
An efficient and robust tracing method based on matrix representation for
surface-surface intersection

Hongyu Chen, Xiao-Diao Chen
School of Computer, Hangzhou Dianzi University

Hangzhou, China
chenhongyu651@gmail.com(Hongyu Chen), xiaodiao@hdu.edu.cn(Xiao-Diao Chen)

Abstract

The surface-surface intersection(SSI) problem is a
fundamental one in CAD/CAM. Tracing methods are
widely applied for solving the SSI problem, where
branch jumping and branch-missing are two of the
challenging things. This paper takes the intersection
problem between two parametric surfaces as an ex-
ample and presents an SRS-BFS method based on the
Dixon matrix technique, which turns the tracing pro-
cess into a simple root-solving (SRS) problem and in-
troduces breadth-first searching (BFS) method for solv-
ing branch points robustly. Moreover, it provides an
Edge-Chain-Tracing (ECT) method to further improve
the tracing efficiency. Extensive experiments have been
conducted on various surfaces, and their floating-point
representations have been used as well. These examples
have covered rich intersection curve topology with mul-
tiple branches and singular points. All examples show
that the SRS-BFS method can avoid branch jumping
problems, and achieves higher efficiency and robustness,
even with their floating-point representation and a given
tolerance.

Keywords: parametric surface tracing methodbranch
jumping loop detectionSRS-BFS method.

1. Introduction

The surface/surface intersection (SSI) problem is a fun-
damental one in CAD/CAM [15] and computer graph-
ics [12]. It is useful for the design of complex objects
and NC machining [1]. It is also taken as one of the most
challenging technical issues in geometric and solid model-
ing [11, 17]. As pointed out in [15], the lack of topologi-
cally consistent surface-surface intersection algorithms be-
comes a common consensus on the greatest cause of poor
reliability of CAD systems.

In principle, the SSI can be defined as solutions of
an equation system with different dimensions, i.e., non–
solution, zero–dimension of finite points, one–dimension of

curve branches, or even two–dimension of coincident sur-
face patches [11]. A good intersection algorithm should ef-
ficiently and correctly compute all of these features [7, 15,
13].

Typical SSI approaches include the algebraic
method [15], the tracing method [4], the lattice method [20],
the subdivision method [20], the homotopy method [14], as
well as hybrid methods [18]. Different methods have their
own advantages and disadvantages. For example, the alge-
braic method can preserve the geometric features such as
small loops and singular points on the intersection curve to
a great extent, but it usually needs the implicitization of one
surface which is a challenging problem [22, 16]. Similarly,
the tracing method can be easily implemented and is widely
adopted in many CAD systems. However, the starting
points for tracing need to be accurately and efficiently
solved from a non-linear equation system, and furthermore,
branch jumping or loop missing of the intersection curves is
not easy to avoid in the tracing process. The lattice method
and the subdivision method are an easy common way to
compute the discrete points on the intersection curve, but
they are generally not efficient enough and tend to miss
small loops or isolated points [4, 20, 21, 5].

Hybrid methods are a good trade-off between efficiency
and robustness, and they are more widely applied [7], such
as the hybrid one of recursive subdivision and curve trac-
ing [3, 12], the hybrid one of the algebraic method and
the tracing method [4, 20, 21, 5]. A matrix representation-
based method combined with the lattice method is provided
in [15]. It significantly improves the efficiency of the cor-
responding SSI algorithm. Recently, the method in [27] im-
proves the topology of the intersection. However, the topol-
ogy of the intersection may be confused, which leads to ei-
ther branch jumping or missing intersection segments, see
also the case shown in Fig. 6(g).

This paper takes the intersection problem between two
parametric surfaces as an example, and presents a SRS-
BFS method based on the Dixon matrix technique, which
turns the tracing process into a simple root-solving (SRS)
problem, and introduces the breadth-first searching (BFS)

1

method for solving branch points robustly. Given two
parametric surfaces, a bivariate function M(u, v) in Dixon
matrix representation is obtained by using the method in
[15]. Firstly, given a starting point, an Edge-Chain-Tracing
(ECT) method is presented to trace the lattices of the small-
est size, which can reduce much of the lattices used in [15],
and leads to a much better efficiency. Secondly, we turn the
intersection point computation problem into a simple root-
solving problem, which can detect whether or not there are
two branches in a lattice. Partly because of the high accu-
racy of the intersection points, numerical experiments show
that the SRS-BFS method can satisfy the given tolerance
even with a bigger size of the lattices. Finally, a breadth-
first searching is introduced to achieve good initial values
for solving the branch intersection points, and improves the
corresponding robustness. Experimental results verify both
the efficiency and the effectiveness of the proposed method.

The main contributions are summarized as follows:

1. The SRS-BFS method is proposed for the SSI prob-
lem, which can avoid the branch jumping or loop-
missing problem, preserve the topology of the inter-
section (under the given tolerance), and achieve bet-
ter efficiency and robustness, even with floating-point
arithmetic.

2. It combines the ECT method with the previous matrix
representation, which admits the advantages of the ma-
trix representation and further improves the efficiency
significantly.

3. Fixing one parameter turns the tracing process into
a simple root-solving (SRS) problem; and combining
with the BFS method, can efficiently trace the inter-
section point and robustly solve a branch point or a
singular point.

2. Related work

The SSI problem has been extensively explored [6–
9,14]. Typical approaches include the algebraic method,
the tracing method, the lattice evaluation method, the sub-
division method, the hybrid method, coincidence detection
methods, and so on.

Algebraic methods. The algebraic methods usually uti-
lize the implicit equation of one of the two parametric sur-
faces for substituting the parametric form of the other sur-
face, and finally, obtain an algebraic curve in the paramet-
ric domain [7,10]. The advantage of algebraic methods is
that they preserve the algebraic properties of the intersec-
tion curve well. However, the implicitization of rational
surfaces of a high degree is not easy in general; moreover,
the obtained algebraic curve in parametric domain gener-
ally has a high degree, which causes difficulty in sequence
computations.

Tracing methods. The tracing methods are the most
widely used methods for surface-surface intersection. The
strengths of this technique include generality and simplic-
ity. The tracing methods determine a starting point for each
intersection branch and then trace out a sequence of inter-
section points from each starting point using the local dif-
ferential geometry [1,6,13,15]. The disadvantages of such
methods are the requirement of starting points which are not
easy to hunt and the determination of tracing directions at
singular points, and even worse it may suffer from branch
jump problems.

Lattice evaluation methods. The lattice evaluation meth-
ods decompose one of the two surfaces to its isoparametric
curves, and then compute the intersections of these isopara-
metric curves with the other surface [12]. The final intersec-
tion curve is obtained by connecting the resulting discrete
points. The main problem here is that an improper choice
of grid size will lose small loops and isolated points.

Subdivision methods. The main idea of subdivision
methods is to decompose the problem into simpler ones re-
cursively, which has direct solutions such as plane/plane in-
tersection. Combining all the individual solutions together
gives the complete intersection curve. However, in the prac-
tical implementation of finite subdivision steps, small loops
may be missed and it is difficult to guarantee the correct
connectivity near the singular points [8,16].

Hybrid methods. Hybrid methods combine two or more
methods to take advantage of them [9,13]. For example,
hunting starting points using algebraic methods, and then
tracing out the intersection curve using marching methods.
The hybrid of the algebraic method and the tracing method
is often used to balance the efficiency and the topological
correctness of the intersection curve. However, the branch
jumping problem or the lack of segments problem still ex-
ists.

Coincidence detection methods. For the coincidence
case where two surfaces coincide with each other, the trac-
ing method and its corresponding hybrid methods may fail
because of the following two reasons [19, 24]: (1) The sub-
division method may lead to endless subdivisions and the
system may crash because of memory depletion; and (2)the
equation system for solving the next intersection point is
degenerated. In 1997, Berry and Patterson [23] discussed
the uniqueness of Bézier control points. In 2011, Wang
et.al. [24] proved the coincidence condition between two
cubic Bézier curves in a different way from that of [23].
Later, Chen et.al. [8, 10] pointed out that if a Bézier curve
is reparameterized in two different polynomials of the same
degree, the resulting two Bézier curves of the same degree
coincide but have a non-coincident control polygon. On the
other hand, if two Bézier curves are properly parameterized
which cannot be reparameterized into other Bézier curves
of a lower degree, the corresponding coincidence condition

is equivalent to the uniqueness of Bézier control points. The
coincidence problem of two rational cubic Bézier curves
was discussed in [10]. Recently, Wang, Chen, and Yong dis-
cussed proper reparameterization of plane rational Bézier
curves [25]. Because of the floating-point arithmetic, co-
incidence conditions with tolerance control between two
curves or surfaces are still challenging.

3. Preliminaries

Given two parametric surfaces S1(u, v) = (
x1(u, v)

w(u, v)
,

y1(u, v)

w(u, v)
,
z1(u, v)

w(u, v)
) and S2(s, t) = (

x2(s, t)

γ(s, t)
,
y2(s, t)

γ(s, t)
,

z2(s, t)

γ(s, t)
). The corresponding intersection problem is equiv-

alent to solving the following equation system f(s, t) = x1(u, v)γ(s, t)− x2(s, t)w(u, v) = 0,
g(s, t) = y1(u, v)γ(s, t)− y2(s, t)w(u, v) = 0,
h(s, t) = z1(u, v)γ(s, t)− z2(s, t)w(u, v) = 0.

(1)

3.1. Eliminating s and t by using Dixon matrix

Suppose f(s, t),g(s, t) and h(s, t) are polynomials of
degree n and m in s and t, respectively. Let

ρ(s, t, α, β) =

∣∣∣∣∣∣
f(s, t) g(s, t) h(s, t)
f(α, t) g(α, t) h(α, t)
f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣ ,
δ(s, t, α, β) =

ρ(s, t, α, β)

(s− α)(t− β)
,

=

α2m−1βn−1

...
α2m−1

...
βn−1

...
1

T

D(u, v)

sm−1t2n−1

...
sm−1

...
t2n−1

...
1

(2)

D(u, v), which is a square matrix of size 2mn× 2mn, and
its determinant |D(u, v)| are defined as the corresponding
Dixon matrix and Dixon resultant [2, 26].

Suppose rank(D)=r. It is worth noting that the corre-
sponding matrix representation M̄(x, y, z, w) of S2 is de-
duced in [15, 27], which is of size r× r. Let p0 = (u0, v0).
If S1(p0) = S1(u0, v0) is an intersection point on S2, we
have that

F (u0, v0) = F (p0)
= det(M̄(x1(p0), y1(p0), z1(p0), w(p0))) = 0.

(3)

In this paper, we refer to references [15, 27] for more
detailed explanations of the mathematical formulations and
specific implementation steps for the Dixon matrix tech-
nique.

3.2. Coincidence detection

As shown in Section 3.1, the corresponding intersections
should satisfy

F (u, v) = 0, (4)

where u and v are parameters of S1(u, v). In principle, if
M̄(x1, y1, z1, w) is in polynomial form of x1, y1, z1, w, and
S1(u, v) is a NURBS surface, F (u, v) can also be written
into NURBS form as

F (u, v) =

k∑
i=0

l∑
j=0

wi,jpi,jBn,i(u)Bm,j(v)

k∑
i=0

l∑
j=0

wi,jBn,i(u)Bm,j(v)

, (5)

where Bn,i(u) and Bm,j(v) are B-spline basis functions of
degree n and m, wi,j and pi,j are weight and control point,
respectively.

If F (u, v) ≡ 0 for (u, v) ∈ [a, b]×[c, d], i.e., pi,j = 0 for
all of i = 0, 1, · · · , k, j = 0, 1, · · · , l, one has that S1(u, v)
coincides with the other surface [23]. Then, the coincidence
regions are detected and the resulting intersection surface
patches are returned.

3.3. Solving a simple root case within an interval

Assume that there is a simple root t⋆ ∈ [a, b] of g(t),
such that g(a) · g(b) < 0. By using the SRS method for
solving a simple root in [9], the explicit formula of ti is
iteratively computed as follows without derivatives.

ti =

(
i−1∑
j=1

Ai,jtj) · (
i−1∏
k=1

g(tk))

(
i−1∑
j=1

Ai,j) · (
i−1∏
k=1

g(tk))

=

i−1∑
j=1

Ai,jtj

i−1∑
j=1

Ai,j

, i ≥ 3, (6)

where

Di,j =

1, i = 3,∏
1 ≤ k < r ≤ i − 1,

k, r ̸= j,

(tk − tr), i > 3,

and Ai,j = (−1)j · Di,j

g(tj)
.

4. The SRS-BFS method

As shown in Eq. (4), the intersection curves can be rep-
resented by F (u, v) = 0, see more details deduced in the
methods in [15, 27]. In principle, the size of a grid can be
fixed as the given smallest size ∆ in ECT, where no redun-
dant grids are traced, which means much better efficiency
of the ECT method. By using the SRS method, even given
a bit big size grid, the topology of the grid can be verified
to be correct in all of the testing cases. By using the BFS
method, good initial values are obtained for solving branch
points, even for complicated cases.

4.1. The outline of the SRS-BFS algorithm

The outline is as follows.

Algorithm 1. The SRS-BFS algorithm of SSI.
Input: Two parametric surfaces S1 and S2.
Output: The intersection curves.

1. Begin: Compute the initial points (Section 4.2).

2. By using the Edge-Chain-Tracing method, the inter-
section is traced branch by branch (Section 4.3).

3. Compute the intersection point on each edge by using
the SRS method (Section 4.4).

4. Tracing from a breakpoint pair by using the BFS
method (Section 4.5).

5. End: Output all of the intersection curves.

4.2. Computing the initial points for tracing processes

The initial points mainly consist of two parts: (1) the
boundary points such that

F (u, i) = 0 or F (j, v) = 0; (7)

where i, j ∈ {0, 1}; and (2) the extreme points such that

F (u, v) = Fu(u, v) = 0 or F (u, v) = Fv(u, v) = 0. (8)

The methods in [6, 18] are applied for solving the equa-
tion systems (7) and (8).

Remark 1. If there are two branches of intersection
curves intersected at point p (named as branch point) of pa-
rameters (u, v), one obtains

F (u, v) = Fu(u, v) = Fv(u, v) = 0. (9)

In principle, the parameter (u, v) of an isolated point also
satisfies Eq. (9).

4.3. The Edge-Chain-Tracing method for tracing a
branch

As shown in Fig. 1, the distribution of F (u, v) at a 2 ×
2 grid can be divided into four classes: (a) no edges; (b)
four edges; (c) two non-parallel edges; and (d) two parallel
edges.

For cases (c) and (d), there is one inside edge (denoted
by a black arrow) and one outside edge (denoted by a red
arrow). Firstly, starting from an inside edge ei of a grid gi,
there is one outside edge ei+1 and unique grid gi+1 sharing
ei+1 with grid gi. And then, by tracing gi+1, the edge ei+1

is taken as the inside edge, and we obtain the unique outside
edge ei+2 of gi+1. The above tracing process continues un-
til either the grid has been used or the grid is a boundary

Figure 1: Illustration of four classes of the distribution of
F (u, v) at a 2× 2 grid.

grid such that there is no grid sharing with the last edge. Fi-
nally, the edge chain consisting of {· · · , ei, ei+1, ei+2, · · · }
is achieved. Fig. 2 illustrates more details of the ECT pro-
cess. The process starts at grid 1# from its boundary, the
next but unique grid shared the edge in dashed red with the
i# grid are grid (i+ 1)#, where i = 1, 2, · · · , 6. Note that
grid 7# is on the boundary such that there is no grid shared
the edge in dashed red with it, the corresponding ECT pro-
cess stops.

Figure 2: Illustration of ECT process.

Remark 2. In this paper, the branch tracing process
stops at the grid of case (b); otherwise, the grid is traced
in three different directions instead.

4.4. Computing the intersection point on each edge by
using the SRS method

Starting from the intersection point Ii on ei, we want to
compute the next intersection point Ii+1 on ei+1. Suppose
that the grid gi+1 containing ei and ei+1 has four points
pi,j , j = 1, 2, 3, 4, where pi,j , j = 1, 2 are two end points
of ei.

Firstly, by applying the SRS method without derivatives,

F̄i(t) = F (pi,1 · (1− t) + pi,2 · t) = 0

can be solved and the intersection point on ei is computed.
Secondly, suppose that the ray Ii−1(1 − t) + Iit, t > 0

prior to intersect with Li, which is one of the three edges

of grid gi+1, if Li is checked to be the outside edge ei+1 of
grid gi+1 by computing the sign of F (pi,3), then the sign of
F (pi,4) is unnecessary to compute, which will speed up the
Edge-Chain-Tracing process.

Thirdly, for a single branch tracing case, the SRS method
can be applied for tracing the intersection points without
grid computation. Given a point Ii(ui, vi) on a branch, we
trace the next point Ii+1(ui+1, vi+1) as follows. Note that

0 = F (Ii+1) ≈
F (Ii) + Fu(Ii)(ui+1 − ui) + Fv(Ii)(vi+1 − vi)
= Fu(Ii)(ui+1 − ui) + Fv(Ii)(vi+1 − vi).

(10)

Figure 3: Illustration of two possible cases (1a) and (1b).

Without loss of generality, assume that |Fu(Ii)| >
|Fv(Ii)|, Eq. (10) leads to

|∆| = |ui+1 − ui| ≥ |vi+1 − vi|. (11)

As shown in Fig. 3, by setting ui+1 = ui + ∆ · k, where
k ∈ {1,−1} denotes the tracing direction, there may be
three possible cases:(1) if F (ui + ∆, vi + ∆) · F (ui +
∆, vi − ∆) < 0, there may be two cases: (1a) A simple
root vi+1 of F (ui + ∆, v) = 0 which can be successfully
solved by the method in Section 3.3, and (1b) multiple roots
of F (ui + ∆, v) = 0 such that the method in Section 3.3
converges slowly or even fails, the tracing process stops at
this marching direction, and mark (ui, vi) as a breakpoint;
(2) if F (ui + ∆, vi + ∆) · F (ui + ∆, vi − ∆) = 0, the
root vi+1 is verified to be either vi + ∆ or vi − ∆; (3) if
F (ui +∆, vi +∆) · F (ui +∆, vi −∆) > 0, there may be
multiple roots of F (ui+∆, v) within [vi−|∆|, vi+|∆|], the
tracing process stops at this marching direction, and mark
(ui, vi) as a breakpoint.

Remark 3. A breakpoint means that there may be two
or more branches locate in a local region or sub-grid.

4.5. Tracing from a breakpoint pair by using the BFS
method

Firstly, we illustrate how to trace a branch starting from
a breakpoint pair. For the breakpoints obtained in the above

Figure 4: Illustrating two cases of breakpoint tracing:(a)
Two intersection points; and (b) no intersection points.

tracing process in Section 4.4, we make (bi,bj) as a pair
if ||bi − bj || ≤ 2

√
2∆. As shown in Fig. 4, it is divided

into two cases: (a) there are branches to be traced; and (b)
there is no branch and the tracing process stops. These two
cases can be distinguished by using the signs of the deriva-
tive Fu(u, v) or Fv(u, v), e.g., case (a) has different signs
of the derivatives at points b3 and b4, while case (b) usually
has the same signs as the derivatives at b3 and b4. Thus, we
can isolate the two roots by solving the root of the deriva-
tive Fu(u, v) or Fv(u, v), and then obtain two single-root-
solving problems.

Secondly, we show how to solve or refine the branch
point by using the BFS method. As shown in Fig. 5,
there are four starting points and four breakpoints denoted
by solid circles in red and in black, respectively. Differ-
ent from the Depth-First Searching method which traces
branch by branch, the BFS method simultaneously traces
the branches from all of the four starting points, which stops
at the breakpoints. Combining the SRS technique with the
information of the breakpoints, one can solve the possible
branch point, e.g., one traces the four breakpoints with half-
step size ∆/k one by one, where k = 2, these breakpoints
synchronously approach and get closer and closer to the
branch point. And then, the topology of the local region can
be distinguished with the given tolerance, even for the case
in Example 5.7 which is also shown in Fig. 6(g). In princi-
ple, once a smaller k is used, these breakpoints get closer to
the branch point. Moreover, if necessary, the barycentre of
these breakpoints is taken as the initial value for solving the
possible branch point, as shown in Fig. 5(b–c).

5. Examples and discussions

This section provides some examples that show the effect
of our technology in a range of challenging circumstances.
Our examples are divided into two parts: (1) An algebraic
surface and a parametric surface which needs no matrix rep-
resentation, including the intersection of quadratic surfaces
with classic surfaces that have complex self-intersection
properties, such as parametric surface and octahedron sur-
faces, and the intersection between quadratic surfaces and a

Figure 5: Illustration of tracing from breakpoint pairs (de-
noted as a solid circle in black): (a) No branch point; (b) a
transverse branch point; and (c) a contact branch point.

NURBS surface; and (2) two parametric surfaces from the
examples in [15] where the matrix representation is utilized.
All examples shown are run in MAPLE, with an Intel(R)
Core(TM) i5-13600K @ 3.50GHz Windows PC.

5.1. Examples

This section lists the following six examples. It shows
that the SRS-BFS method works well on all of these exam-
ples, e.g., it avoids branch jumping problem and computes
the branch points robustly, both with and without floating-
point arithmetic.

Example 5.1(Two Separate Branches). Consider the in-
tersection of a cylindrical surface patch P1(x, y, z) = x2 +
(y − 1)2 − 4 = 0 and a rational Bézier surface Q1(u, v) =

(
x(u, v)

w(u, v)
,
y(u, v)

w(u, v)
,
z(u, v)

w(u, v)
),u ∈ [0, 1], v ∈ [0, 1], where

x(u, v)
y(u, v)
z(u, v)
w(u, v)

 =

2u2 − 2v2 − 2u+ 2v + 1

−1 + v2(4u2 − 4u+ 2) + 2v
2u(2v2 − 2v + 1)2

(2u2 − 2u+ 1)(2v2 − 2v + 1)

 (12)

The intersection can be categorized into two separate
branches, which is shown in Fig. 6(a). In this case, there
is no breakpoint pair, and the tracing method works well.

Example 5.2(Two Branches that Intersect at a Com-
mon Tangent Point). Consider the intersection of a sphere
P2(x, y, z) = 4x2 + (2y − 1)2 + 4(z − 1)2 − 16 = 0 and
the surface Q1(u, v). The intersection of the two surfaces is
two tangent curves, which have a common tangent point, as
shown in Fig. 6(b). There is a singular point on the intersec-
tion curve which is of parameter (u, v) = (0.5, 0.5). The
resulting intersection curves from the SRS-BFS method and
the intersection in the parameter domain are shown in Fig.
6(b) and Fig. 7(b), respectively.

Example 5.3(Two Branches that Intersect Transversely
at a Point). Consider the intersection of a cylindrical surface
patch P3(x, y, z) = 4x2 + (2y − 1)2 − 16 = 0 and surface
Q1(u, v). The intersection of the two surfaces is two in-
tersecting curves, which have a singular point of parameter
(u, v) = (0.5, 0.5), as shown in Fig. 6(c). The resulting

intersection curves from the SRS-BFS method and the in-
tersection in the parameter domain are shown in Fig. 6(c)
and Fig. 7(c).

Example 5.4(Six Separate Branches Including a Few
Loops). Consider the intersection of a cylindrical surface
patch P4(x, y, z) = y2 + z2 − 100 = 0 and rational Bézier

surface Q2(u, v) = (
x2(u, v)

w2(u, v)
,
y2(u, v)

w2(u, v)
,
z2(u, v)

w2(u, v)
),u ∈

[−5, 9],v ∈ [−4.5, 4.5], where
x2(u, v)
y2(u, v)
z2(u, v)
w2(u, v)

 =

u
v

7 + 3 sin(u) cos(v)
1

 (13)

The intersection of the two surfaces consists of seven loops
including three minimal loops, see also Fig. 6(d). In this
case, one has

F (u, v) = v2 + (7 + 3 sin(u) cos(v))2 − 100, (14)
Fu(u, v) = 6(7 + 3 sin(u) cos(v)) cos(u) cos(v), (15)

Fv(u, v) = 2v − 6(7 + 3 sin(u) cos(v)) sin(u) sin(v). (16)

The solutions of Eq. (14)∼ Eq.(16) can be verified to be

(u, v) = (π/2 + 2kπ, 0), k = −1, 0, 1,

within [−5, 9] × [−4.5, 4.5]. The resulting intersection
curves from the SRS-BFS method and the intersection in
the parameter domain are shown in Fig. 6(d) and Fig. 7(d),
respectively.

Example 5.5(Intersection Curve with Several Cusps).
Consider the intersection of a cylindrical surface
P5(x, y, z) = z2 + (x + 7)2 − 121 = 0 and Octahe-

dron surface Q3(u, v) = (
x3(u, v)

w3(u, v)
,
y3(u, v)

w3(u, v)
,
z3(u, v)

w3(u, v)
),

u, v ∈ [−1, 1], where
x3(u, v)
y3(u, v)
z3(u, v)
w3(u, v)

 =

8(v2 − 1)3(u2 − 1)3

−64v3(u2 − 1)3

64u3(v2 + 1)3

(v2 + 1)3(u2 + 1)3

 (17)

and Q3(u, v) is a NURBS with a few apex edges. The inter-
section of the two surfaces is a quadrangle, which has four
cusps, as shown in Fig. 7(e). In this case, there are four
initial points, two (±λ1, 0) satisfy F (u, v) = Fu(u, v) = 0
while the other two (0,±λ2) satisfy F (u, v) = Fv(u, v) =
0, where λ1 ≈ 0.3391361554 and λ2 ≈ 0.3495907910.
The resulting intersection curves are then traced, as shown
in Fig. 6(e).

Example 5.6(Three Branches Including a Self-
intersection Point and a Common Tangent Point). Consider
the intersection of a cylindrical surface patch

P6(x, y, z) = (y − 11)2 + x2 − 121 (18)

(a) Example 5.1 (b) Example 5.2 (c) Example 5.3 (d) Example 5.4

(e) Example 5.5 (f) Example 5.6 (g) Example 5.7

(h) Example 5.8

Figure 6: Examples of the intersections of two surfaces. For each example, the left column shows two intersecting surfaces
and their intersection (in red) given by our algorithm; the right column shows the intersection which is shown on the left
column more clearly, and the singular points are marked by blue dots.

(a) Example 5.1 (b) Example 5.2 (c) Example 5.3 (d) Example 5.4

(e) Example 5.5 (f) Example 5.6 (g) Example 5.7 (h) Example 5.8

Figure 7: Examples of intersection of two surfaces in the parameter domain.

and a parametric Surfaces Q4(u, v) = (
x4(u, v)

w4(u, v)
,

y4(u, v)

w4(u, v)
,
z4(u, v)

w4(u, v)
), u ∈ [−2, 2],v ∈ [−2, 2], where

x4(u, v)
y4(u, v)
z4(u, v)
w4(u, v)

 =

−u3 + 3uv2 + 3u
−v3 + 3u2v + v

3u2 − 3v2

3

 (19)

In this case, Q4(u, v) is a NURBS with complicated fea-
tures such as self-intersection curves, and the corresponding
intersection of the two surfaces consists of three branches
that have a self-intersected point and a common tangent
point, as shown in Fig. 6(f). Though the parameters of the
self- intersected point and the tangent point satisfy Eq.(8),
there is no self-intersected point in the parameter domain,
as shown in Fig. 7(f). So one needs to verify whether or not
an initial intersection point is a self-intersected point.

Example 5.7(Two Branches Including Two Separate In-
tersecting Lines). Consider the intersection of a para-
metric surfaces patch P7(x, y, z) = (x − 7)2 + (y −
25)2 − 676 = 0 and a parametric surfaces Q5(u, v) =
(x5(u, v), y5(u, v), z5(u, v)), u, v ∈ [−2, 2], wherex5(u, v)

y5(u, v)
z5(u, v)

 =

10e−5+(u−30)2/180 cos(v)

10e−5+(u−30)2/180 sin(v)
u

 (20)

In this case, the corresponding intersection of the two
surfaces consists of two branches which have two separate
intersection lines, as shown in Fig. 6(g). On the other hand,
as shown in Fig. 7(g), the distance between the intersection
lines in the parameter domain is within the given smallest
size of a grid.

5.2. Comparing with the method M1 in [15]

The SRS-BFS method (also denoted as Mnew) applies
the novel matrix representation methods in [15, 27], and the
difference between M1 and Mnew is the marching process.
In M1, if the values F (u, v) at the four corner points of a
grid have the same sign, the grid is neglected, see also the
grids in blue in Fig. 9; otherwise, the grid is divided into
four sub-grids for further checking. The above checking
processes iteratively continue until the size of the sub-grids
is within the given tolerance. As shown in Fig. 9, as a re-
sult, the four corner points of the sub-grids traced in M1

are denoted by circles in black or white, and M1 neglects
the grids in blue; while all of the traced grids in Mnew are
of the smallest size, including the grids in green and blue.
Four more examples, i.e., 5.8–5.11, are added, where 5.9–
5.11 are also the examples in [15]. The number of the corner
points of the traced grids from M1 and Mnew are listed in
Table 1, where “/” means that M1 missed the branches of
the intersection. Note that the numbers of M1 and Mnew in
Example 5.9 are close to each other, the reason is that M1

neglects part of the grids which contain intersection seg-
ments, as shown in Fig. 8. Compared with M1, Mnew re-
quires about 51% corner points where the value of F (u, v)
is needed to be computed.

Example 5.8(One Branch) Consider the intersection of
a surface patch P8(x, y, z) = x2+y2−100 = 0 and a para-
metric surface Q6(u, v) = (x6(u, v), y6(u, v), z6(u, v)),

(a) M1 (b) Mnew

Figure 8: The resulting marching grids from (a) M1; and
(b) Mnew.

Table 1: The number of corner points from M1 and Mnew

Exam 5.1 5.2 5.3 5.4 5.5 5.6
M1 1151 / 1696 / / 1028
Mnew 588 807 879 464 352 501
Exam 5.7 5.8 5.9 5.10 5.11 Mnew/M1

M1 2038 782 1996 785 782 51.08%
Mnew 1054 398 1824 410 398

Figure 9: Comparison results between M1 in [15] and
Mnew (partial intersection of Example 5.8): (a) grids from
M1: the four corner points are denoted as circles in black
or white; and (b) grids from Mnew: the grids in green or
blue. M1 missed the branch segments contained in blue
sub-grids.

u, v ∈ [−2, 2], where

x6(u, v)
y6(u, v)
z6(u, v)

 =

 2u
v

5 sin(u) cos(v)

 (21)

Example 5.9 (Example 4.1 in [15]) Given two paramet-
ric surfaces P7,1(s, t) is within(s, t)in[−1, 0]× [−1, 0] and

Q7,2(u, v) is within(s, t)in[−1, 1]× [−1, 1].
x7,1(s, t)
y7,1(s, t)
z7,1(s, t)
w7,1(s, t)

 =

−(3t+ 1)s2 − (3t+ 3)s+ t+ 9
−(5t+ 5)s2 + (4− 3t)s+ 2t+ 7

(s− 1)(t+ 1)(4s+ 3)
(2− 2t)s2 + (5− 4t)s+ 4t− 5

(22)

x7,2(u, v) = −4v(u4v2 − 14u2v2 − 12u2 + v2)
·(u2 − 1),

y7,2(u, v) = 8uv(3u4v2 + 3u4 − 10u2v2

−6u2 + 3v2 + 3),
z7,2(u, v) = 3(u4 − 6u2 + 1)(2v2 + 1)(u2 + 1),
w7,2(u, v) = (u2 + 1)3.

(23)
Example 5.10 (Example 4.2 in [15]) P8,1(s, t)

is within(s, t)in[0, 1] × [0, 1] and Q8,2(u, v) is
within(s, t)in[−π, π]× [−π, π]

x8,1(s, t)
y8,1(s, t)
z8,1(s, t)
w8,1(s, t)

 =

(2s2 + 4)(−t2 + 1)

2(2s2 + 4)t
2s(t2 + 1)

(s2 + 1)(t2 + 1)

 (24)

x8,2(u, v)
y8,2(u, v)
z8,2(u, v)
w8,2(u, v)

 =

8u2 − 8v2 − 8u+ 8v + 4

(16u2 − 16u+ 8)v2 + 8v − 4
8u2(2v2 − 2v + 1)

4(2u2 − 2u+ 1)(2v2 − 2v + 1)

(25)

Example 5.11 (Example 6.1 in [15]) P9,1(s, t)
is within(s, t)in[0, 1] × [0, 1] and Q9,2(u, v) is
within(s, t)in[0, 1]× [0, 1]

x9,1(s, t)
y9,1(s, t)
z9,1(s, t)
w9,1(s, t)

 =

−2(4s2 − 4s+ 3)t(t− 1)
(4s2 − 4s+ 3)(2t− 1)
(2s− 1)(2t2 − 2t+ 1)

(2s2 − 2s+ 1)(2t2 − 2t+ 1)

 (26)

x9,2(u, v) = (2v2 − 2v + 3)u2 − v2 + v

+ 3
2 + (−2v2 + 2v − 3)u,

y9,2(u, v) = 2(u2 − u+ 1)(2v − 1),
z9,2(u, v) = 2u2(2v2 − 2v + 1),
w9,2(u, v) = (2u2 − 2u+ 1)(2v2 − 2v + 1).

(27)

Furthermore, we have tested ten more examples (Exam-
ple 7.1–Example 7.10) in [15], where Example 7.i contains
two parametric surfaces, i = 1, 2, · · · , 10. The computa-
tion time has been listed in Table 2. As shown in Table
2, Mnew achieves the best efficiency among M1, M2 and
Mnew, where M2 denotes the Dixon-representation based
method mentioned in [27].

Table 2: Computational time of M1, M2 and Mnew.
Case in [15] M1 M2 Mnew Mnew/M2

Example 7.1 1.473 0.520 0.307 0.59
Example 7.2 1.220 0.506 0.343 0.68
Example 7.3 1.608 0.863 0.561 0.65
Example 7.4 6.011 1.369 0.931 0.68
Example 7.5 62.396 5.551 3.608 0.65
Example 7.6 24.926 3.794 2.581 0.68
Example 7.7 29.748 2.589 1.760 0.68
Example 7.8 77.769 7.560 4.460 0.59
Example 7.9 139.854 18.809 11.097 0.59
Example 7.10 143.069 20.655 12.186 0.59

5.3. Comparing with the numerical methods for comput-
ing the branch point

Let M2 be the method in [27], and M3 denotes the
method of the Maple software without good initial val-
ues, while Mnew denotes the SRS-BFS method which can
achieve good initial values. M2 applies exact computa-
tions for computing the critical points, including left and
right helping points, whose precision is dependent on the
tolerance used in the exact computation. The smaller toler-
ance, the more computational time. Three examples that
contain branch points, i.e., 5.2, 5.3 and 5.9, are used for test-
ing M3 and Mnew. Table 3 shows the comparison results.
M3 fails to compute two of the three branch points for lack-
ing good initial values, while Mnew can compute all of the
three branch points.

Table 3: Branch point computation from M3 and Mnew

Exam M3 Mnew

5.2 (u⋆
1 - 1.142, v⋆1 - 1.781) (u⋆

1 + 1e-10, v⋆1 +1e-14)
5.3 (u⋆

2 + 1e-16, v⋆2 - 1e-13) (u⋆
2 + 1e-16, v⋆2 - 1e-13)

5.9 (u⋆
3 + 0.488, v⋆3 + 0.654) (u⋆

3 + 1e-12, v⋆3 + 1e-13)
(u⋆

1, v
⋆
1) = (1

2
, 1
2
),(u⋆

2, v
⋆
2) = (1

2
, 1
2
), (u⋆

3, v
⋆
3) = (-0.488, -0.170)

5.4. Comparisons on the topology correctness

As shown in Fig. 8 and Fig. 9, M1 in [15] may lack
some segment of intersection curves. M2 in [27] works
well in most cases, and it is suitable for a smaller tolerance
1e-6, while the used tolerance in M1 is 1e-3. Moreover, by
using the exact computation, M2 achieves good stability for
computing the critical points. Fig. 6(g) shows such a case,
there are two branches, part of them (in a framed region)
are very close to each other whose distance is smaller than
the given tolerance; however, there are no critical points in
the framed region. The proper topology consists of two seg-

ments
↷
AB and

↷
CD. Without exceptional handling in M2,

part of the segment in a framed region may missed, that is
to say, the tracing process may stop at the point denoted by
a circle in solid green, by merging the branches, one finally

obtains the resulting topology consisting of two segments
↷
AC and

↷
BD, which is shown Fig. 10. As shown in Fig.

6(g), the SRS-BFS method can ensure achieving the multi-
ple intersection lines that are adjacent even within the given
tolerance.

Figure 10: Illustration of possible topology error in M2.

6. More discussions

By applying the Dixon matrix technique in [15, 27],
Mnew obtains a good computational efficiency in the trac-
ing process. In principle, combining the Dixon matrix tech-
nique with the lattice method, Mnew can rapidly achieve
starting points for the tracing process, which is much more
efficient than prevailing methods. Then, combining the
SRS-BFS method with the ECT technique, Mnew can trace
a branch until a grid may contain two or more branches. In
principle, the SRS-BFS method can detect the proper topol-
ogy in a grid, even if there are two branches whose distance
is within a given tolerance.

However, in the case that there is a small loop or iso-
lated intersection point, the lattice method in Mnew may
miss the loop or the isolated point, while the exact compu-
tation method can be applied to overcome the above prob-
lem, which ensures the computational stability for solving
the critical points, as done in M2.

Next, we discuss the advantages and limitations of our
algorithm from the aspects of robustness, efficiency, and nu-
merical stability.

Firstly, our ECT method (also Mnew) admits all of the
advantages of M1 on robustness and numerical stability,
which have been discussed in [15]. Noting that the number
of traced grids in the ECT method is about half of that of
M1, as shown in Table 2, the computational time of Mnew

is about 55%–70% of M1.
Secondly, M1, M2, and our ECT method may have a

leak such that it missed a branch segment that has two in-
tersection points on the edge of the smallest sub-grid, as
shown in Fig. 8(a) and Fig.7g. The Mnew method uses the
SRS method for accurately tracing the intersection point on
each edge of the edge chain, which can detect two adjacent
branches which are close to each other, even within the tol-
erance in the parametric domain.

Thirdly, the Mnew provides the BFS method to achieve
good initial values for computing a branch point or singu-
lar point. Numerical examples show good stability of the
Mnew.

Finally, M1, M2 and Mnew need to deal with the coin-
cidence case or the case that two surfaces are almost coin-

(a) Plot 1 (b) Intersection 1

(c) Plot 2 (d) Intersection 2

Figure 11: Plots and intersections of two part pairs.

cident with each other, as partly shown in Fig. 11, which is
the common limitation of the tracing-based methods.

7. Conclusions

This paper presents an efficient and hybrid method (de-
noted as the SRS-BFS method) for computing the intersec-
tion of two parametric surfaces which can also work well for
computing the intersection problem between two algebraic
surfaces, or between an algebraic surface and a parametric
one. Firstly, the SRS-BFS method provides an ECT method
combined with the matrix representation in [15], which ad-
mits the advantages of the matrix representation, but re-
duces the number of traced sub-grids by 40% –50%, com-
paring with the method M1 in [15]. The SRS-BFS method
can achieve much better efficiency than prevailing methods.
Secondly, it also fixes the leak of branch missing (shown
in Fig.9(a)) or branch jumping (shown in Fig.7g) by using
the SRS technique. Finally, it provides the BFS method to
achieve good initial values for computing the branch point
or singular point, which leads to better numerical stability.

There is still ample room for further improvement.
Firstly, efficiently verifying whether an edge contains two
or four intersection points could significantly enhance our
algorithm. Secondly, finding a robust solution for all the
initial tracing points remains a challenge for future work.

Acknowledgement

This research work was partially supported by the Na-
tional Science Foundation of China (61972120) and the

Haihe Lab of ITAI Project(XCHK20210102).

Declaration of competing interest

The authors declare that they have no competing inter-
ests.

References

[1] N. H. Abdel-All, S. A.-N. Badr, M. Soliman, and S. A. Has-
san. Intersection curves of hypersurfaces in r4. Computer
Aided Geometric Design, 29(2):99–108, 2012. 1

[2] A. G. Akritas. Sylvester’s forgotten form of the resultant.
The Fibonacci Quarterly, 31(4):325–332, 1993. 3

[3] N. M. Aziz, R. Bata, and S. Bhat. Bezier surface/surface
intersection. IEEE computer graphics and applications,
10(1):50–58, 1990. 1

[4] C. L. Bajaj, C. M. Hoffmann, R. E. Lynch, and J. Hopcroft.
Tracing surface intersections. Computer aided geometric de-
sign, 5(4):285–307, 1988. 1

[5] R. E. Barnhill and S. N. Kersey. A marching method for
parametric surface/surface intersection. Computer aided ge-
ometric design, 7(1-4):257–280, 1990. 1

[6] M. Bartoň. Solving polynomial systems using no-root
elimination blending schemes. Computer-Aided Design,
43(12):1870–1878, 2011. 4

[7] E. Boender. A survey of intersection algorithms for curved
surfaces. Computers & graphics, 15(1):109–115, 1991. 1

[8] X.-D. Chen, W. Ma, and C. Deng. Conditions for the coin-
cidence of two quartic bézier curves. Applied Mathematics
and Computation, 225(1):731–736, 2013. 2

[9] X.-D. Chen, J. Shi, and W. Ma. A fast and robust method for
computing real roots of nonlinear equations. Applied Math-
ematics Letters, 68(1):27–32, 2017. 3

[10] X.-D. Chen, C. Yang, and W. Ma. Coincidence condition
of two bézier curves of an arbitrary degree. Computers &
Graphics, 54(1):121–126, 2016. 2, 3

[11] J.-S. Cheng, B. Zhang, Y. Xiao, and M. Li. Topology driven
approximation to rational surface-surface intersection via in-
terval algebraic topology analysis. ACM Transactions on
Graphics (TOG), 42(4):1–16, 2023. 1

[12] J. Gao, F. Sarfraz, M. Irshad, and J.-B. Liu. Optimal in-
tersection curves for surfaces. Journal of Mathematics,
2021(1):9945984, 2021. 1

[13] D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM computing surveys
(CSUR), 23(1):5–48, 1991. 1

[14] C. M. Hoffmann. Geometric and solid modeling: an intro-
duction. Morgan Kaufmann Publishers Inc., 1989. 1

[15] X. Jia, K. Li, and J. Cheng. Computing the intersec-
tion of two rational surfaces using matrix representations.
Computer-Aided Design, 150(1):103303, 2022. 1, 2, 3, 6,
8, 9, 10

[16] X. Jia, X. Shi, and F. Chen. Survey on the theory and ap-
plications of µ-bases for rational curves and surfaces. Jour-
nal of Computational and Applied Mathematics, 329(1):2–
23, 2018. 1

[17] K. H. Ko, T. Maekawa, and N. M. Patrikalakis. An algorithm
for optimal free-form object matching. Computer-Aided De-
sign, 35(10):913–923, 2003. 1

[18] S. Krishnan and D. Manocha. An efficient surface inter-
section algorithm based on lower-dimensional formulation.
ACM Transactions on Graphics (TOG), 16(1):74–106, 1997.
1, 4

[19] H. Lin, Y. Qin, H. Liao, and Y. Xiong. Affine arithmetic-
based b-spline surface intersection with gpu acceleration.
IEEE transactions on visualization and computer graphics,
20(2):172–181, 2013. 2

[20] N. M. Patrikalakis. Surface-to-surface intersections. IEEE
Computer Graphics and Applications, 13(1):89–95, 1993. 1

[21] J. R. Rossignac and A. A. Requicha. Piecewise-circular
curves for geometric modeling. IBM Journal of Research
and Development, 31(3):296–313, 1987. 1

[22] R. F. Sarraga. Algebraic methods for intersections of quadric
surfaces in gmsolid. Computer Vision, Graphics, and Image
Processing, 22(2):222–238, 1983. 1

[23] Thomas, G., Berry, , , Richard, R., and Patterson. The
uniqueness of bézier control points. Computer Aided Ge-
ometric Design, 14(9):877–879, 1997. 2, 3

[24] W.-K. Wang, H. Zhang, X.-M. Liu, and J.-C. Paul. Condi-
tions for coincidence of two cubic bézier curves. Journal
of computational and applied mathematics, 235(17):5198–
5202, 2011. 2

[25] Z.-F. Wang, X.-D. Chen, and J.-H. Yong. New proper repa-
rameterization of plane rational bézier curves. Journal of
Computer Science and Technology, 39(5):1193–1206, 2024.
3

[26] C. E. Wee and R. N. Goldman. Elimination and resultants.
2. multivariate resultants. IEEE Computer Graphics and Ap-
plications, 15(2):60–69, 1995. 3

[27] J. Yang, X. Jia, and D.-M. Yan. Topology guaranteed b-
spline surface/surface intersection. ACM Transactions on
Graphics (TOG), 42(6):1–16, 2023. 1, 3, 8, 9, 10

