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Abstract

Human has an incredible ability to effortlessly per-
ceive the viewpoint difference between two images con-
taining the same object, even when the viewpoint change
is astonishingly vast with no co-visible regions in the
images. This remarkable skill, however, has proven
to be a challenge for existing camera pose estimation
methods, which often fail when faced with large view-
point differences due to the lack of overlapping local fea-
tures for matching. In this paper, we aim to effectively
harness the power of object priors to accurately deter-
mine two-view geometry in the face of extreme view-
point changes. In our method, we first mathematically
transform the relative camera pose estimation problem
to an object pose estimation problem. Then, to esti-
mate the object pose, we utilize the object priors learned
from a diffusion model Zero123 [35] to synthesize novel-
view images of the object. The novel-view images are
matched to determine the object pose and thus the two-
view camera pose. In experiments, our method has
demonstrated extraordinary robustness and resilience
to large viewpoint changes, consistently estimating two-
view poses with exceptional generalization ability across
both synthetic and real-world datasets. Code is re-
leased at https://github.com/scy639/Extreme-Two-View-
Geometry-From-Object-Poses-with-Diffusion-Models.
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1. Introduction

Relative camera pose estimation is a fundamental task in
the realm of computer vision, with numerous applications
spanning various cutting-edge techniques. However, esti-
mating the relative poses of two views with extreme view-
point changes presents a formidable challenge, especially
when the co-visible regions of the two views are texture-
less. This difficulty stems from the lack of distinctive fea-
tures to establish reliable correspondences between the two
views, which is essential for accurate pose estimation. As
the demand for high-quality 3D reconstruction [44], aug-
mented reality [37], and other computer vision applications
continue to grow, addressing this challenge is paramount for
unlocking the full potential of these advanced techniques
and pushing the boundaries of what is possible in the field
of computer vision.

Though the widely adopted feature matching has diffi-
culty in estimating camera poses of two views with extreme
viewpoint changes, humans possess a remarkable ability to
estimate extreme two-view poses when a common object is
present in both views. This innate skill suggests that lever-
aging such object priors could hold the key to designing
a new algorithm for two-view pose estimation, overcom-
ing the limitations of current feature-matching techniques,
and enabling more accurate and robust estimation of camera
poses in challenging scenarios.

How to utilize such object priors remains an open prob-
lem. Recent works RelPose [81], RelPose++ [31] and
SparsePose [65] utilize the object prior by training a trans-
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Figure 1. Our method can accurately infer the extreme relative camera pose of two images containing a co-visible object even without any
overlap regions for correspondence estimation. Our method is based on a diffusion generative model to hallucinate the unseen sides of the
object and match the hallucinated images with query images to estimate relative camera poses. The estimated extreme camera poses can
be used in downstream applications, e.g. visual odometry.

former on the CO3D dataset [56] to regress or score the rel-
ative pose of two views of the same object. Though some
promising results are achieved, we find that using the trans-
former to model the object prior leads to less generalization
ability, especially on datasets of different domains from the
CO3D dataset.

Recently, diffusion models [58] that have been trained on
billion-scale datasets [62] have shown to be capable of gen-
erating high-quality images. Such a generation ability in-
dicates these diffusion models learn meaningful priors over
natural images. Based on the pretrained diffusion models,
many recent methods [35, 36, 38, 63] have finetuned to gen-
erate diverse and high-quality images of arbitrary objects.
This means these models encode robust object priors, which
are much more generalizable than the transformer trained
only on the CO3D dataset. Thus, these diffusion models
are very promising tools for solving the extreme two-view
camera pose estimation with object prior.

Since these diffusion models are designed for generat-
ing images of objects, how to utilize them in the two-view

pose estimation still remains unexplored. These diffusion
models all assume that the image is strictly looking at the
object when generating novel-view images for the object,
as shown in Fig. 2. However, the input images may just
contain the object but not strictly look at the object. Even
worse, these diffusion models implicitly define a canonical
object coordinate system in the model, which makes it even
more difficult to find the poses and intrinsic matrices of the
generated images in the canonical object coordinate system.
Meanwhile, we have to derive the relative transformation
between the camera coordinate system and the canonical
object coordinate system used in diffusion models.

In this paper, we aim to build a novel framework, as
shown in Fig. 1, to estimate extreme two-view camera poses
by utilizing the object prior from a diffusion model. In
order to utilize the diffusion mode in a pose estimation
framework, we first propose a new formulation of two-view
pose estimation by transforming the camera pose estima-
tion problem into an object pose estimation problem. Then,
on this object pose estimation problem, we generate multi-
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Figure 2. Challenges in applying the object prior from diffusion
models, e.g. Zero123 [35], to relative pose estimation. On one
hand, input images may not look at the object while Zero123 and
common object pose estimations require the object to be located
at the image center. On the other hand, Zero123 implicitly de-
fines a canonical object coordinate inside, which brings difficulty
in aligning the input images to this implicit canonical coordinate
object system.

ple images of this object captured from different viewpoints
by the Zero123 [35] model. On these generated images,
we propose a novel and effective way to define their ob-
ject poses and intrinsic matrices. Then, we match the other
input image against the generated images to determine the
plausible object poses, similar to Gen6D [37]. Finally, the
determined object poses are then mapped back to determine
the two-view camera pose of the input image pair.

Extensive experiments demonstrate that our method is
able to predict accurate relative camera poses on image
pairs with extreme viewpoint changes. On both syn-
thetic and real datasets, our method outperforms base-
line matching-based methods [59, 66] and the transformer-
based pose regressor [31, 81] by a large margin. Our
method shows strong generalization ability on the in-the-
wild datasets and can be used in improving the closure op-
timization of visual odometry (VO).

In summary, the contribution of our paper is as follows:

• We propose a novel pose estimation algorithm for im-
age pairs with extreme viewpoints change, based on
diffusion models and image matching.

• To enable the utilization of object priors in diffu-
sion models, we mathematically transform the relative
pose estimation problem into an object pose estimation
problem.

• The proposed framework significantly improves the
accuracy of extreme two-view pose estimation on both
synthetic and real datasets and shows promising results
in combination with a VO method.

2. Literature Review

Feature Matching Based Pose Estimation In the
scenarios of estimating poses from sets of images or
video streams [39,51], traditional methods typically revolve
around finding correspondences between specifically de-
signed local features [3, 40, 69]. Recently, with the devel-
opment of deep learning techniques, neural networks have
been employed and explored to boost the matching accu-
racy and robustness [10, 32, 59, 66]. Such matching-based
pose estimation has been widely used in the downstream
applications, including Structure-from-Motion (SfM) [60],
Multi-View Stereo (MVS) [61] and Simultaneously local-
ization and mapping (SLAM) [6, 46, 47]. However, in chal-
lenging scenarios where images are sparsely captured, these
methods often struggle to accurately estimate poses due to
the limited availability of effective features. Consequently,
these approaches are not well-suited or perform poorly un-
der such sparse-views setting.

Dense/multi-Views Based Pose Estimation Another
main class of pose estimation is based on multiple or dense
reference views. To achieve the goal, different priors are
employed, such as category-specific knowledge, [26,28,41,
70, 75], and temporal locality for SLAM and VO applica-
tions [68, 72, 77].

More recently, category-agnostic priors [7, 19, 30, 37,
53, 67, 83, 84] have been presented to generalize be-
yond object categories and achieved improved perfor-
mance on the dense-views setting. BundleTrack [73] and
BundleSDF [74] can perform object pose tracking given a
monocular RGBD video sequence. And PF-LRM [71] per-
formed 3D reconstruction with joint predictions of pose and
shape. Some methods [29,54,78] also performed 3D recon-
struction at first, which needs multiple input images. How-
ever, methods falling in this category rely on the dense input
reference views to provide enough objective priors, which
cannot be obtained with a sparse-views setting.

Sparse-Views Based Pose Estimation The proposed
method is most relevant to literature belonging to this cat-
egory. It is noticeable that the limited overlapping be-
tween views makes these setups much more challeng-
ing. Many methods have been proposed to estimate ob-
ject pose based on sparse views but require additional
object 3D model [5, 11, 12, 15, 17, 50, 52, 55, 64, 76] or
depth maps [21, 22, 33, 79]. When it comes to using only
two RGB images for wide-baseline pose estimation, di-
rect regression approaches [43, 57] typically do not work
well. More recently, by unifying optimizing pairs of rel-
ative rotations, RelPose [81] achieved satisfactory accu-
racy on the CO3D [56] dataset. Thereafter, transformer-
based approach Relpose++ [31] and SparsePose [65] further
achieved improved accuracy. NOPE [48] achieved the same
goal via discriminative embedding prediction with UNet.
GigaPose [49] also presented to estimate objects posed



with a single image by utilizing a pre-trained model [38].
Meanwhile, E. Arnold et al. [2] proposed a map-free re-
localization with one single photo of a scene to enable in-
stant, metric-scaled re-localization, which is also relevant
literature. ID-Pose [9] reversed the denoising process of the
diffusion model [35] to estimate the relative pose. How-
ever, most of the above works conduct experiments (train-
ing and testing) within the same dataset. In experiments,
we observe that their performance dropped extremely when
applying the pre-trained model to other datasets, indicat-
ing a limited generalization ability. Compared with previ-
ous sparse-views or single-view-based approaches, the pro-
posed framework demonstrates much stronger generaliza-
tion capability and greatly outperforms them on in-the-wild
datasets.

It is notable that another mainstream on singe-view
pose estimation assumes a fixed set of categories, such
as humans [25, 42] and also other predefined object cate-
gories [1, 8, 16]. But our method is category-agnostic and
depends on no category-related priors. Meanwhile, there
are also works related to the sparse-views-based pose esti-
mation but with a rather different objective [24].

Diffusion Models Image Diffusion Models [20,35,45,
58,82] have been extensively employed in image generation
tasks, leveraging neural networks to denoise images through
the estimation and removal of noise values that are blended
into the image. These models gradually remove noise from
pure noise, resulting in the generation of clear and high-
quality images. In order to enhance efficiency and stability,
latent diffusion models [35,58] focused on denoising the la-
tent representations of the image, and thereby achieved re-
ducing model complexity. Recent advancements, [45, 82],
have enabled these models to be conditioned on additional
inputs and provided improved control over the generated
images. One notable example of a latent diffusion model
is Stable Diffusion [58], which achieves high-quality image
generation by training on an extensive dataset of image-text
pairs. Most recently, by fine-tuning Stable Diffusion [58] on
a collection of rendered pose-annotated images [13], Zero-
1-to-3 [35] and Syndreamer [36] achieved impressive re-
sults in generating novel views of an object by utilizing an
input image of the object and information about its relative
pose. In this paper, we attempt to effectively take advantage
of diffusion models to generate useful object priors and to
further guide the follow-up pose inference process.

3. Method

Our method aims to estimate the relative camera pose
of two images that have an extreme viewpoint change and
a co-visible object as shown in Fig. 1. Given two im-
ages I(1) and I(2) with known intrinsic matrices K(1) and
K(2) respectively, our target is to estimate the relative rigid
transformation [R(12); t(12)] with x

(2)
c = R(12)x

(1)
c + t(12)

where x(1)
c and x

(2)
c are the points in the coordinate systems

of two cameras respectively. Since the extreme viewpoint
change here prevents us from building reliable correspon-
dences to solve the camera pose, we estimate the relative
camera poses utilizing object priors.

The overview of our pipeline is shown in Fig. 3. We
first transform the input images into object-centric images
I
(1)
v and I

(2)
v in Sec. 3.1. Then, we feed the image I

(1)
v

to a diffusion model [35] to generate a set of images on
novel viewpoints G = {I(i)g |i = 1, 2, 3, ..., N} in Sec. 3.2.
Finally, we match the I(2)v with the generated image set G to
determine the relative pose between two images in Sec. 3.3.
In the following, we first derive the underlying geometric
relationship between the input image and the object-centric
image.

3.1. Object-Centric Images

Virtual object-centric camera. We assume that the ob-
ject is segmented out for both images. On each image, we
denote the 2D object center as c and the object is bounded
by a 2D square bounding box of size s, as shown in Fig. 4.
Since the object may not be located at the center of the input
image, we need to create a new virtual camera that roughly
looks at the object by rotation. In the following, we derive
the construction of the intrinsic matrices K(1)

v and K
(2)
v , the

rotation matrices R(1)
v and R

(2)
v , and corresponding object-

centric images I
(1)
v and I

(2)
v . The virtual cameras are con-

structed for two input views respectively, so that in the rest
of this section, we omit the superscript for simplification.

Rotation matrix. The rotation Rv = Rv,yRv,x is com-
puted by rotating around the y-axis Rv,y and x-axis Rv,x

as shown in Fig. 4 to make the camera look at the 2D object
center c, which means that

xv = Rvxc, (1)

where xv is the coordinate of a point in the new virtual cam-
era while xc is its coordinate in the input camera.

Intrinsic matrix. Assume that the virtual object-centric
camera is constructed to look at the object center c with a
new virtual image size of sv . We determine the new fo-
cal length fv = sv

√
f2 + ∥c∥22/s for this virtual camera,

where f is the focal length of the input image. Then, we
construct a new intrinsic matrix Kv with a focal length fv
and a principle point (sv/2, sv/2).

Object-centric warping. Since the camera is trans-
formed by a pure rotation, according to multiview geom-
etry [18], the resulting object-centric image and the input
image are related by a homography transformation H

H = KvRvK
−1. (2)

We use this homography transformation to warp the input
image I to get the object-centric image Iv . We transform
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Figure 3. The overview of our pipeline.

Figure 4. Transformation to object-centric images. It happens
when an input image is not looking at the target object. Hence,
we transform the image so that it looks at the center of the target
object by a homography transformation, which leads to a new pose
and a new intrinsic matrix.

both images into object-centric images I(1)v and I
(2)
v . There-

fore, we only need to work on object-centric images and
determine their relative transformation [R

(12)
v ; t

(12)
v ] with

x(1)
v = R(12)

v x(2)
v + t(12)v , (3)

which can be utilized to determine [R(12); t(12)] by Eq. 1.

3.2. Object Priors from Diffusion Models

In this section, we aim to utilize the diffusion model
Zero123 [35] to generate novel-view images G = {I(i)g |i =
1, 2, 3, ..., N} of the object. These generated images will be
used in the next section to determine the relative pose.

Zero123 [35]. By fine-tuning the large-scale Stable Dif-
fusion [58] model on millions of objects, Zero123 [35]
learns strong object priors and can generate highly plau-
sible novel-view images from a given image of an object.
Given an input image of the object, a delta azimuth, and
a delta elevation, Zero123 is able to generate an image on
a rotated viewpoint with the given azimuth and elevation
changes from the viewpoint of the input view, as shown in

Δelevation
Δazimuthgenerate views with the same

Figure 5. Zero123 [35] is able to rotate a given image by a given
∆azimuth and a ∆elevation in the object canonical coordinate.
However, Zero123 assumes that the Y + direction (UP) of the im-
age is aligned with gravity direction. Moreover, given the same ro-
tation angle (∆azimuth and ∆elevation), the actual rotated angle
is related to the elevation angle of the input image. This requires
us to estimate the inplane rotation and the canonical azimuth of
the input image.

Fig. 5. Zero123 assumes the input image is correctly ori-
ented, which means that the canonical up direction of the
object is consistent with the Y direction of the camera co-
ordinate system of the input image. Note that the delta az-
imuth and delta elevation in Zero123 are also based on the
canonical azimuth and elevation of the object. As shown
in Fig. 5, if we apply Zero123 to generate images of the
same delta azimuth and delta elevation but on two different
images of different canonical elevations, we rotate different
angles in the 3D space. We call the coordinate implicitly de-
fined in Zero123 as the canonical object coordinate xo. In
the following, we illustrate how we generate a set of novel-
view images using the image I

(1)
v .

Canonical object viewpoint of I
(1)
v . We want to use

the Zero123 model to generate a set of novel-view images
whose viewpoints are evenly distributed on the upper semi-
sphere, as shown in Fig. 6 (a). Note that these viewpoints
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Figure 6. (a) We want to generate images on the viewpoints in the
canonical object coordinate system. (b) We estimate the inplane
rotation and elevation of the image I

(1)
v and generate images on

the given viewpoints using Zero123. For all the generated images
and image I

(1)
v , we estimate their new intrinsic matrix and their

extrinsic poses in this canonical object coordinate system.

are defined in the canonical object coordinate system with
predefined elevations and azimuths. Thus, in order to com-
pute the delta azimuths and delta elevations between I

(1)
v

and the target novel-view images, we need to compute the
canonical azimuth and elevation of the image I

(1)
v . Mean-

while, we notice that the input image I
(1)
v may not be cor-

rectly oriented with an in-plane rotation as shown in Fig. 6
(b), so we also need to determine an in-plane rotation for
I
(1)
v . Since the azimuth can be arbitrarily defined, we di-

rectly set the canonical azimuth of I(1)v to 0◦. Thus, we only
need to determine the in-plane rotation and the elevation
of I

(1)
v . We extend the elevation determination algorithm

of One-2-3-45 [34] to determine both the elevation and the
in-plane rotation. generate a set of hypotheses on the eleva-
tions and the in-plane rotations, and then select the elevation
and the in-plane rotation that can produce the most number
of points in the triangulation. More details are included in
the supplemental materials. With the estimated azimuth,
elevation, and in-plane rotation, we rectify the input image
I
(1)
v with the in-plane rotation to be correctly oriented, com-

pute the delta azimuths and elevations, and finally generate
predefined novel-view images using Zero123 using the rec-
tified I

(1)
v .

From viewpoints to object poses. In order to utilize
the generated images to estimate the relative pose between
I
(1)
v and I

(2)
v , we need to explicitly determine the intrin-

sic matrices and object poses of the generated images and
I
(1)
v in the canonical object coordinate system. We already

derived the intrinsic matrix K
(1)
v for I

(1)
v and we assume

all the generated images have the same intrinsic as I
(1)
v ,

i.e. K
(i)
g = K

(1)
v . To get the object poses [R

(i)
g , t

(i)
g ] and

[R
(1)
o , t

(1)
o ] of the generated images and I

(1)
v , we already

know their elevations and azimuths in the canonical object
coordinate system, which helps us to determine the rota-
tions R(i)

g and R
(1)
o . Then, assuming that all the generated

images and I
(1)
v look at the origin of the canonical object

coordinate, we only need to determine the distance d to
compute the offsets t

(i)
g and t

(1)
o . We further assume that

the target object is located at the origin inside a sphere with
a unit-length radius and the projections of the unit sphere
onto every image just inscribe the boundaries of these im-
ages, which helps us determine the distance from the origin
to the camera center. Thus, with [R

(i)
g , t

(i)
g ] and [R

(1)
o , t

(1)
o ],

we have
x(1)
v = R(1)

o xo + t(1)o , (4)

x(i)
g = R(i)

g xo + t(i)g . (5)

where xo is the object coordinate and x
(i)
g is the camera

coordinate of i-th generated image.

3.3. Object pose estimation

In this section, we match the image I
(2)
v with the posed

generated image set G = {(I(i)g R
(i)
g , t

(i)
g |i = 1, ..., N} to

determine the object pose [R
(2)
o , t

(2)
o ] of I(2)v with

x(2)
v = R(2)

o xo + t(2)o . (6)

Then, by combining Eq. 4 and Eq. 6, we can get Eq. 3
to compute the relative camera pose between the object-
centric images I(1)v and I

(2)
v .

To achieve this purpose, we follow the work Gen6D [37]
to first select a generated image with the most similar view-
point and then apply a feature volume-based refiner to iter-
atively refine the final pose.

Viewpoint selection. We compare I
(2)
v with every gen-

erated image I
(i)
g to compute a matching score. The gen-

erated image with a higher score is supposed to be similar
to the input image. Similar to [37], we also share the infor-
mation among all generated views by global normalization
layers and transformers before computing the final match-
ing scores. We regard the viewpoint of the most similar
generated image as the viewpoint of I(2)v , which provides a
coarse estimation of the object pose [R

(2)
o , t

(2)
o ]. We then

refine the estimated pose with a feature volume-based re-
finer.

Feature volume-based pose refinement. We use the
feature volume-based refiner in Gen6D [37]. Given the
coarse object pose estimation, we first find the K nearest
generated images as reference images for the current refine-
ment step. A 3D feature volume will be constructed using
the 2D CNN features extracted from I

(2)
v and all reference

images. Then, a 3D CNN is applied to regress a pose resid-
ual in the form of a similarity transformation to update the
input coarse estimated pose. This refinement process is it-
eratively applied for several steps to get an accurate estima-
tion of the object pose [R

(2)
o , t

(2)
o ].



Figure 7. Visual Comparisons on the GSO dataset [14].

Figure 8. Visual Comparison on the Navi dataset [23] .

4. Experiments and Discussions

4.1. Experimental Setups

Implementation Details We utilize Zero123 to gen-
erate 128 novel view images Ig for each reference image.
When estimating inplane rotation and elevation, the number
of diffusion inference steps is 75, and when generating Ig ,
this number is 50. During the inference of a query image,
the selector selects from all 128 generated images. In the
refinement stage, we apply the refiner iteratively 3 times.

Baselines To evaluate the effectiveness of the pro-
posed framework, we compare our method with baseline
methods including RelPose++ [31], ID-Pose [9], Rela-
tive Pose Regression (RPR) [2], LoFTR [66], SIFT [40]-

ZoeDepth [4]-based PnP method and Procrutes method.
3DAHV [85], RelPose++ [31] and RPR [2] regress the rel-
ative poses between images. 3DAHV [85] introduces a 3D-
aware verification module that explicitly applies 3D trans-
formations to the 3D object representations learned from
two input images. It evaluates multiple pose hypotheses and
selects the most reliable one as the predicted pose. Rel-
Pose++ is a transformer-based model specially designed
for objects by training on the CO3D [56] dataset. RPR
first regresses the 3D-to-3D correspondences from image
features and then solves for the pose with a differentiable
solver, which is trained end-to-end on large-scale image
pair datasets of common scenes. LoFTR [66] is a dense
2D-to-2D correspondence estimator with a transformer, on



Figure 9. Visual Comparison on the rotated GSO dataset [14].

Figure 10. Visual comparisons on the rotated NAVI dataset [23]

which we solve the relative pose by the RANSAC algo-
rithm. SIFT [40]-ZoeDepth methods first build 2D-to-2D
correspondences by SIFT matching and then compute the
relative poses by transforming these 2D-to-2D correspon-
dences into 2D-to-3D (PnP-based) or 3D-to-3D (Procrutes-
based) correspondences. ID-Pose [9] reverses the denoising
process of Zero123 [35] to estimate the relative pose. We
adopt the official implementation of 3DAHV, RelPose++,
ID-Pose and LoFTR with their officially pretrained mod-
els. While for RPR and SIFT-ZoeDepth-based method, we
adopt the implementation from [2].

Metrics To evaluate the predicted 6-DoF poses
{Ri, ti} of an object in a target view, we report rotation ac-

curacy and translation accuracy with the standard two-view
geometry evaluation metrics, following SuperGlue [59] and
OrderAwareNet [80]. As 3DAHV [85] can not estimate the
translation, we only report its rotation accuracy.

4.2. Datasets

In order to verify the effectiveness and generalization
ability of our framework, we evaluate our method and base-
line methods on two datasets, the GSO [14] dataset and the
Navi [23] dataset. The GSO dataset is a synthetic object
dataset containing about 1k 3D-scanned household objects.
From the GSO dataset, we select 23 objects and render 21
images on each object for evaluation. The rendered image



pairs are set to have extremely large viewpoint changes. The
Navi dataset is a real object dataset, which contains images
of the same object captured in different environments and
viewpoints with accurate calibrations for both intrinsic and
extrinsic matrices. The Navi dataset contains 36 objects,
among which we select 27 objects for evaluation. Besides,
to show our method is more robust to the inplane rotation,
we also add randomly inplane rotation between -45 to 45
degrees to each input image for GSO and Navi dataset. We
call the resulting datasets the rotated GSO dataset and the
rotated Navi dataset.

4.3. Metrics

To evaluate baseline methods and our method, we choose
the accuracy under a specific degree as the metrics, which is
similar to [31,66,81]. For the rotation accuracy, we compute
the relative rotation between the ground-truth rotation Rgt
and the predicted rotation Rpr by R⊺

gtRpr and then transform
this rotation into the axis-angle form. The resulting rotation
angle of this rotation matrix is regarded as the rotation er-
ror in angle. The translation contains a scale ambiguity, so
we compute the translation error as the angle between the
normalized ground-truth translation tgt and the normalized
predicted translation tpr by arccos t⊺gttpr. We report transla-
tion and rotation accuracy under 15◦ and 30◦.

4.4. Comparisons with baseline methods

Comparisons. We evaluate our method and baselines on
two datasets, GSO [14] and Navi [23]. The qualitative re-
sults are shown in Fig. 7 and Fig. 8. While quantitative com-
parison results are provided in Table 1. As we can see, the
matching based method LoFTR [66] and SIFT [40] does not
perform well on both datasets, because the extreme view-
point change results in very small overlap regions to esti-
mate correspondences. While three regression-based meth-
ods, RPR [2], 3DAHV [85] and RelPose++ [31] show lim-
ited generalization ability. For ID-Pose [9], which also uti-
lizes the pre-trained diffusion model [35], gives lower ac-
curacy compared to ours. Additionally, it requires over 30
seconds per query image, as it requires multiple forward
and backward passes of Zero123 for each query image. Our
method, which effectively and efficiently combines the ob-
ject prior from diffusion models with the object pose esti-
mator, achieves the best performance on all metrics, which
outperforms baselines by a large margin. More comparisons
on the rotated Navi [23] Dateset, as well as visualization of
correspondences of LoFTR/SIFT ZoeDepth methods and of
depth maps estimated by ZoeDepth, are included in the sup-
plemental materials.

Robustness to inplane rotations. We also provided re-
sults on the rotated GSO and Navi datasets to show the
robustness to inplane rotations. The quantitative results
are shown in Table 2 and qualitative results are shown in

Fig. 9 and Fig. 10. As we can see, 3DAHV [85] and Rel-
pose++ [31] show worse robustness to the inplane rotations,
while our method achieves stronger robustness by estimat-
ing an inplane rotation in the pipeline.

4.5. Analysis

In this section, we conduct analysis on each module pro-
posed in this paper to demonstrate their effectiveness.

Inplane rotation and elevation prediction. As stated
in Sec. 3.2, we need to estimate an inplane rotation and an
elevation for the input image I

(1)
v so that we can correctly

generate images on the desired viewpoints by Zero123 [35].
To show this necessity, we directly treat the inplane rotation
as 0◦ and elevation as 45◦, and evaluate the performances
on the rotated datasets. The results are listed in Table 3. As
the results shown, it is vital to estimate both inplane rotation
and elevation to get a correct relative pose estimation in our
pipeline.

The number of generated images. By default, we gen-
erate 128 images with Zero123 to estimate the relative pose.
To show how our method performs with different numbers
of generated images, we conduct an experiment on both test
datasets, as shown in Table 4. As we can see, the perfor-
mance is almost the same with only 64 or 32 images but
drops reasonably with only 8 or 16 images due to the spar-
sity.

The number of refinement iterations. We further study
how the number of iterations in the pose refinement in
Sec. 3.3 affects the quality of two-view pose estimation. We
show the results on the GSO dataset with refinement num-
ber ranging from 0 to 8. As we can see, the performance
increases with 0 to 3 iterations, but does not further increase
with more refinement steps.

Sensitiveness to input masks. To show that our method
is robust to the input mask of the object, we manually add
dilations to the input mask by 0% to 10%, and then evalu-
ate the results on the NAVI dataset. As we can see, adding
2% dilation to the masks almost does not change the per-
formance at all, while further adding 10% dilation will de-
crease the performance reasonably. Note that with recent
SAM [27] could produce very accurate object masks on ar-
bitrary, so that the errors of mask are not very large in most
cases.

4.6. Application in Visual Odometry

We show an application of our relative pose estima-
tion in the visual odometry (VO) task. We use the ORB-
SLAM2 [6] track a car to travel around a street and revisit
a crossroad with a parking car beside the road as shown in
Fig. 11. In this case, we use our algorithm to estimate the
relative pose between two views that are co-visible to this
car, and then we add the estimated relative pose to the pose
graph to optimize it. It can be observed that with our rela-



Table 1. The quantitative comparison results on the two testing datasets.

Method
NAVI GSO

Rotation Accuracy Translation Accuracy Rotation Accuracy Translation Acuracy
15◦ 30◦ 15◦ 30◦ 15◦ 30◦ 15◦ 30

SIFT [32]+ZoeDepth [4]+PnP 19.66 25.55 12.47 25.25 7.17 13.04 5.65 15.65
SIFT [32]+ZoeDepth [4]+Procrustes 16.65 26.72 9.60 24.31 5.00 14.78 3.48 14.57
Map-free-loc RPR [2] 17.23 33.99 13.81 35.92 4.57 15.87 3.91 16.52
LoFTR [66] 16.59 27.99 20.74 30.38 20.65 29.57 29.57 36.52
Relpose++ [31] 24.33 40.05 24.84 42.71 15.65 32.17 20.22 32.61
ID-Pose [9] 10.09 36.66 - - 20.43 40.43 - -
3DAHV [85] 28.23 48.34 - - 16.74 38.91 - -
Ours 43.16 66.47 50.64 72.41 40.43 57.61 42.39 60.65

Table 2. The quantitative comparison results on the two rotated testing datasets.

Method
Rotated NAVI Rotated GSO

Rotation Accuracy Translation Accuracy Rotation Accuracy Translation Acuracy
15◦ 30◦ 15◦ 30◦ 15◦ 30◦ 15◦ 30

SIFT [32]+ZoeDepth [4]+PnP 18.09 23.90 13.68 22.08 7.83 14.35 5.65 17.61
SIFT [32]+ZoeDepth [4]+Procrustes 15.47 23.95 8.11 19.31 5.00 13.70 2.83 14.78
Map-free-loc RPR [2] 8.69 17.58 7.78 22.23 2.61 9.78 5.87 18.91
LoFTR [66] 13.14 21.28 17.38 28.97 14.78 18.70 16.52 24.35
3DAHV [85] 12.50 30.72 - - 6.30 18.71 - -
Relpose++ [31] 12.10 26.46 12.74 29.20 6.52 16.96 6.74 20.00
Ours 29.81 49.34 35.36 60.27 31.30 48.04 36.30 56.74

tive pose estimation, the tracked cameras are more accurate
and more close to the ground-truth.

4.7. Runtime Analysis

All experiments are conducted on an Intel(R) Xeon(R)
Gold 5220R CPU @ 2.20GHz and a single NVIDIA Geo-
Force RTX 3090 GPU. For the configurations, we used in

the experiment, when the Zero123 model has already been
loaded to GPU, building from a reference image costs eight
minutes. After that, for each query image, it takes 0.18s
to estimate the pose relative to the reference image. For
a faster configuration with a rotation accuracy at 30-degree
decrease of only 0.01 on rotated testing dataset, it takes 125s
to build from a reference image, including 58s for inplane

Table 3. Ablation studies on inplane rotations and elevation predictions.

Method
Rotated NAVI Rotated GSO

Rotation Accuracy Translation Accuracy Rotation Accuracy Translation Accuracy
15◦ 30◦ 15◦ 30◦ 15◦ 30◦ 15◦ 30

Without predict inplane rotation 22.26 41.60 26.89 51.80 19.13 32.17 19.57 41.09
Without predict elevation 22.34 44.33 27.34 55.87 18.91 36.09 21.74 50.87
Without both 20.57 40.12 26.41 52.85 11.52 29.35 18.48 37.83
With both 29.81 49.34 35.36 60.27 31.30 48.04 36.30 56.74

Table 4. Ablation studies on the number of generated images.

The number of generated images
NAVI GSO

Rotation Accuracy Translation Accuracy Rotation Accuracy Translation Acuracy
15◦ 30◦ 15◦ 30◦ 15◦ 30◦ 15◦ 30

8 16.98 40.54 23.69 47.45 16.52 38.04 23.91 45.43
16 29.92 54.32 36.18 62.07 31.74 51.52 36.30 58.70
32 42.09 62.81 46.16 68.69 37.39 54.57 39.13 59.13
64 43.10 63.93 48.19 71.61 41.09 55.22 42.83 60.65
128 43.16 66.47 50.64 72.41 40.43 57.61 42.39 60.65



Table 5. Ablation studies on the number of refinement iterations
on the GSO datasets.

#Refine
GSO

Rotation Accuracy Translation Acuracy
15◦ 30◦ 15◦ 30

0 26.96 52.39 31.74 57.17
1 36.30 55.00 38.04 60.00
2 40.22 56.74 42.39 60.22
3 40.43 57.61 42.39 60.87
4 41.09 57.83 42.39 60.65
5 41.52 57.17 42.39 61.30
6 40.65 57.39 43.26 61.74
7 40.87 56.96 43.04 61.30
8 40.43 57.17 43.70 61.74

Table 6. Ablation studies on sensitiveness to input masks on the
NAVI dataset. We use different dilation kernels to dilate the input
masks and evaluate the results on inaccurate masks.

Dilation
NAVI

Rotation Accuracy Translation Acuracy
15◦ 30◦ 15◦ 30◦

10% 36.38 56.43 36.18 64.31
5% 33.06 56.11 38.69 67.37
2% 42.23 61.70 44.61 72.65
0% 43.16 66.47 50.64 72.41

—— ground truth

—— before optimization
—— optimized by our pose

Figure 11. We add an edge to the pose graph based on estimated
relative pose from reference image (left) to query image (right),
and subsequently employ g2o to perform pose graph optimization.

rotation and elevation prediction, and 67s for novel-view
image generations. If the object in reference image is cor-
rectly oriented, we can skip the inplane rotation prediction,
then the building process only takes 73s under such a faster
configuration.

4.8. Limitations

A failure example of our method on a symmetric ob-
ject is shown in Fig. 12. However, precisely predicting the
poses of symmetrical objects is really an ill-posed problem
in the extreme two-views setting. Although Relpose++ [31]
attempted to handle object symmetries, they rely on addi-

Figure 12. A failure example on a symmetric object.

tional views (more than 2 views) to avoid ambiguity. Rel-
Pose++ [31] also fails in the symmetric example as shown
in Fig. 12

5. Conclusion

In this paper, we introduced a new algorithm to estimate
relative camera poses with extreme viewpoint changes. The
key idea of our method is to utilize the object prior learned
from large-scale 2D diffusion model Zero123 [35], which is
able to generate novel-view images of an object. However,
since Zero123 has a canonical coordinate system implic-
itly defined in its model and the image may not look at the
object, we cannot directly apply Zero123. To address this
challenge, we first propose a new formulation of the two-
view pose estimation as an object pose estimation problem
and correctly define the object poses for both input images
and the generated images. Finally, we match the other im-
age against the generated images to get an object pose es-
timation, which helps us determine the relative two-view
camera poses. Extensive experiments on the GSO [14] and
the NAVI [23] dataset have demonstrated the effectiveness
of our design. We have also shown an application of our
method in a Visual Odometry system.
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