction. The deep feature extraction
module receives the feature maps Fse and degradation
representations Fdr, and output deep features Fde ∈
RH×W×C , which is described as follows:

Fde = HDE(Fse,Fdr), (3)

where HDE(·) represents the deep extraction module.
Image reconstruction module. The image reconstruc-

tion module HREC(·) consists of a convolutional layer and
a sub-pixel convolutional upsampling layer [9]. We recon-
struct high-quality images ISR by fusing shallow features
and deep features as illustrated below:

ISR = HREC(Fse + Fde). (4)

3.2. Frequency-separated Transformer

Given the shallow feature maps Fse, our frequency-
separated Transformer HDE(·) consists of two stages. The
input features first go through a depthwise convolution
block: F0 = DWCB(Fse,Fdr). Then the intermedi-
ate features are continuously extracted through frequency-
separated self-attention groups, which are expressed as:

Fs = HFSAGs
(Fs−1,Fdr), s = 1, 2, . . . , S, (5)

where DWCB(·) is the depthwise convolution block to
extract shallow features; The HFSAGs

(·) represents s-th
frequency-separated self-attention group. Our frequency-
separated Transformer contains S FSAG groups. After S
groups feature extraction, we use a 3× 3 convolution to get
the output deep features Fde = Conv3×3(FS).

Degradation-aware modulation (DAM). As shown in
Fig. 2 (a), the degradation-aware modulation (DAM) mech-
anism is designed to integrate degradation representations
during the super-resolution process. We use channel atten-
tion to obtain channel weights Fco from the degradation
representations Fdr and to modulate convolutional layers
for guidance-based feature extraction. Given the Fdr, the
generation of channel coefficients Fco ∈ RH×W×C can be
expressed as:

Fco = ChannelAttention(Fdr)

= Sigmoid (Conv1×1 (ReLU (Conv1×1(Fdr)))) ,
(6)

where Sigmoid(·) is the sigmoid activation; Conv1×1(·) is
the 1 × 1 convolution layer; ReLU(·) is the LeakyReLU
activation function with the 0.1 negative slope. Then we
can get the degradation modulated depthwise convolution
kernel:

DWConvFdr
= GeneratedKernel(Fdr) = Reshape(Fdr),

(7)
We reshape Fdr as a convolution kernel ∈ RC×1×3×3 de-
noted as DWConvFdr

(·) and get X̂ ∈ RH×W×Cfrom the
input feature tensor F̄. As shown in Fig. 2 (a), we ultimately
obtain X̂ through the following operations:

X̂ = Conv1×1(DWConvFdr
(ReLU(F̄))) + (F̄⊙ Fco),

(8)



Algorithm 1 Frequency-separated self-attention block

1: Input: Input feature tensor F̄, degradation representations Fdr

2: Parameters: Number of total attention heads O, number of high-frequency branch attention heads O1, number of low-
frequency branch attention heads O2, and channel dimension per head Co

3: # Degradation-aware modulation
4: Fco = ChannelAttention(Fdr)
5: DWConvFdr

= GeneratedKernel(Fdr)

6: X̂ = Conv1×1(DWConvFdr
(ReLU(F̄))) + (F̄⊙ Fco)

7: # Frequency-separated self-attention
8: X̄ = Flatten(X̂) # X̄ ∈ RL×C

9: Xh,Xl = Divide(X̄) # Xh ∈ RO1×L×Co , Xl ∈ RO2×L×Co

10: # Combine high and low frequency attention
11: Y′ = [H-MSA(LN(Xh));L-MSA(LN(AvgPool(Xl)))] + X̄
12: Y′′ = DWMLP(Y′) +Y′

13: return Y′′

where X̂ is the intermediate feature obtained by fusing
the input and degradation representations and ⊙ denotes
Hadamard product with broad-casting technique.

Depthwise convolution block (DWCB). As shown in
Fig. 2 (b), our depthwise convolution block (DWCB) con-
sists of a DAM and two depthwise multilayer perception
(DWMLP) blocks. As shown in Fig. 2 (c), each DWMLP
block contains two linear projections and a 3× 3 depthwise
convolution (DWConv) layer. It extracts shallow features
and implicitly learns position encoding for the subsequent
feature extraction.

Frequency-separated self-attention group (FSAG).
Each FSAG takes degradation representations Fdr and ag-
gregates input image features to extract deeper features.
Each FSAG consists of N FSAB blocks; each FSAB also
leverages Fdr to enhance feature aggregation from the in-
put images. Given the input features Y0 = Fs−1, for
the s-th group HFSAGs

(·) with N frequency-separated at-
tention blocks, the deep features Y1,Y2, . . . ,YN are ex-
tracted sequentially. This process in each group, defined as
Fs = HFSAGs

(Fs−1,Fdr), and Fs = YN . It can be de-
scribed as follows:

Yn = HFSABn(Yn−1,Fdr), n = 1, 2, . . . , N − 1,

YN = Conv3×3(HFSABN(YN−1,Fdr)) +Y0,
(9)

where HFSABn(·) denotes the n-th frequency-separated
self-attention block within the s-th FSAB group.

Frequency-separated self-attention block (FSAB).
The FSAB primarily comprises two key components, the
DAM and a frequency-separated self-attention mechanism.
This design enables the block to effectively process and in-
tegrate degradation information and image features across
different frequency bands. More details are shown in Algo-
rithm 1.

Frequency-separated self-attention. Our frequency-
separated self-attention mechanism consists of high-

frequency and low-frequency multi-head self-attention
(MSA) modules. The high-frequency attention focuses on
capturing fine details, while the low-frequency attention ex-
tracts global information, such as structural elements, to
enhance super-resolution performance. The input tensor
X̂ ∈ RH×W×C is initially flattened into X̄ ∈ RL×C , where
L = H ×W , which is denoted as X̄ = Flatten(X̂). Then,
the tensor X̄ is divided along with the channel dimension
into high-frequency Xh ∈ RO1×L×Co and low-frequency
Xl ∈ RO2×L×Co tensors, respectively. O = O1 + O2

represents the total number of attention heads, comprising
O1 high-frequency and O2 low-frequency attention heads.
Co = C/O corresponds to the channel number for each
head. For the each frequency-separated self-attention fea-
ture extraction, denoted as Yn = HFSABn

(Yn−1,Fdr), we
have Yn = Y′′. Our frequency-separated self-attention can
be expressed as:

Y′ = [H-MSA(LN(Xh)); L-MSA(LN(AvgPool(Xl)))]+X̄,
(10)

Y′′ = DWMLP(Y′) +Y′, (11)

where H-MSA(·) and L-MSA(·) are features extracted
from our high-frequency and low-frequency multi-head at-
tention modules. The [·] denotes the concatenation oper-
ation. AvgPool(·) is the average pooling operation. We
concatenate the outputs from the dual branches, and the fi-
nal multi-head attention can be calculated. A LayerNorm
(LN) layer is added before the multi-head self-attention, and
residual connections are utilized in each block.

Here, we design a high-frequency self-attention mod-
ule to extract high-frequency features, by adopting a
window-based attention mechanism. The input Xh is par-
titioned into non-overlapping windows and reshaped to
O1 × L

M2 × M2 × Co, where M represents the local
window size. We set M = 4, using small local win-
dows of 4 × 4 for self-attention to capture high-frequency



fine-grained features instead of larger window sizes such
as 8 × 8 or 16 × 16. Moreover, we do not use tech-
niques like shift window [19] or multi-scale windows [44],
which saves considerable computational complexity and
makes our approach hardware-friendly. The high-frequency
MSA branch can be described as: H-MSA(Xh) =
[SA1(X

h
1 ), . . . ,SAo(X

h
o ), . . . ,SAO1(X

h
O1

)]WO1 . The o

indicates the head index and Xh
o ∈ R

L
M2 ×M2×Co is

each single head. The projection matrix WO1
∈

R(O1×Co)×(O1×Co) and [·] concatenates the outputs from
the O1 attention heads. The SAo(·) is the self-attention
module.

Here, we design a low-frequency self-attention to
capture global low-frequency features. Since it is un-
feasible to perform global attention directly in the
entire pixel space due to the high computational cost,
we employ an average pooling to downsample the Xl

into X′ ∈ RO2×(L/D2)×Co , which can be defined as:
X′ = AvgPool(Xl), where D means the pooling kernel
size and we set D = 4 in this paper. AvgPool(·) is used
to encode inputs into a lower-dimensional latent space
for extracting low-frequency global information. Then,
we use a standard multi-head self-attention mechanism in
the latent space to capture rich low-frequency information
from the feature maps. We then have L-MSA(X′) =
[SA1(X

′
1), . . . ,SAo(X

′
o), . . . ,SAO2

(X′
O2

)]WO2

for the low-frequency MSA branch. WO2
∈

R(O2×Co)×(D2×O2×Co) is a projection matrix.
Now, we describe the details of the self-attention for o-th

head SAo(X). Given the input feature maps X ∈ RL×Co ,
X is used to compute the query Q, key K, and value V
matrices, each with dimensions L × Co. These matrices
are derived through distinct linear transformations applied
to X, which can be expressed as:

Q = XWq,K = XWk,V = XWv, (12)

where Wq,Wk,Wv ∈ RCo×Co are learnable parame-
ters, and Co is the number of hidden dimensions per head.
Next, the output of a self-attention head is obtained by the
Softmax activation function applied to the scaled dot prod-
uct of the query and key:

SAo(X) = Softmax

(
QK⊤
√
Co

)
V. (13)

As depicted in Fig. 1 (a), the FSAB utilizes a low-frequency
attention branch to capture the global dependencies inherent
in the input image. This branch focuses on global atten-
tion and does not necessitate high-resolution feature maps.
Conversely, the high-frequency attention branch is tailored
to detect finely detailed local dependencies, utilizing a lo-
cal attention mechanism on high-resolution feature maps to
achieve this objective.

3.3. Loss functions

Multi-patch degradation representation learning.
Contrastive learning has been used in unsupervised repre-
sentation learning widely, such as MoCo [13], which aims
to maximize mutual information within the representation
embedding space by encouraging similar samples to be
closer and dissimilar ones to be farther apart. To learn more
robust features and reduce the risk of overfitting for single-
view-based constructive learning, we propose to design a
multiview scheme for contrastive learning approach to cap-
ture degradation representations from diverse perspectives.

Our degradation representation learning module consists
of a contrastive learning encoder and an additional linear
projection, which aims to capture degradation representa-
tions from LR images unsupervised implicitly. Specifically,
a random image patch is cropped from an LR image as a
query patch, other patches belonging to the same LR image
are considered positive samples, and patches from different
LR images are considered negative samples. Our encoder
embeds the input into p ∈ R256 following the main struc-
ture of MoCo [13], as shown in Fig. 2 (d).

To learn discriminative degradation representations, a
large set of negative samples is essential [16]. Instead of
relying on large batch sizes, our model maintains a queue
of diverse samples to achieve content-invariant degradation
representations while enabling concurrent training of degra-
dation learning and feature extraction modules.

As shown in Fig. 1, we randomly select batch-size LR
images to represent different degradations. For i-th sampled
LR image ILR

i , it can be expressed as:

pt
i = Encoder(ÎLR

i,t ), t ∈ [0, 1, 2, . . . , T ], (14)

where ÎLR
i,t is a randomly cropped image patch with different

sizes (e.g., 32×32, 48×48, and 64×64) from the i-th image.
For each image, we set p0

i as a query embedding qi ∈ R256

and the others as T positive embeddings pt
i ∈ R256, t ∈

[1, 2, . . . , T ]. Conversely, any pj , j ̸= i belonging to other
LR images is treated as a negative sample embedding.

Multi-patch contrastive loss. We employ multi-patch
contrastive loss as the degradation loss to optimize our con-
trastive learning encoder, incorporating a temperature coef-
ficient τ , which is defined by the following equation:

Ldegrade = − 1

T

T∑
t=1

log
exp(qi · pt

i/τ)∑U
j=1[exp(qi · qj/τ) +

∑T
t=1 exp(qi · pt

j/τ)]
,

(15)
where U represents the number of samples in the negative
sample queue. qj and pt

j denote the negative embeddings
from j-th sample in the queue. We set temperature coef-
ficient τ = 0.07 to control the sharpness of the Softmax
function used in the computation of the loss function. The
queue size U is set to 1024.



Table 1: Quantitative comparison on noise-free degradation and isotropic Gaussian kernels. The kernel widths (σ) are given
for each column. The best and second-best results are marked in bold and underlined, respectively.

Method Source Scale
Set5

0.6 1.2 1.8
Set14

0.6 1.2 1.8
BSD100

0.6 1.2 1.8
Urban100

0.6 1.2 1.8
Bicubic

×2

32.30 29.28 27.07 29.21 27.13 25.47 28.76 26.93 25.51 26.13 24.46 23.06
RCAN [52] ECCV 2018 35.91 32.31 28.50 32.31 28.48 26.33 31.16 28.04 26.26 29.80 25.38 23.44
SRMD [50] CVPR 2018 34.77 34.13 33.80 31.35 30.78 30.18 30.33 29.89 29.20 28.42 27.43 27.12

IKC [11] CVPR 2019 37.35 37.26 33.94 33.36 32.97 30.31 31.97 31.79 29.57 31.37 30.53 27.15
SwinIR [19] ICCV 2021 35.96 31.21 28.51 32.38 28.49 26.33 31.19 28.04 26.26 29.92 25.39 23.45
DASR [36] CVPR 2021 37.47 37.19 35.43 32.96 32.78 31.60 31.78 31.71 30.54 30.71 30.36 28.95
DAN [26] Arxiv 2021 37.83 37.46 35.76 33.33 33.20 31.81 32.06 31.88 30.51 31.14 30.71 29.04
DSSR [17] TMM 2022 37.94 37.60 35.86 33.40 33.29 32.03 32.15 32.06 30.88 31.42 31.15 29.67

HAT [5] CVPR 2023 36.04 31.22 28.52 32.56 28.51 26.34 31.29 28.06 26.27 30.17 25.40 23.45
DSAT [22] TMM 2024 38.06 37.59 35.65 33.55 33.34 31.88 32.21 32.10 30.88 31.50 31.03 29.40

DAFST (ours) 38.09 37.65 35.75 33.78 33.57 31.94 32.25 32.11 30.89 31.76 31.18 29.38

Method Source Scale
Set5

0.8 1.6 2.4
Set14

0.8 1.6 2.4
BSD100

0.8 1.6 2.4
Urban100

0.8 1.6 2.4
Bicubic

×3

29.42 27.24 25.39 26.84 25.42 24.09 26.72 25.52 24.41 24.02 22.95 21.89
RCAN [52] ECCV 2018 32.90 29.12 26.75 29.49 26.75 24.99 28.56 26.55 25.18 26.89 24.89 22.30
SRMD [50] CVPR 2018 32.63 32.27 28.62 29.25 28.01 26.90 28.25 28.11 26.56 26.61 26.35 24.06
SwinIR [19] ICCV 2021 32.98 29.12 26.76 29.59 26.77 25.00 28.62 26.56 25.18 27.05 23.86 22.30
DASR [36] CVPR 2021 34.08 33.57 31.15 29.99 28.66 28.42 28.90 28.62 28.13 27.36 26.86 25.95

HAT [5] CVPR 2023 33.04 29.13 26.76 29.364 26.79 25.00 28.69 26.57 25.18 27.21 23.88 22.30
DSAT [22] TMM 2024 34.56 33.77 31.96 30.48 30.17 28.98 29.22 29.10 28.24 28.38 27.88 26.67

DAFST (ours) 34.57 34.01 32.27 30.39 30.12 29.06 29.25 29.18 28.30 28.27 27.89 26.65

Method Source Scale
Set5

1.2 2.4 3.6
Set14

1.2 2.4 3.6
BSD100

1.2 2.4 3.6
Urban100

1.2 2.4 3.6
Bicubic

×4

27.30 25.12 23.40 25.24 23.83 22.57 25.42 24.20 23.15 22.68 21.62 20.65
RCAN [52] ECCV 2018 30.26 26.72 24.66 27.48 24.93 23.41 26.89 25.09 23.93 24.71 22.25 20.99
SRMD [50] CVPR 2018 29.35 29.27 28.65 26.15 26.20 26.17 26.15 26.15 26.14 24.11 24.10 24.08

IKC [11] CVPR 2019 31.77 30.56 29.23 28.45 28.16 26.81 27.43 27.27 26.33 25.63 25.00 24.06
SwinIR [19] ICCV 2021 30.35 26.73 24.67 27.54 24.94 23.42 26.92 25.10 23.94 24.82 22.27 20.99
DASR [36] CVPR 2021 31.92 31.75 30.59 28.45 28.28 27.45 27.51 27.43 26.83 25.69 25.44 24.66
DAN [26] Arxiv 2021 32.22 31.98 30.94 28.65 28.54 27.69 27.66 27.58 26.95 26.21 25.97 25.08
DSSR [17] TMM 2022 32.26 32.09 30.89 26.68 28.54 27.69 27.65 27.58 26.95 26.09 25.83 24.97

HAT [5] CVPR 2023 30.39 26.72 24.67 27.57 24.94 23.42 26.96 25.10 23.94 24.90 22.26 20.99
DSAT [22] TMM 2024 32.51 32.00 30.31 28.67 28.50 27.51 27.77 27.66 26.98 26.43 25.95 24.89

DAFST (ours) 32.44 32.25 30.43 28.78 28.53 27.53 27.70 27.61 27.02 26.21 25.77 24.86

L1 loss. Like most image super-resolution works, we
optimize our super-resolution network parameters by mini-
mizing the L1 pixel loss.

LSR =
∥∥IHR − ISR

∥∥
1
. (16)

Total loss. The total loss function is defined as:

LTotal = LSR + Ldegrade. (17)

We optimize the network parameters of our degradation-
aware frequency-separated Transformer by minimizing the
total loss function. Our training strategy consists of two
phases. We only train the degradation encoder for the first
stage using Ldegrade and then train the entire network us-
ing the LTotal in the second stage. This approach allows for
focused optimization of degradation representations before
integrating them into the whole model.

4. Experiments

4.1. Experimental setup

Dataset. Unless otherwise specified, all the com-
pared methods were trained on a dataset combining the
DIV2K [34] training set and the Flickr2K [21] dataset.
We evaluated using benchmark super-resolution datasets,
including Set5 [1], Set14 [46], BSD100 [27], and Ur-
ban100 [14].

Degradation settings. The degradation model of the LR
image can be described as ILR = (IHR ⊗ k(λ1,λ2,Θ)) ↓r
+nϵ. According to the equation, LR images were synthe-
sized for training and testing. The ⊗ denotes the convolu-
tion operation, the k(λ1,λ2,Θ) denotes the blur kernel con-
trolled by (λ1, λ2,Θ); the noise nϵ signifies additional ran-
dom Gaussian noise with intensity ϵ; and (·) ↓r indicates
the downsampling operation with a scaling factor of r. The
Gaussian kernel size is consistently set at 21 × 21. As the
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Figure 3: Visual results of compared methods and our DAFST on Urban100 dataset at a ×2 SR setting using isotropic
Gaussian kernel degradation with σ = 1.2. Our results show clearer details.

blur and noise intensities are unknown, the degree of degra-
dation was adjusted by randomly sampling their hyperpa-
rameters, resulting in a diverse range of image degradations.

We conducted experiments under various degradation
settings. In Subsection 4.2, we evaluated ours and the ex-
isting state-of-the-art (SOTA) methods under the condition
of isotropic Gaussian kernel degradation with kernel widths
σ (it is equivalent to (λ1 = σ, λ2 = σ,Θ = 0)) within the
range of [0.2, 2.0] for ×2, [0.2, 3.0] for ×3 and [0.2, 4.0]
for ×4 super-resolution training, respectively.

In Subsection 4.3 and Subsection 4.4, we further evalu-
ated compared methods under more diverse conditions em-
ploying anisotropic Gaussian kernels and random noise to
induce image degradation for ×4 super-resolution. These
anisotropic kernels are described by eigenvalues λ1, λ2 ∼
U(0.2, 4.0) and a randomly determined rotation angle Θ ∼
U(0, π). Noise intensity ϵ is varied within the range of [0,
25]. If not specified otherwise, the rotation angle Θ and
noise intensity ϵ of the blur kernel is 0 during testing.

Implementation. Our DAFST network consists of two
depthwise convolution blocks (DWCB) and two frequency-
separated self-attention groups (FSAG). The first group has
six frequency-separated self-attention blocks (FSAB), and
the second group has two. The hidden layer dimensionality
is set to 180, with six attention heads per FSAB. Each FSAB
is configured with five high-frequency (O1 = 5) and one
low-frequency (O2 = 1) attention heads.

Additionally, for each image, we extracted one 48 × 48
sized query patch and three positive patches with different
sizes (i.e., 32 × 32, 48 × 48, and 64 × 64, respectively) to
improve the diversity of multi-patch.

During training, we used a batch size of 32 and applied
data augmentation techniques, including 50% random ver-
tical and horizontal flipping, as well as 50% random 90◦

rotations. We employed the Adam optimizer with β1 = 0.9
and β2 = 0.999. The training began with an initial learning
rate of 10−4, halved every 250 epochs. Our training has two
phases: first, we trained the degradation encoder in isolation
for 200 epochs with a learning rate of 10−3, then trained the
entire network using an additional 1000 epochs. All exper-
iments were conducted on an NVIDIA GeForce RTX 4090
GPU.

4.2. Comparison on noise-free degradation

We compared our model under noise-free conditions
using isotropic Gaussian kernels of different widths with
bicubic interpolation, CNN-based methods (RCAN [52],
SRMD [50], IKC [11], DASR [36], DAN [26], and
DSSR [17]), and Transformer-based methods (SwinIR [19],
HAT [5], and DSAT [22]), on Set5, Set14, BSD100, and Ur-
ban100 datasets.

Table 1 provides a quantitative comparison of our
method against SOTA approaches across various kernel
widths on four benchmark datasets. While all methods
recover details well, performance notably drops for ×4
SR compared to ×2 SR, highlighting the greater challenge
of ×4 SR due to reduced contextual information. CNN-
based methods, such as DSSR, have limited receptive fields,
which hinders their ability to capture global features, re-
sulting in a lack of competitiveness in ×2 SR compared
to ×4 SR. Transformer-based methods, like DSAT, excel
at extracting global features but may neglect finer details



Table 2: Quantitative comparison of ×4 super-resolution on the Set14 dataset. The eigenvalues and rotation values (λ1, λ2,
Θ) of anisotropic Gaussian kernels as well as the noise intensity (ϵ) are given for each column. Bold and underline represent
the best and second-best performance, respectively.

Method ϵ (2.0, 0.2, 0) (2.0, 1.0, 10) (3.5, 1.5, 30) (3.5, 2.0, 45) (3.5, 2.0, 90) (4.0, 1.5, 120) (4.0, 2.0, 135) (4.0, 3.0, 160) (4.0, 4.0, 180)

DnCNN + RCAN [52]
0 26.44 26.22 24.48 24.23 24.29 24.19 23.9 23.42 23.01
5 26.10 25.90 24.29 24.07 24.14 24.02 23.74 23.31 22.92

10 25.65 25.47 24.05 23.84 23.92 23.8 23.54 23.14 22.77

DnCNN + IKC [11]
0 27.71 27.78 27.11 27.02 26.93 26.65 26.5 26.01 25.33
5 26.91 26.80 24.87 24.53 24.56 24.40 24.06 23.53 23.06

10 26.16 26.09 24.55 24.33 24.35 24.17 23.92 23.43 23.01

DnCNN + DCLS [25]
0 27.56 27.49 26.32 25.99 25.88 26.03 25.70 24.65 23.95
5 26.20 26.02 24.44 24.21 24.28 24.14 23.88 23.40 22.98

10 25.47 25.33 24.06 23.87 23.91 23.79 23.58 23.16 22.78

DASR [36]
0 27.99 27.97 27.53 27.45 27.43 27.22 27.19 26.83 26.21
5 27.25 27.18 26.37 26.16 26.09 25.96 25.85 25.52 25.04

10 26.57 26.51 25.64 25.47 25.43 25.31 25.16 24.80 24.43

HAT-Real [5]
0 25.82 25.86 25.44 24.95 24.92 24.57 24.61 24.54 24.38
5 25.74 25.80 25.21 24.81 24.78 24.49 24.46 24.20 23.93

10 25.33 25.30 24.57 25.35 24.44 24.24 24.12 23.76 23.51

DSAT [22]
0 28.34 28.34 27.78 27.68 27.68 27.37 27.25 26.98 26.47
5 27.55 27.47 26.59 26.43 26.43 26.31 26.14 25.80 25.36

10 26.83 26.74 25.87 25.71 25.71 25.60 25.44 25.10 24.70

DAFST (ours)
0 28.29 28.31 27.76 27.66 27.78 27.37 27.28 27.10 26.57
5 27.68 27.65 26.68 26.51 26.52 26.40 26.29 25.92 25.46

10 26.94 26.85 25.94 25.75 25.72 25.63 25.49 25.17 24.77

critical for super-resolution. Methods like HAT, using hy-
brid attention mechanisms and larger attention windows,
achieved significant performance in non-blind SR tasks.
However, this enhancement did not improve the model’s
performance when faced with images of unknown degra-
dation. In contrast, our low-frequency branch effectively
captures global features with a larger receptive field, while
the high-frequency branch enhances the generation of fine
details. Our method demonstrates superior performance
across all datasets for the SR tasks ×2 and ×3 and compet-
itive results for ×4 SR. The relatively modest performance
in ×4 SR is because the input image size is significantly
small in ×4 SR, which reduces the amount of useful infor-
mation available for inference. This limitation is a common
challenge shared by the compared methods as well.

Fig. 3 presents a visual comparison of the methods on the
Urban100 dataset for the ×2 SR task. The DSAT, guided by
learned degradation representations, delivers impressive re-
sults. Constrained by multi-patch contrastive learning, our
DAFST produces clearer textures and sharper edges than
other methods. This multi-patch contrastive learning allows
for extracting more discriminative degradation features, and
the combination of low and high-frequency feature extrac-
tion captures both global and local visual details at larger
kernel widths.

4.3. Comparison on general degradation

We conducted comparisons under general degradation
conditions using anisotropic Gaussian kernels with added
noise. We employed nine different anisotropic blur ker-

nels and tested them under different noise intensities ϵ of
0, 5, and 10, respectively. Since RCAN [52], IKC [11],
and DCLS [25] are not specifically designed to handle noise
degradation, we incorporated a DnCNN [49] model as the
pre-processing for fair comparisons.

Table 2 presents the quantitative results of the com-
pared methods on the Set14 dataset. CNN-based ap-
proaches like RCAN and IKC demonstrate limited per-
formance under complex degradation conditions. While
IKC performs better, it relies on iterative estimation, mak-
ing it time-consuming. HAT-Real is a version of HAT [5]
trained according to ESRGAN’s training settings [38] un-
der multi-level degradation and noise conditions. Unlike
our degradation-aware approach, it uses a generative adver-
sarial network for training, which does not effectively dis-
tinguish between different levels of degradation. As a re-
sult, its performance on images with lower levels of degra-
dation is limited. Implicit degradation representation-based
methods, like DSAT, leverage contrastive learning to au-
tomatically learn degradation factors and demonstrate im-
pressive performance. However, their reliance on a sin-
gle view of the image during degradation learning may
limit the learning effectiveness of degradation representa-
tions. In contrast, our DAFST employs multi-patch con-
trastive learning, allowing the model to learn more robust
and discriminative degradation representations. This ap-
proach outperforms DCLS by over 1.0 dB across all degra-
dation scenarios. Our method outperforms DSAT across
most degradation scenarios. The multi-patch degradation
learning provides clear guidance information to guide the
subsequent super-resolution, and our high-frequency and
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Figure 4: Visual results on the Urban100 dataset at a ×4 SR setting using isotropic Gaussian kernel degradation with σ = 1.8
and ϵ = 5. Our model outperforms others in preserving details in noisy images.

Table 3: Quantitative comparisons at ×4 SR under varying noise intensities (ϵ) and kernel widths (σ).

Method ϵ
Urban100 (PSNR/SSIM)

σ = 1 σ = 2 σ = 4
BSD100 (PSNR/SSIM)

σ = 1 σ = 2 σ = 4

0 25.189/0.7527 24.777/0.7334 23.480/0.6667 27.315/0.7228 27.016/0.7094 26.060/0.6549
5 24.823/0.7323 24.069/0.6952 22.456/0.6096 26.827/0.6932 26.209/0.6590 24.849/0.5920DASR [36]

10 24.395/0.7123 23.595/0.6715 21.994/0.5857 26.269/0.6660 25.623/0.6313 24.335/0.5702

0 25.684/0.7727 25.428/0.7606 23.764/0.6720 27.494/0.7318 27.389/0.7244 26.229/0.6625
5 25.364/0.7555 24.735/0.7267 22.931/0.6344 26.992/0.7031 26.458/0.6737 25.010/0.5991DSAT [22]

10 24.755/0.7326 24.070/0.6911 22.348/0.6063 26.380/0.6734 24.744/0.6413 24.505/0.5776

0 25.663/0.7715 25.415/0.7593 23.806/0.6809 27.473/0.7300 27.407/0.7242 26.288/0.6631
5 25.398/0.7551 24.828/0.7264 23.023/0.6385 27.070/0.7066 26.591/0.6787 25.192/0.6094DAFST (ours)

10 24.856/0.7302 24.121/0.6958 22.425/0.6080 26.452/0.6757 25.868/0.6439 24.611/0.5833

LR DASR DSAT OursHR

Figure 5: Visual comparison on the Set14 dataset. The set-
tings of the anisotropic Gaussian blur kernel of the first row
are (λ1 = 2.0, λ2 = 0.2,Θ = 0) and with ϵ = 0; the set-
tings of the blur kernel of the second are (λ1 = 4.0, λ2 =
4.0,Θ = 180) and with ϵ = 10.

low-frequency branches and smaller attention windows help
capture global and local details with high efficiency.

Fig. 4 illustrates the visual results of compared methods

on the images from the Urban100 dataset with anisotropic
Gaussian kernels and noise. The results reveal that DAN,
which excelled under noise-free conditions, significantly
deteriorates under noisy conditions. In contrast, our model
adapts to more complex degradation scenarios, exhibiting
clearer reconstruction results.

Fig. 5 presents qualitative comparisons with methods us-
ing implicit degradation representations, such as DASR and
DSAT, on the Set14 dataset. Our method demonstrates ad-
vantages in the accuracy and clarity of detailed textures, fur-
ther demonstrating its robust adaptability.

4.4. More comparisons

To further validate the effectiveness of our model, we
compared it with methods using implicit degradation rep-
resentations, like DASR and DSAT, on the Urban100 and
BSD100 datasets. Since DSAT did not provide pre-trained
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Figure 6: Inference speeds and memory usages of DSAT and our method under various image sizes in training (left) and
testing (right) phases. When training at a resolution of 256×256, DSAT encountered an out-of-memory issue, while our
method supports higher resolutions.

Table 4: Ablation study of proposed components on the Set14 dataset. The kernel widths of isotropic Gaussian kernels (σ)
and noise intensities (ϵ) are given for each column. The ratio means the numbers of high-to-low frequency attention heads.
The DR represents the degradation representations learning, and the DWMLP means the DWMLP block.

Method Ratio DR DWMLP
(1.2, 0)

PSNR/SSIM
(1.2, 5)

PSNR/SSIM
(1.2, 10)

PSNR/SSIM
(2.4, 0)

PSNR/SSIM
(2.4, 5)

PSNR/SSIM
(2.4, 10)

PSNR/SSIM
(3.6, 0)

PSNR/SSIM
(3.6, 5)

PSNR/SSIM
(3.6, 10)

PSNR/SSIM

Model-I 6:0 ✓ ✓ 28.332/0.7714 27.844/0.7490 27.129/0.7205 28.043/0.7574 26.960/0.7101 26.122/0.6777 26.880/0.7049 25.869/0.6674 25.087/0.6386
Model-II 3:3 ✓ ✓ 28.315/0.7714 27.834/0.7487 27.097/0.7193 27.978/0.7540 26.943/0.7101 26.095/0.6770 26.843/0.7015 25.890/0.6668 25.096/0.6383
Model-III 1:5 ✓ ✓ 28.304/0.7694 27.829/0.7488 27.084/0.7199 27.952/0.7513 26.966/0.7108 26.109/0.6767 26.860/0.7036 25.880/0.6670 25.100/0.6382
Model-IV 5:1 × ✓ 28.265/0.7704 27.766/0.7477 27.043/0.7190 27.889/0.7437 26.869/0.7068 26.012/0.6755 26.764/0.6959 25.810/0.6635 25.041/0.6362
Model-V 5:1 ✓ × 28.344/0.7702 27.838/0.7479 27.092/0.7196 28.041/0.7555 26.947/0.7099 26.115/0.6774 26.972/0.7070 25.891/0.6658 25.130/0.6384
Model-VI 5:1 × × 28.221/0.7701 27.738/0.7455 27.029/0.7170 27.836/0.7432 26.861/0.7077 26.002/0.6727 26.809/0.6978 25.618/0.6549 24.990/0.6326

Model-VII (ours) 5:1 ✓ ✓ 28.423/0.7728 27.904/0.7505 27.144/0.7215 28.101/0.7531 27.035/0.7118 26.168/0.6795 27.022/0.7040 25.916/0.6684 25.155/0.6405

weights, we retrained it according to the method described
by the authors. Quantitative results shown in Table 3 indi-
cate that our method also performs better on the Urban100
and BSD100 datasets.

Moreover, we show the memory consumption and infer-
ence speed, compared with the SOTA Transformer-based
approach, DSAT. We specified the image size and input im-
ages to the model for ×4 super-resolution. The time is av-
eraged over 1000 samples. As shown in Fig. 6, our model
consumes significantly less memory and higher speed dur-
ing training than DSAT. Our model can be trained on
datasets with large sizes to tap into the model’s potential
further. In detail, the network of DSAT has 15.64 mil-
lion (M) of parameters, while our proposed method has
a significantly reduced parameter number of 10.15M. Our
degradation-aware frequency-separated attention mecha-
nism utilizes smaller attention windows for high-frequency
branches and compact visual embeddings for low-frequency
branches to capture finer details and global structures for ef-
ficient BSR.

4.5. Ablation study

We conducted ablation studies to evaluate the effective-
ness of our proposed components. Specifically, the number
ratio of high-to-low frequency attention heads in Model-I

is 6:0 (O = 6 and Ô = 0), which is equivalent to stan-
dard window-based attention; Model-II and Model-III have
ratios of 3:3 (O = 3 and Ô = 3) and 1:5 (O = 1 and
Ô = 5), respectively; Model-IV removes the degradation
representations learning (DR); Model-V removes the DW-
Conv within DWMLP and Model-VI remove both DR and
DWConv; Model-VII (our full model) utilizes a high-to-low
frequency ratio of 5:1 (O = 5 and Ô = 1) and incorporates
both DR and DWMLP.

As shown in Table 4, the results indicate that Model-VII
outperformed all other models across all evaluation met-
rics. Model-IV, which lacks implicit representation guid-
ance, significantly decreases SR performance. Model-V,
which does not utilize depthwise convolution to aggregate
high and low-frequency attention branches, exhibits a slight
decrease in quantitative scores. Experimental results show
that the best results are achieved when the ratio of atten-
tion heads of high-to-low frequency branches is 5:1, indi-
cating that more high-frequency information may be crucial
in blind super-resolution tasks.

As shown in Table 5, we validated the effectiveness
of the DWCB for shallow feature extraction. For a
fair comparison, we created three variants with nearly
identical parameters: one replaces the DWCB with two
frequency-separated self-attention blocks (Model-VIII), an-



Table 5: Ablation study of different position encoding learning schemes on the Set14 dataset. The kernel widths (σ) of
isotropic Gaussian kernels and noise levels (ϵ) are given for each column. The latency values are averaged over 1000 samples,
each with an input resolution of 512× 512.

Method
(1.2, 0)

PSNR/SSIM
(1.2, 5)

PSNR/SSIM
(1.2, 10)

PSNR/SSIM
(2.4, 0)

PSNR/SSIM
(2.4, 5)

PSNR/SSIM
(2.4, 10)

PSNR/SSIM
(3.6, 0)

PSNR/SSIM
(3.6, 5)

PSNR/SSIM
(3.6, 10)

PSNR/SSIM Latency

Model-VIII 28.314/0.7702 27.824/0.7485 27.097/0.7200 28.003/0.7540 26.953/0.7097 26.115/0.6775 26.975/0.7084 25.884/0.6660 25.130/0.6386 442ms

Model-IX 28.370/0.7717 27.822/0.7480 27.126/0.7200 28.014/0.7530 26.983/0.7093 26.175/0.6785 26.976/0.7082 25.923/0.6665 25.153/0.6393 467ms

Model-VII (ours) 28.423 0.7728 27.904/0.7505 27.144/0.7215 28.101/0.7531 27.035/0.7117 26.168/0.6795 27.022/0.7040 25.916/0.6684 25.155/0.6405 375ms

Table 6: Ablation study for different positive sample num-
bers on Set5 and Urban100 datasets (using PSNR). The
scaling factor of super-resolution is ×2; the kernel widths
(σ) of isotropic Gaussian kernels are given for each column.

Positive samples Set5 Urban100
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

1 38.082 38.111 37.946 36.897 32.225 31.820 31.501 30.367
3 (ours) 38.130 38.141 37.968 36.931 32.325 31.805 31.494 30.417

5 38.103 38.091 37.840 36.900 32.242 31.666 31.408 30.314
7 38.099 38.058 37.888 36.909 32.202 31.695 31.330 30.225

other replaces the DWCB with two frequency-separated
self-attention blocks incorporating convolutional position
encoding Model-IX, and Model-VII (our full model). Our
method with the DWCB demonstrates the best quantitative
performance while maintaining faster inference speed.

4.6. Analysis

Analysis on the number of positive samples. In our
blind super-resolution task, contrastive learning efficacy ex-
hibits a non-linear trend as the number of positive samples
varies. As shown in Table 6, the optimal PSNR performance
is achieved with three positive samples, followed by using
one positive sample, while performance declines with five
and seven samples. This phenomenon likely stems from the
unique demands of capturing image degradation features in
blind super-resolution. Three positive samples appear to
achieve a good balance, maintaining sufficient feature vari-
ability while avoiding overfitting specific visual features.
Thus, it enables the model to learn rich degradation repre-
sentations while preserving sensitivity to specific patterns.
Conversely, with five or seven samples, the model may over-
fit on over-averaged representations from the whole dataset,
overlooking subtle yet crucial differences that play a pivotal
role in high-quality image reconstruction.

Analysis on the window size of high-frequency atten-
tion branch. We further conducted an ablation on different
sizes of local attention windows based on Model-VII. The
results in Table 7 indicate that appropriately sized local at-
tention windows are more beneficial for feature extraction
modeling. Excessively small or large windows do not nec-
essarily facilitate extracting high-frequency local features.

As shown in Fig. 7, we visualized the qualitative per-

Table 7: Ablation study of different window sizes for high-
frequency attention branch (×4 BSR). The kernel width of
isotropic Gaussian is σ = 1.2.

Window size
Set5

PSNR/SSIM
Set14

PSNR/SSIM
BSD100

PSNR/SSIM
Urban100

PSNR/SSIM

2× 2 31.864/0.8907 28.403/0.7711 27.455/0.7294 25.620/0.7690
4× 4 (ours) 31.948/ 0.8903 28.423/0.7728 27.460/0.7272 25.649/0.7692

8× 8 31.857/0.8893 28.377/0.7707 27.443/0.7264 25.627/0.7696

Model-I Model-II Model-III

Model-IV Model-V

Model-VII (ours)

LR Model-VI

Figure 7: Visualization of ×4 super-resolution ablation
study under the conditions of σ = 2.4 and ϵ = 5. The
SR image generated by Model-VII is visually more appeal-
ing, with clearer edge details in letters.

formance of the models on Set14. The results demonstrate
that our method (Model-VII) exhibits high-fidelity visual
results, with the reconstructed high-resolution images con-
taining rich textural details.

Analysis on degradation representation learning.
Here, we further analyze the effectiveness of the degra-
dation representation learning by visualizing the projected
degradation representations using degradation encoders in
Model-IV and Model-VII (our full model), respectively.
Note that the Model-IV was trained without the multi-patch
contrastive learning. We used the BSD100 dataset to cre-
ate LR images with different degradation degrees and input
them into Model-IV and Model-VII to obtain embeddings
from the degradation encoder. We then visualized these rep-
resentations using the T-SNE [35].

Fig. 8 shows that embeddings using our Model-VII with
degradation learning can be distinctively clustered when
faced with different kernel widths or varying levels of noise
degradation. The performance of Model-IV and Model-VII
on images degraded under different kernel widths and noise
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Figure 8: Visualization of degradation representations under different kernel widths (σ) and noise levels (ϵ) using degradation
encoder. (a) and (c) are without degradation learning. (b) and (d) are with our degradation learning.

Figure 9: The frequency amplitude (48 × 48) of the first
eight output channels of the high branch (upper) and low
branch (lower), in the last FSAB. The amplitude is aver-
aged over 32 samples. The lighter the color, the higher the
amplitude. Pixels closer to the center represent lower fre-
quencies, and vice versa.

intensities. Table 4 also proves that the learning of degrada-
tion representations indeed helps our encoder learn discrim-
inative representations to provide useful guidance for better
blind super-resolution.

Visualization of frequency branches. In Fig. 9, we vi-
sualize the amplitude of frequency components by apply-
ing the Fast Fourier Transform (FFT) [29] to feature maps
of the high and low-frequency self-attention branches sep-
arately. Some periodic spectral changes might be caused
by the applied degrading blur kernel. Our visualization re-
sults indicate that the high-frequency branch captures more
high-frequency information. In Fig. 3 first row, our model
correctly restores the shape of the holes. In contrast, the
low-frequency branch primarily focuses on low-frequency
information. In Fig. 4 first and third rows, our method suc-
cessfully recovers the structure of buildings. These results
demonstrate the effectiveness of our proposed degradation-
aware frequency-separated Transformer for high-quality
blind super-resolution.

5. Conclusion

In this paper, we have presented a novel degradation-
aware frequency-separated Transformer for blind super-

resolution. Our approach effectively captures discrimina-
tive degradation representations through multi-patch con-
trastive learning. The proposed frequency-separated Trans-
former leverages degradation representations to efficiently
extract both local details and global structural features via
high- and low-frequency branches, combining fine-grained
details with global context. Extensive comparisons, abla-
tion studies, and analyses demonstrated the superior perfor-
mance of our method and the effectiveness of the proposed
components for blind super-resolution.

Our method has some limitations. First, like most
Transformer-based methods, it faces significant memory
and computational overhead when performing ultra-high-
resolution images. Second, for extremely low-resolution
images, performance is affected due to limited available in-
formation. Expanding the range of frequency representa-
tions would enhance the model’s learning capacity. In the
future, we aim to address these challenges by incorporat-
ing a broader range of frequencies. We would like to ex-
plore the application of our degradation-aware frequency-
separated Transformer in other computer vision tasks, such
as image recognition and detection.
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