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Abstract

In the field of digital orthodontics, dental models with
complete roots are essential digital assets, particularly
for visualization and treatment path planning. How-
ever, oral scans can only capture dental crowns, leav-
ing the roots missing. In this paper, we introduce a
meticulously designed algorithm pipeline to complete
dental models while preserving the crown geometry and
mesh topology. Our pipeline begins with a learning-
based point cloud completion for the existing dental
crowns. We then reconstruct a complete tooth, includ-
ing both the crown and root, to guide subsequent op-
erations. Following this, we restore the crown’s ge-
ometry and mesh topology based on a kind of strong-
Delaunay meshing structure. Finally, we optimize the
transition zone between the crown and root by bihar-
monic smoothing. A key advantage of our algorithm is
that the completed tooth model accurately preserves the
geometry and mesh topology of the original crown while
ensuring high-quality triangulation in the dental roots.
Extensive experiments have shown that our algorithm
can generate the corresponding root based on the given
crown and integrate them, while preserving the integrity

of the crown area.

Keywords: Digital Orthodontics, Point Cloud Com-
pletion, Implicit Reconstruction, Mesh Integration, Re-
stricted Voronoi Diagram

1. Introduction

Digital orthodontics [31] refers to the integration of dig-
ital technology into the diagnosis, treatment planning, and
management of orthodontic problems. Generally speaking,
the process includes several steps, starting with an oral scan
and culminating in the generation of a detailed treatment
planning solution [30]. Digital orthodontics enhances the
patient experience by making treatments quicker, less inva-
sive, and more precise. It also provides orthodontists with
the tools to deliver high-quality care with better outcomes.

Among the many processes involved in digital orthodon-
tics, tooth segmentation is a critical step that primarily in-
volves separating the dental crown from the gingiva and
identifying each dental crown. Traditional tooth segmen-
tation techniques [43] begin with shape analysis (e.g., cur-
vature) to identify the boundaries where one tooth meets
another or meets the gum line. Following this, individ-
ual teeth are segmented using clustering techniques, graph-
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based methods, or other classification approaches. The ad-
vent of deep learning has significantly enhanced tooth seg-
mentation, with Convolutional Neural Networks leading the
advancements [7, 37]. Regardless of whether traditional or
deep learning-based methods are used, the outputs gener-
ally consist of dental crowns depicted as open mesh sur-
faces, lacking dental roots. This limitation poses challenges
in subsequent steps. For instance, when planning how one
tooth moves from its initial position to the target posture, it
is necessary to avoid collisions between successive dental
roots. Additionally, the completion of teeth can provide a
better visualization of the occlusion status. Therefore, tooth
completion is a crucial task in digital orthodontics.

Several studies have concentrated on the completion of
dental models. Martorelli and Ausiello [24] utilized five
human posterior molars from micro-computed tomogra-
phy (CT) scans as reference models and developed spe-
cific computer-aided design procedures for completing den-
tal models. However, the resulting dental roots are still
absent, differing significantly from actual conditions. The
advancement of deep learning technology [45, 21] now al-
lows for the generation of complete tooth models with sim-
ulated roots that do not depend on cone beam computed
tomography(CBCT) data, resulting in accurate and natural
tooth shapes. Despite these advancements, the critical chal-
lenge of accurately preserving dental crowns remains unad-
dressed.

To this end, we establish the goals of this paper. Given a
polygonal crown model without root, our task is to recover
the complete tooth model with high-fidelity dental roots.
Additionally, we set three specific requirements: First, the
geometry and topology of the digital crown must be pre-
served. Second, there should be a visually natural transition
between the crown and the roots. Finally, the completed
model must feature high-quality triangulation.

To meet the aforementioned requirements, we have de-
veloped a set of novel techniques to tackle these challenges.
Our algorithm initiates with a point cloud completion stage,
following the dental crown prior, where a set of points be-
lieved to be on the dental root is generated. Subsequently,
we quickly reconstruct a surface to obtain a guiding sur-
face that roughly represents the completed shape. How-
ever, this process does not fully respect the given crown
shape. Specifically, the geometry and mesh topology of the
dental crown are altered. To address this issue, we intro-
duce a strong-Delaunay meshing structure, whose meshing
topology remains unchanged in terms of restricted surface
Voronoi decomposition. This observation helps us restore
the crown geometry and mesh topology. Finally, our algo-
rithm ends with optimizing the transition zone between the
crown and root by biharmonic smoothing.

To summarize, our contributions are threefold:

1. We introduce an algorithmic framework to complete

a tooth model from a dental crown. Experimental re-
sults demonstrate that our completion algorithm can
accurately recover high-fidelity dental roots.

2. We propose a new kind of meshing structure, named
strong-Delaunay mesh in this paper, which helps
maintain the geometry and mesh topology of the given
dental crown, a method not previously reported in the
existing literature.

3. We employ a set of strategies to enhance the shape ap-
pearance of the completed teeth, including identifying
the skirt of a crown and applying biharmonic smooth-
ing to the transition area. Specifically, by combin-
ing Poisson reconstruction with tetrahedral tiling, we
achieve both high triangulation quality and a faithful
reconstruction outcome.

2. Related Works

In this section, we primarily review two types of research
work: shape completion and remeshing.

2.1. Shape Completion

The completion of incomplete shapes is an important
process in the field of geometric processing. The goal of
completing shapes is to derive or restore missing or incom-
plete parts based on available information or prior knowl-
edge. If the missing regions are tiny compared to the known
parts, hole-filling algorithms can solve this problem. Con-
ventional shape completion algorithms can be divided into
two main methods: volumetric and surface-based.

Volumetric-based methods [2, 20, 3] rely on volumet-
ric structures such as regular 3D grids, octrees, tetrahedral
subdivisions, or sparser volume samplings. These struc-
tures provide information about the interior and exterior
of the object, which is essential for completing the shape.
Techniques commonly used in volumetric-based methods
include voxel-based interpolation, implicit surface recon-
struction, and volumetric shape synthesis. Surface-based
methods [34, 35, 13, 42], on the other hand, focus on the
properties of the surface, such as boundary topology or cur-
vature. These methods use known surface information to
infer or generate the missing parts and typically involve sur-
face reconstruction algorithms, mesh generation, or surface
interpolation techniques.

Shape completion also plays a vital role in orthodontics.
Due to the limited availability of CBCT devices, many cases
in digital dental treatment lack authentic patient root data
from CT images. Nonetheless, accurately predicted root
models are crucial for assisting dentists and technicians in
treatment planning. They help avoid excessive translation
or rotation of tooth designs, reducing the risk of bone fen-
estration or cracking during treatment. Consequently, gen-
erating reasonable and aesthetically pleasing root data is



Figure 1. The pipeline of our method.

essential during tooth completion process, which supports
subsequent digital diagnosis and treatment procedures. For
example, Qian et al. [27] leveraged prior knowledge of tooth
models for their completion. Initially, they conducted layer-
wise slicing to obtain boundary points for each layer. They
then used C2 continuous B-spline interpolation to connect
two adjacent boundary points. Despite advancements in
deep learning technology [45, 21], a significant challenge
remains: the scarcity of comprehensive 3D dental datasets.
In our implementation, we employ AdaPoinTr [40], a state-
of-the-art point cloud completion model, and generate a
dataset using data augmentation techniques.

2.2. Mesh Extraction and Remeshing

Mesh extraction often serves as the subsequent step in
the task of implicit reconstruction. The most common tech-
nique for mesh extraction is marching cubes. Most im-
plicit reconstruction approaches, such as Poisson recon-
struction [16] and its variants [15, 17, 44], Moving Least
Squares [19], and Ball Pivoting [1], require a mesh extrac-
tion step.

On the other hand, remeshing assumes that the input is
a polygonal mesh surface and involves altering the mesh
topology. Remeshing can be performed using various meth-
ods, including local modification [10, 18, 6, 8], Delaunay
triangulation [4, 23, 12], optimization [36, 5, 28], and Cen-
troidal Voronoi Tessellation [9, 39, 25, 38].

Generally speaking, mesh extraction and remeshing are
distinct tasks, each useful in different scenarios. However,
both stages are typically necessary when the output mesh

requires high-quality triangulations. This process can lead
to the accumulation of errors. A growing research trend
focuses on directly extracting high-quality mesh surfaces
from an implicit field. Hass et al. [14] present a method
for approximating an implicit surface with a piecewise-flat
triangulated surface, where the triangles are as close as pos-
sible to equilateral. Known as the GradNormal algorithm,
this method can produce a high-quality, smooth surface.

3. Methodology

3.1. Algorithm Pipeline

The algorithm pipeline is shown in Figure 1. For a dental
scan as the input (a), our method starts with a preceding seg-
mentation algorithm on the input model (b). Following this,
a learning-based approach generates a point cloud to ap-
proximate the whole tooth (c). Then, an implicit surface re-
construction process (d) is conducted for subsequent steps.
After this, the Restricted Voronoi Diagram (RVD) merges
the generated dental root and the existing dental crown (e).
Finally, the transition area is smoothed by solving a par-
tial differential equation, resulting in a high-quality triangle
surface (f).

3.2. Distinguishing Skirt of Crown

Common methods for obtaining oral models include in-
traoral scanning and oral impressions. However, due to
limitations in device accuracy and imaging principles, cap-
turing the gaps between teeth can be challenging. In such
cases, tooth segmentation may result in a crown with a skirt,



as shown in Figure 2. It is essential to identify the skirt por-
tion from the oral scan, as this aids in the subsequent tooth
completion and reconstruction process. More specifically,
the task involves predicting the likelihood of a mesh vertex
located in the skirt of a crown.

Figure 2. Illustration of the crown’s skirt. The black lines represent
the natural tooth shape, while the blue lines indicate the intraoral
scan results. It is essential to predict the likelihood of a mesh ver-
tex being located within the skirt of the crown.

Dataset. We collected 28 sets of crown models obtained
through segmentation algorithms, along with their cor-
responding manually restored, morphologically complete
tooth models. This dataset includes 200 sets of tooth data
for both upper and lower jaws, with FDI labels ranging from
1 to 7, excluding data for wisdom teeth (FDI labeled 8).
Since human teeth exhibit bilateral symmetry, we did not
differentiate between corresponding teeth on the left and
right sides in the training data. For each vertex on the
crown, if there is a corresponding overlapping vertex in the
restored model, it is labeled as a valid vertex with a confi-
dence score of 1. Conversely, if there is no corresponding
vertex, it is labeled as a skirt vertex with a confidence score
of 0.

Figure 3. Effect of discard skirt vertices. (a) The original crown.
(b) The crown mesh after skirt vertices being discard.

Classification. Based on the labeled data mentioned
above, we use Diffusion Net [29] as the backbone network
for training. Compared to the original diffusion net, we
concatenate the hks features of the data with the xyz fea-
tures for training, which achieved better results than using
either hks features or xyz features alone. By applying the

trained network onto the input dental crown mesh, we get
the confidence of each vertex (or the probability of being
a non-skirt vertex). Based on this, we can directly discard
vertices with confidence below a given threshold (e.g., 0.5).
Figure 3 shows a comparison between the original crown
mesh and the crown mesh with the skirt vertices removed.

3.3. Tooth Point Cloud Completion

The shape completion task in this paper is to generate
a complete tooth model that includes both the crown and
the root. We accomplish this task at the point cloud level.
Specifically, we first generate an augmented point cloud that
potentially represents the completed tooth model.

Dataset To ensure data diversity, we collected 50 sets of
complete tooth mesh models reconstructed based on the ac-
tual CBCT data. For each tooth set, the number of teeth
ranges from 14 to 16, with 1 to 2 of them being wisdom
teeth. We exclude wisdom teeth from our consideration.
In the training phase, we first down-sample each tooth to
1024 points. For data augmentation, we introduce a fac-
tor α to specify the crown size. According to [26], The
crown-to-root length ratio in adults varies slightly depend-
ing on the tooth type, but it is generally between 1:1 and
1:3. Considering factors such as crown wear and incom-
plete tooth eruption in practical situations, we have ampli-
fied this ratio to 1:7 during the data augmentation process.
This means the crown can account for up to half of the total
tooth length, and at least 1/8. If the crown length is fur-
ther reduced, its eruption morphology becomes too small,
resulting in incomplete morphological features that do not
meet the requirements of the dataset. We restrict α in this
range and randomly take six values. We can sort the sam-
pled points along the dental growth axis so that part of the
sampled points can be used to represent the dental crown
according to the given α.

Training To this end, we obtained a tooth completion
dataset containing 28 groups and 300 = 50 × 6 samples in
each group. We leverage AdaPoinTr [40] as the backbone
network to conduct the training process. Qualitative results
are shown in Figure 8, and quantitative results are shown in
Table 2. It can be observed that the network, being trained,
can predict faithful complete teeth.

3.4. Implicit Reconstruction Based on Tetrahedral Tiling

Suppose we have a point cloud of a dental crown. Based
on the discussion above, upon completion, we obtain a new
point cloud P that encodes the entire tooth. The next step
is to reconstruct the polygonal surface of the tooth. To
our knowledge, Poisson reconstruction [16] is a competi-
tive method among traditional reconstruction approaches,



although the resulting mesh may suffer from poor triangu-
lation quality. In contrast, GradNormal [14] has advantages
in ensuring high triangulation quality. In this paper, we
combine Poisson reconstruction and GradNormal to lever-
age the strengths of both methods.

Indicator function The essence of Poisson reconstruc-
tion [16] is to reconstruct the indicator function

χM (p) =

{
0, p /∈ M

1, p ∈ M

by solving Poisson’s equation:

∆χ = ∇ · V⃗ ,

where V⃗ is the vector field aligned with the normal vec-
tors of the point cloud. To facilitate the Poisson reconstruc-
tion process, one must adapt the Octree to the sampling den-
sity.

The B-spline representation χ, coupled with the Octree,
defines the finite element system used to approximate the
indicator function. By default, the B-spline is of degree 3.
Higher degrees allow for better approximation but may in-
cur increased costs in space and time. It is important to note
that the B-spline function can return an indicator value for
any point (x, y, z). Instead of extracting the zero isosurface
using Marching Cubes, we recommend employing a differ-
ent isosurface extraction technique to achieve high-quality
triangulations, where the iso-value is set to 0.5.

Establishing tetrahedral space We adopt the Goldberg
tetrahedralization method for discreticizing the space [11].
As shown in Figure 4, we use a parameter e to control the
tetrahedral meshing density. A smaller e results in denser
space tiling and yields more accurate reconstruction results.

Figure 4. Goldberg tetrahedralization.

First, we partition the XOY plane using equilateral tri-
angles with a side length of e. Then, we select one triangle
and lift the three vertices by a, 2a, 3a, where a =

√
2e/4.

After that, we tile the space using such a tetrahedral primi-
tive.

Isosurface extraction Let T be one of the tetrahedral el-
ements for tiling the whole space. T has six edges; for
each edge, we deem the midpoint of this edge to be ap-
proximately lying on the underlying surface. In this way,
one can construct a MidNormal mesh. After that, we can
project each MidNormal mesh vertex to the closest point
according to the implicit function χ. Finally, we remove
all valence-four vertices by local edge flipping. The Grad-
Normal algorithm generates a triangular mesh with angles
between 35.2 and 101.5 degrees, thereby obtaining much
higher triangle quality than Marching Cubes.

3.5. Crown-Root Integration

In the following, we will demonstrate how to retain the
crown geometry and meshing topology by using the recon-
structed outcome as the guiding surface.

Figure 5. Generally speaking, by taking the original triangle mesh
M = (V,E, F ) as the base surface, the restricted Voronoi dia-
gram of V induces another triangle mesh M ′, where M is differ-
ent from M ′. (a) and (b) respectively show M and M ′. If M ′ is
identical to M , then M is strong-Delaunay.

Strong-Delaunay Generally speaking, by taking the orig-
inal triangle mesh M = (V,E, F ) as the base surface, the
restricted Voronoi diagram of V induces a different triangle
mesh M ′; See Figure 5. In the following, we first introduce
a type of triangle mesh, referred to as a strong-Delaunay
mesh in this paper.

Definition. Suppose we have a closed 2-manifold trian-
gle mesh M = (V,E, F ). By taking the original triangle
mesh as the base surface, the restricted Voronoi diagram of
V induces another triangle mesh M ′. We say that M is
strong-Delaunay if M ′ is identical to M .

From the perspective of differential geometry, a suffi-
ciently small local surface patch can be considered planar.
In 2D Euclidean space, Delaunay triangulation precisely
satisfies the property that the sum of a pair of edge-based
opposite angles is equal to or less than π. Thus, Delau-
nay meshes [22] represent a special type of triangle mesh
where the local Delaunay condition holds. However, for a
curved shape in 3D, a Voronoi cell may intrude into the op-
posite side of a thin-plate structure, causing the input mesh
surface M not to be strong-Delaunay. Therefore, it is evi-
dent that Delaunay meshes [22] is a necessary condition for



being strong-Delaunay. Nonetheless, as long as the triangu-
lation is sufficiently dense (by increasing the mesh resolu-
tion), Delaunay meshes will be strong-Delaunay.

In the subsequent mesh integration process, we combine
the vertices of the crown mesh with those of the root mesh
and perform an RVD partition on the guiding surface. Then,
based on the dual relationship between RVD and Delaunay,
we obtain the final integration result. Clearly, if the crown
mesh M does not meet the Strong-Delaunay requirements,
the topological relationship of the result cannot be guaran-
teed to be strictly consistent with the original crown mesh,
and edge flips may occur, as shown in Figure 5.

Two conditions To determine whether a triangle mesh is
strong-Delaunay, the above definition uses the original tri-
angle mesh as the base surface. Introducing a sufficiently
small perturbation to the base surface or using a slightly
different one will allow a strong-Delaunay mesh to main-
tain its meshing topology even with the new base surface.
Thus, it follows that the meshing topology of the crown part
can be preserved as long as the following two conditions are
satisfied:

1. The guiding surface is sufficiently close to the original
crown.

2. The mesh surface of the original crown is strong-
Delaunay.

Our algorithm is based precisely on these two conditions.

Algorithm for preserving crown Based on the above
discussion, there are two key points for restoring the crown.
Firstly, since the reconstructed outcome must differ from
the original crown, we sample additional points from the
original crown before running the Poisson reconstruction
solver. Simultaneously, we need to increase the resolution
of the tetrahedral tiling so that each tetrahedral element is
sufficiently small. Secondly, we add edge-based Steiner
points to the original crown model to ensure it becomes a
Delaunay mesh, which can be achieved by utilizing Liu et
al.’s algorithm [22].

Recall that we have a complete point cloud (including
the crown part V1 and the root part V2), as well as a re-
constructed surface M . Details on separating the crown
from the root part will be elaborated on later. We com-
bine the points in V2 with the vertices of the original crown
to yield a vertex set V . We then compute the restricted
Voronoi decomposition of M , with V serving as the point
set. The dual of the resulting RVD produces a triangle mesh
that preserves the vertices and connections of the original
crown. Figure 6 illustrates the original crown and the re-
sulting completed mesh, demonstrating that our approach
effectively retains the crown geometry and meshing topol-
ogy.

Figure 6. Our completion algorithm can retain the geometry and
meshing topology of the original crown model. (a) The original
crown. (b) The resulting completed mesh.

3.6. More Implementation Details

Tetrahedral tiling resolution As mentioned above, the
guiding surface must adequately fit the original crown
model. Therefore, we need to adjust the tetrahedral tiling
resolution by controlling the value of e. Below are the dis-
tances between the original mesh vertices and the recon-
structed surface for different values of e. From the data in
Table 1, it is clear that as e decreases, the distance from
the vertices on the original crown mesh to the reconstructed
mesh also decreases, indicating improved adherence of the
reconstructed mesh to the original crown. In our implemen-
tation, we set e to 0.5 to achieve a desirable fit.

e 1.0 0.75 0.5 0.25

davg 3.17e−2 2.29e−2 1.41e−2 7.10e−3

dmax 0.29 0.26 0.16 0.12

Table 1. For various values of e, we record the distances between
the crown and the reconstructed outcome.

Separation between the crown and the root Let M be
the reconstructed complete tooth shape while Mcrown be the
original crown. Let l be the dental growth axis. For a vertex
v ∈ M , if v satisfies

∥v − v′∥ > ϵ

or
∥v − v′∥ ≤ ϵ and (v′ − v) · l > 0,

for every vertex v′ in the crown Mcrown, then we label
v ∈ M with ‘Root Vert’. Otherwise, we label v with
‘Crown Vert’. The vertices in M are thus classified into
two groups.

Delaunay mesh We use lmin to denote the length of the
shortest edge in the mesh M , and θmin to represent the
smallest interior angle of the mesh. By adding Steiner



points onto edges, we can obtain a Delaunay mesh. The
key points for adding auxiliary points include:

1. For the edge e = (v1, v2) ∈ M , the two closest aux-
iliary points s1 and s2 to the endpoints of the edge are
at a distance of ρv:

ρv = min

{
lmin sin θmin

0.5 + sin θmin
,
lmin

2

}
.

2. For any two adjacent auxiliary points si and sj on the
edge e, the minimum gap ρe between si and sj satisfies

ρe ≤ 2ρv sin θmin.

Transition optimization Recall that we have a step to re-
store the crown from the guiding surface. This process may
lead to a non-smooth transition between the crown and the
root. Additionally, since the crown typically has skirts, this
further intensifies the non-smooth effects. We employ the
commonly used biharmonic smoothing technique to achieve
a natural transition. After identifying the transition area, we
optimize the vertex locations by solving the equation

L2x = 0,

where L is the Laplacian operator. Figure 7 illustrates the
smoothing effect.

Figure 7. Smoothing effect. We retain the crown and root parts,
while applying biharmonic smoothing to the transition area be-
tween them.

4. Experiments

4.1. Experimental Setting

Training setting Our training environment utilized the
PyTorch framework with an NVIDIA GTX 3090 Ti GPU.
The training was conducted for 100 epochs, using all other
default settings from the AdaPoinTr [40] configurations on
the PCN dataset [41]. The dataset was split into a training
set and a test set with a 4:1 ratio. After training, we con-
ducted tests on dental scan data without ground truth.

Evaluation metric We follow existing approaches [41,
33] and use the mean Chamfer Distance as the evaluation
metric, which measures the distance between the predicted
point cloud and the ground truth at the set level. For each
prediction, the Chamfer Distance between the predicted
point set P and the ground truth point set G is calculated
as follows:

Chamfer (P,G) =
1

2|P |
∑
p∈P

min
g∈G

||p− g||

+
1

2|G|
∑
g∈G

min
p∈P

||p− g||.

More specifically, we follow previous methods to use the
L2 norm to calculate the distance between two points and
then compute the Chamfer Distance. Additionally, follow-
ing [32], we employ the F-Score as another evaluation met-
ric. Both metrics assess the adherence between the comple-
tion results and the ground truth.

Evaluation data The number of vertices and triangles in
the intraoral scan data used in this experiment ranged from
100K to 150K, all acquired from commonly available in-
traoral scanners on the market.

4.2. Tooth Point Cloud Completion

We report the quantitative results of the tooth point cloud
completion test in Table 2, using the F-Score and CDl2

(multiplied by 1000). Additionally, the qualitative results
are presented in Figure 8.

Figure 8. Qualitative results on our dataset.



F-Score ↑ CDl2 ↓
Avg 0.58 0.37

Table 2. Quantitative results on our dataset.

As demonstrated by the data in the images and tables
above, our point cloud completion algorithm can generate
point cloud data with realistic shapes for various types of
teeth, showing high similarity to the ground truth. Subse-
quent experiments further validate the effectiveness of the
algorithm.

4.3. Mesh Reconstruction Quality

In this paper, we evaluate the quality of grid triangulation
using five metrics: the average quality of triangles Qavg, the
minimum quality of triangles Qmin, the average value of
the minimum angles of triangles θavg, the minimum value
of angles θmin, and the percentage of angles less than 30◦

among all triangle angles, denoted as %30◦ . The quality of
a triangle is calculated using the following formula:

Qt =
6St√
3ptht

,

where St represents the area of the triangle, pt repre-
sents the semi-perimeter, and ht represents the length of the
longest side. For equilateral triangles, the quality Qt equals
1, and as the triangle becomes more elongated, the value of
Qt decreases.

Figure 9. Facet details of reconstructed models.

We compare the proposed reconstruction method in this
paper with the Iterative Poisson Surface Reconstruction al-
gorithm (IPSR) [15]. Visualization of the quality results
and statistical data is provided in Figure 9, Figure 13 and
Table 5, respectively.

The data above demonstrate that the method proposed
in this paper produces a more uniformly triangulated mesh,
with shapes that are closer to equilateral triangles. This re-
sults in higher quality in mesh reconstruction, contributing

to improved geometric fidelity and overall performance in
applications requiring precise modeling.

4.4. Mesh Integration

The objective of the method proposed in this paper is to
preserve the morphology of the original tooth crown mesh
as much as possible while removing unreasonable over-
hanging edges during the integration process. In this exper-
iment, we performed vertex sampling on the original tooth
crown model Mc, selecting pi ∈ Mc, and calculated the Eu-
clidean distance di from each sampled vertex to the fused
result surface M . The number of vertices in different dis-
tance intervals is shown in Table 3.

Figure 10. Our complete outcomes, where the difference (of the
crown part) due to the completion operation is visualized in a
color-coded style.

Total [0, 1e−3] (1e−3, 1e−2] (1e−2, 1e−1]

11# 1828 1435 393 0
12# 1455 1116 328 11
13# 1522 1235 287 0
14# 1907 1598 309 0
15# 2116 1759 354 3
16# 2091 1693 392 6
17# 2080 1763 315 2

Table 3. Statistics for comparing the original crown and the inte-
gration outcome, using the models shown in Figure 10 for testing.
The numbers in the table represent the quantity of vertices pi in
different distance intervals, where pi ∈ Mc.

In the experimental results mentioned above, it can be
observed that our algorithm effectively preserves the vertex
positions and topological connections of the original dental
crown mesh in the occlusal, labial, and lingual areas, with
only minor errors likely due to floating-point precision. Re-
call that we initially discard vertices that are obviously lo-
cated in the skirt area, which helps generate more accurate
shape completion results.



Additionally, even if these skirt vertices were not com-
pletely eliminated during the initial mesh processing, their
adverse influence on shape integration will be addressed in
the subsequent optimization process. In the step of com-
puting RVDs, vertices far from the guiding surfaces do not
contribute to the surface dominance and are thus naturally
eliminated.

4.5. Robust and Efficiency

Extensive tests with diverse data from individuals of dif-
ferent ages and sexes validate the robustness of our pro-
posed algorithm. Additionally, it is capable of processing
uncommon tooth shapes, such as decayed, worn, and at-
tached teeth, as well as deciduous teeth, overly small teeth,
and other special cases.

Figure 11. Diverse tooth completion cases.

e = 1.0 e = 0.75 e = 0.5

Teeth Set 1# 8.73s 11.57s 14.37s
Teeth Set 2# 8.53s 11.17s 13.87s
Teeth Set 3# 8.82s 12.22s 15.13s
Teeth Set 4# 8.26s 11.12s 14.07s

Table 4. Runtime efficiency

We adjusted the tetrahedral tiling resolutions to differ-
ent levels, with the average processing time for a single
tooth shown in Table 4. It is evident that as the resolu-
tion increases, our algorithm achieves higher reconstruc-
tion accuracy but requires more time. Although reducing
the resolution (which means a higher e value) can improve
the efficiency of our algorithm, a resolution that is too low
may cause a significant difference between the guiding sur-

face and the original crown mesh, leading to vertex loss on
the crown during the mesh merging process. Therefore, we
need to strike a balance between performance and accuracy.
In our implementation, we choose e = 0.5 as the commonly
used resolution.

Additionally, parallel computation techniques can be
employed for further optimization, enhancing performance
in practical applications. More experimental results are pre-
sented in Figure 14.

4.6. User Feedback

Given the specific context of dental modeling, evaluat-
ing its performance necessitates participants with a back-
ground in dental medicine. In this user study, we invited
several experienced dental technicians, each with years of
professional experience, to score the generation and inte-
gration outcomes for over 50 sets of data, comprising ap-
proximately 1,300 teeth.

Figure 12. User feedback statistics, the statistics in the table repre-
sent the frequency of user-reported instances for each issue.

From Figure 12, it is evident that the participants are sat-
isfied with our completed outcomes, particularly noting that
our algorithm can preserve the crown, unlike existing algo-
rithms. However, they believe there is still room for im-
provement, specifically at the base of multi-rooted teeth. In
the future, we will collect more data and focus on the gen-
eration of multi-rooted teeth.

5. Conclusion

In this paper, we introduce an algorithmic framework
for completing a tooth model from a dental crown. The
main advantage of our algorithm is its ability to preserve not
only the geometry and mesh topology of the original dental
crown but also the overall triangulation quality and natural
shape. Specifically, we present several contributions: First,
we combine Poisson reconstruction with GradNormal to
leverage the strengths of both methods. Second, we discuss
a type of strong-Delaunay mesh and provide an algorithm
that preserves the geometry and mesh topology of the given
part while addressing the shape completion problem. Last
but not least, we utilize biharmonic smoothing to achieve



a natural transition between the crown and root, enhanc-
ing the shape appearance of the completed teeth. Extensive
experiments validate the effectiveness of the proposed algo-
rithm.

Acknowledgement

The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions. This work
is supported by National Natural Science Foundation of
China (62272277, U23A20312).

References

[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface recon-
struction. IEEE transactions on visualization and computer
graphics, 5(4):349–359, 1999. 3

[2] S. Bischoff, D. Pavic, and L. Kobbelt. Automatic restoration
of polygon models. ACM Transactions on Graphics (TOG),
24(4):1332–1352, 2005. 2

[3] M. Centin, N. Pezzotti, and A. Signoroni. Poisson-driven
seamless completion of triangular meshes. Computer Aided
Geometric Design, 35:42–55, 2015. 2

[4] L. Chen and M. Holst. Efficient mesh optimization schemes
based on optimal delaunay triangulations. Computer Meth-
ods in Applied Mechanics and Engineering, 200(9-12):967–
984, 2011. 3

[5] Z. Chen, J. Cao, and W. Wang. Isotropic surface remeshing
using constrained centroidal delaunay mesh. In Computer
Graphics Forum, volume 31, pages 2077–2085. Wiley On-
line Library, 2012. 3

[6] X.-X. Cheng, X.-M. Fu, C. Zhang, and S. Chai. Practical
error-bounded remeshing by adaptive refinement. Computers
& Graphics, 82:163–173, 2019. 3

[7] Z. Cui, C. Li, N. Chen, G. Wei, R. Chen, Y. Zhou, D. Shen,
and W. Wang. Tsegnet: An efficient and accurate tooth seg-
mentation network on 3d dental model. Medical Image Anal-
ysis, 69:101949, 2021. 2

[8] F. Dassi, A. Mola, and H. Si. Curvature-adapted remeshing
of cad surfaces. Procedia Engineering, 82:253–265, 2014. 3

[9] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi
tessellations: Applications and algorithms. SIAM review,
41(4):637–676, 1999. 3

[10] M. Dunyach, D. Vanderhaeghe, L. Barthe, and M. Botsch.
Adaptive remeshing for real-time mesh deformation. In Eu-
rographics 2013. The Eurographics Association, 2013. 3

[11] D. Eppstein, J. M. Sullivan, and A. Üngör. Tiling space
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Figure 13. Qualitative results on triangulation quality. The greener areas indicate higher triangulation quality, while the redder areas
indicate lower quality.

Tooth Qavg Qmin θavg θmin %<30◦

IPSR 11 0.60 1.60e−4 32.23 5.37e−3 39.62%
Ours 11 0.84 8.75e−2 48.67 4.47 2.82%

IPSR 12 0.61 7.25e−5 32.07 5.06e−3 40.01%
Ours 12 0.85 1.02e−2 48.83 0.58 2.82%

IPSR 13 0.61 6.42e−4 32.43 1.61e−2 38.70%
Ours 13 0.84 6.27e−2 48.37 3.75 3.10%

IPSR 14 0.60 1.53e−4 31.98 1.66e−2 40.27%
Ours 14 0.85 3.43e−2 49.04 1.94 2.60%

IPSR 15 0.60 2.32e−4 32.12 1.34e−2 39.49%
Ours 15 0.85 4.66e−2 48.82 2.61 2.87%

IPSR 16 0.61 2.57e−5 32.58 1.04e−2 38.26%
Ours 16 0.85 1.67e−2 48.90 1.04 2.80%

IPSR 17 0.61 7.25e−6 32.38 6.01e−3 38.77%
Ours 17 0.85 1.83e−3 48.97 1.12 3.09%

Table 5. Quantitative results on triangulation quality.



Figure 14. More experimental results.


