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Abstract

Automatically surface defect detection plays a crucial
role during the industrial production process. Unfortu-
nately, some special defects, such as weak and strip-like
defects, are relatively difficult to classify and localize ac-
curately. In this paper, we propose a novel Location-
Aware Guidance Network for weak and strip defect de-
tection, termed as LAGNet. To enhance the feature rep-
resentation of weak defects, we introduce the Location
Activation Map (LAM) by visualizing the confidence
score map that indicates the probability of the existence
of an object in each region. The LAM and RGB images
are fed into the network in a parallel manner for feature
extraction, and then we fuse these two branches via a
Location Guidance Block (LGB) that inherently encodes
comprehensive and complementary information for de-
tection. Additionally, a Strip Convolution Enhancement
Module (SCEM) is presented using the depthwise strip
convolutions with long but narrow kernels and attention
mechanism and plugged into the detection neck to model
the long-range dependencies along both horizontal and
vertical spatial directions, thus improving the detection
performance of anisotropic defects with banded struc-
tures. Notably, LAGNet achieves the top-ranking results
on two popular steel benchmarks and significantly out-
performs the baseline network YOLOv5: 85.5% mAP
(vs. 76.2%) on NEU-DET and 76.6% mAP (vs. 66.0%)
on GC10-DET.

Keywords: Defect detection, Weak defect, Location ac-
tivation maps, Strip convolution, Attention mechanism.

1. Introduction

With the continuous evolution of industrial production,
steel, as a key structural material, is widely utilized in
various types of infrastructure and engineering projects.
However, diverse surface defects accidentally occur during
the manufacturing and processing of steel, which seriously

(a) crazing (d) patches(c) rolled-in_scale(b) pitted_surface (f) inclusion(e) scratches

Figure 1. Examples of steel surface defects in NEU-DET dataset.

jeopardizes the quality and service life. Therefore, rapid
and accurate detection of these defects has become a key
assurance of product quality and safety.

Traditional manual defect inspection is not only time-
consuming and labor-intensive but also susceptible to sub-
jective factors that lead to high false and missed detec-
tion rates. Classic automatic defect detectors [1] [2] [3]
[4] rely on hand-crafted features, which fail to deal with
the diversity of defects and have high requirements for im-
age quality as well. Recent advances based on deep learn-
ing techniques, especially Convolutional Neural Networks
(CNN), have achieved remarkable performances and occu-
pied a dominant position in the field of defect detection [5]
[6][7]. Such detectors have been proven to have stronger
generalization ability and adaptability.

Although defect detectors based on CNN have shown
significant advantages, the performance is still less than sat-
isfactory due to the complexity of defect images. Compared
with general object detection, defect detection usually has
the following challenges: (1) The subtle texture difference
between defective and defect-free areas in RGB images.
Due to the randomness in the production process and objec-
tive factors in the data acquisition process, such as lighting
conditions, certain defects exhibit weak features, low con-
trast, and indistinct boundaries, as shown in Figure 1 (a),
(b), and (c). This makes it more challenging to accurately
classify and localize defects, resulting in a higher rate of
false positives and false negatives. (2) The extremely large
aspect ratios of the defects with banded structures. Unlike
the objects in Pascal VOC [8], some of the defects are in
long and thin shapes, such as scratches and inclusion shown
in Figure 1 (e) and (f). It is difficult for the detectors to deal
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with the defects with arbitrary aspect ratios.
To cope with the first issue, it makes very logical sense

for the network to encode and enhance the location informa-
tion of weak defects in RGB images. Consequently, we pur-
posely introduce the location activation maps by visualizing
the importance of different regions for the localization task
in the form of color-coded heat maps. The brighter color on
the maps indicates the stronger response and greater con-
tribution of each point to the localization task. The RGB
image and its corresponding activation map are fed into the
network in a parallel fashion to encode respective features.
Besides, a location guidance block is proposed to integrate
the outputs of the two branches in the middle and late stages
and guide the network to capture comprehensive and com-
plementary features, especially strengthening the location
information and improving the recall of weak defects in
RGB images.

For the strip objects in defective images, the standard
square kernel fails to model their long-range spatial depen-
dencies, and may also incorporate irrelevant contaminating
information from the background. Based on this obser-
vation, we propose a strip convolution enhancement mod-
ule based on strip convolutions and attention mechanisms
to improve the modeling ability of CNN for long-distance
spatial information. The strip convolutions, such as 1 × 5
or 5 × 1, enable the network to capture long-range con-
text along the horizontal or vertical directions. Moreover,
following the strip convolutions, we introduce channel and
spatial attention to further strengthen the feature represen-
tation of weak defects.

The strip convolution enhancement module performs
finer and more comprehensive feature extraction for elon-
gated defective regions in both horizontal and vertical di-
rections, thus improving defect detection performance, es-
pecially the weak and slender defects. Also notably, the
module is lightweight and flexible to be plugged into any
network.

In summary, the main contributions of this work can be
summarized as follows:

• We innovatively introduce the Location Activation Map
(LAM) as the auxiliary data to compensate for the poor lo-
cation information in RGB images. Meanwhile, the Loca-
tion Guidance Block (LGB) is tailored exclusively for ef-
fectively integrating the parallel RGB and LAM branches,
guiding the network to encode more comprehensive and dis-
criminative features for weak defect detection.

• We propose a computation-friendly Strip Convolution
Enhancement Module (SCEM) based on the long but nar-
row kernel and attention mechanisms, modeling the long-
range dependencies along horizontal and vertical directions
while focusing on local details of defects.

• We present a novel Location-Aware Guidance Network
for weak and strip defect detection, abbreviated as LAGNet.

LAGNet consistently produces competitive results on the
widely used defect benchmarks NEU-DET (85.5% mAP)
and GC10-DET (76.6% mAP). Most notably, the small ver-
sion of LAGNet achieves 84.9% mAP and reaches 73.6 FPS
on NEU-DET with only 8.9M parameters.

2. Related work

2.1. General object detection

Deep learning has achieved great success in the field of
computer vision, especially with the emergence of CNNs
which have greatly improved the performance of general
object detection. Currently, object detectors based on deep
learning can be roughly divided into two- and one-stage ob-
ject detection.

The R-CNN [9] [10] [11] family is the classical two-
stage object detector. R-CNN [9] applies a region pro-
posal network (RPN) to generate candidate object regions,
then extracts the features of each region by CNN, and fi-
nally adopts a classifier and regressor to classify and lo-
calize the object. Instead of generating candidate regions
first, one-stage object detectors accomplish object localiza-
tion and classification directly in a single neural network,
as represented by the SSD [12] and YOLO [13] [14] [15]
[16] [17] [18] series. SSD adopts multi-scale feature maps
to predict objects with different scales, and directly predict
the confidence scores and box offsets through convolutions.
The YOLO series divides the image into fixed-size grid
cells and predicts bounding boxes and category probabili-
ties in each cell. YOLOv4 [16] is an efficient object detec-
tion model that combines multiple optimization techniques
to improve detection accuracy while maintaining real-time
speed. YOLOv5 [17] further improves the training strate-
gies and optimized loss functions, making it an ideal choice
for real-time applications. YOLOv7 [18] introduces model
reparameterization, label assignment strategies, extended
efficient layer aggregation networks (ELAN), and auxiliary
head training techniques.

Although these classic general object detectors have
achieved excellent results on routine tasks, they have diffi-
culty in accurately detecting defects with faint features, low
contrast, and arbitrary aspect ratios.

2.2. Defect detection

The successful application of CNN in the field of image
classification and object detection provides a brand new di-
rection for defect detection. Therefore, defect detection al-
gorithms based on CNN have become a hot research topic
for industrial quality inspection at present.

Zhao et al. [19] innovatively design a double feature
pyramid network (DFPN) based on Res2Net [20] to in-
crease the semantic information. Liu et al. [21] propose
a parallel architecture of dilated convolution (PADC) with
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Figure 2. The overall structure of proposed LAGNet, which consists of the dual-branch backbone, the feature pyramid neck, and a multi-
scale detection head. The LAM could provide RGB auxiliary rich location information and guide the network to focus on the discriminative
defective areas through LGB. The SCEM deployed in the detection neck adopts the strip convolutions and attention mechanism to model
the long-range spatial dependencies of strip defects.

different dilation rates to capture multi-scale contextual in-
formation and a feature enhancement and selection mod-
ule (FESM) to enhance single-scale features. On the basis
of CenterNet [22], Tian et al. [23] propose an anchor-free
framework, DCC-CenterNet, for steel surface defect detec-
tion by introducing the dilated feature enhancement model
(DFEM) and the centerness function center-weight (CW).
In addition, to cope with the problem of visual defect detec-
tion in complex images, Yu et al. [24] propose a progres-
sively refined redistribution pyramid network.

Although the aforementioned algorithms have improved
the overall accuracy of defect detection, their performance
is still unsatisfactory when facing weak defects with low
contrast. To overcome this challenge, we employ the loca-
tion activation maps as a localization guide to motivate the
network to focus on the weak defective areas.

2.3. Strip convolution

Beyond the regular convolutional kernel with a square
shape of k × k, strip convolutions apply long but narrow
kernels, such as 1 × k or k × 1, to efficiently model long-
range dependencies. ACNet [25] introduces strip convolu-
tion blocks, replacing the common 3 × 3, 5 × 5, and 7 × 7
square kernels, to effectively support the extraction of cer-
tain asymmetric image features. Strip Pooling [26] captures
long-range relationships in isolated regions by performing
pooling operations along the horizontal or vertical dimen-
sion.

In InceptionNeXt [27], the large-kernel depth convolu-

tion is decomposed into four parallel branches, including
small square kernels, two strip convolution kernels, and a
unit map, to achieve more flexible feature extraction. Seg-
NeXt [28] employs two depth strip convolutions to approxi-
mate standard depth convolutions with large kernels. Depth
strip convolution is lightweight and only requires a pair of
k× 1 and 1× k convolutions to imitate a standard convolu-
tion with a square kernel size of k × k.

Based on the above findings, in this paper, we present
a strip convolution enhancement module to capture long-
range context and focus on local details, thus improving the
detection performance of strip defects.

3. Proposed method

In this section, we first introduce the overall pipeline
of proposed LAGNet and the generation of LAM. Subse-
quently, we describe the backbone network with two par-
allel branches of RGB and LAM in detail, as well as the
fusion module LGB. Finally, we elaborate on the structure
of SCEM.

3.1. Overall structure

Figure 2 illustrates the overall framework of the pro-
posed LAGNet, which mainly consists of three parts: a two-
pathway backbone, a feature pyramid neck, and a multi-
scale detection head.

The backbone network is composed of two parallel
branches, each with RGB images and LAM as input re-
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Figure 3. The LAM generated by the well-trained YOLOv5.

spectively. Considering the edge end employment in em-
bedded devices, we choose the lightweight MobileNetV3
[29] to extract features from both RGB images and LAM
simultaneously. The corresponding output feature maps of
each branch in the middle and late stages undergo the LGB
and integrate together to learn complementary signals, pro-
ducing location-enhanced feature maps C3, C4, and C5.
Subsequently, these feature maps are fed into a top-down
and bottom-up bidirectional pathway to build high-level and
strong semantic features P3, P4, and P5. Notice that the
proposed SCEM is placed after the multiple hierarchical
features to efficiently model long-range dependencies and
produce P ′

3, P ′
4, and P ′

5. Finally, the predictions are made
on these multi-scale feature maps to deal with large variants
of defect sizes.

3.2. The generation of LAM

The faint defects present low contrast and small texture
differences from the background in RGB images, which
makes it a huge challenge for the network to recognize and
localize the weak defects accurately. Therefore, we intro-
duce the location activation maps.

Specifically, we first fine-tune a popular detector (such
as YOLOv5) on the defect benchmarks and achieve the
well-trained models. For each input image, the well-trained
model predicts the box coordinates, classes, and confidence
scores of defects. The confidence score map (CSM) indi-
cates the probability of the existence of an object in each re-
gion, where the higher the value, the greater the possibility
that an object exists. We first normalize the CSM output by
three YOLOv5 detection heads to [0, 1] using the sigmoid
activation function, and then multiply them by 255. Then a
location information map is obtained by selecting the maxi-
mum value among the processed three CSMs with different
scales. Finally, the color-coded LAM is produced by fusing
the location information map with its corresponding image
in a ratio of 1:1, as shown in Figure 3. Mathematically, the
generative process can be formulated as follows:

LAM = α(RGB)⊕ β(255⊗ sigmoid(CSM)) (1)

where RGB and CSM represent the input RGB image and
corresponding confidence score map, respectively. α and β
refer to the proportional coefficients when fusing RGB and
CSM, and both are set to 0.5 after experimental trials. ⊕
and ⊗ refer to element-wise summation and multiplication,
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Figure 4. Illustration of the proposed LGB.

respectively. As illustrated in Figure 3, the higher bright-
ness on LAM indicates that this region contributes more to
the localization task. Therefore, the LAM could highlight
the defect area and compensate for the location information
of weak defects in RGB images.

3.3. The dual-branch backbone

RGB images are rich in texture, color, and shape in-
formation, whereas susceptible to interference from back-
ground noise, light, etc. Conversely, the LAM could high-
light the defective areas and enhance the contrast with the
background. Fully utilizing the complementary information
of both RGB images and LAM is beneficial for improving
defect detection performance, especially the weak defects.

Based on the above considerations, we propose the
LAGNet for weak defect detection with a dual-branch back-
bone, i.e. RGB and LAM branches. As illustrated in Figure
2, the RGB images and corresponding LAM are fed for-
ward into the network to encode features of input data sepa-
rately. Then we specially design the LGB that fuses the out-
put features of both branches in the middle and late stages
to enhance the location details and construct more compre-
hensive feature maps. Figure 4 depicts the structure of the
proposed LGB.

Specifically, imagine CR
i , CL

i ∈ RH×W×C are the fea-
ture maps output by RGB and LAM branches in stage i,
where H , W , and C denote the height, width, and num-
ber of channels, respectively. First, let CR

i and CL
i perform

subtraction to enhance the visible features and produce the
differential-modality feature maps CD

i (i = 3, 4, 5). Sub-
sequently, the spatial attention module is applied to further
enhance the defect feature representation, and the attention
map is then multiplied by CR

i and CL
i , respectively. Finally,

the dual branches are integrated together by element-wise
summation and pass through a 1 × 1 convolution layer to
refine the fusion features, producing Ci ∈ RH×W×C . The
process can be described as follows:

CD
i = CR

i ⊖ CL
i , i = 3, 4, 5 (2)

Ci = Conv1×1((C
R
i ⊗ SA(CD

i ))⊕ (CL
i ⊗ SA(CD

i )))
(3)
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Figure 5. Illustration of SCEM. The upper and lower branches aim
to model the spatial relations along the horizontal and vertical di-
rections, respectively.

where ⊖ refers to element-wise subtraction. SA stands for
the spatial attention module.

The LGB could guide the network to pay more attention
to defective areas, and thus produce more informative and
representative feature pyramids C3, C4, and C5. Consider-
ing the dual-branch backbone in LAGNet inevitably intro-
duces extra parameters and computational complexity, we
choose the efficient and lightweight MobileNetV3 as the
backbone for feature extraction. MobileNetV3 is based on
Inverse Residual Block (IRB) shown in Figure 2, whose fea-
ture space remains constant at the input and output while
internally expanding to a higher dimension. Additionally,
IRB replaces the traditional convolution layers with depth-
wise separable convolutions to efficiently trade off between
latency and accuracy.

3.4. Strip Convolution Enhancement Module

The box regression of strip defects, such as scratches
and inclusion, is a challenging task compared with nearly
square-shaped defects. The standard convolution with a reg-
ular shape of k × k (such as commonly used 3× 3) fails to
capture long-range contextual information. A larger kernel
(such as 7×7) is able to encode more comprehensive infor-
mation, but may introduce contaminating information from
irrelevant background, as well as additional parameters.

Regarding this problem, we devise the SCEM based on
the depth-separable strip convolution with long but narrow
kernels and plug it into the detection neck to model the long-
range dependencies, as demonstrated in Figure 5. Specifi-
cally, the feature hierarchies C3, C4, and C5 generated by
LGB first undergo a top-down and bottom-up pipeline to
encode high-level semantic features, producing P3, P4, and
P5, respectively.

C
′

5 = Conv1×1(C5), C
′

i = Up(C
′

i+1)⊕ Ci, i = 3, 4 (4)

P3 = Conv1×1(C
′

3), Pi = Down(Pi−1)⊕ C
′

i , i = 4, 5
(5)

P3, P4, and P5 are then fed into SCEM to capture long-
range relations of local regions. More concretely, taking
Pi ∈ RH×W×C (i = 3, 4, 5) as input, SCEM consists of

two parallel pathways as shown in Figure 5. The upper
branch first deploys n stacked depthwise strip convolutions
with the size of 1 × k to encode global context along the
horizontal spatial dimension. Similarly, the lower branch is
to capture global vertical information using n consecutive
k × 1 convolutions. By conducting ablation experiments in
Section 4.5, we set n = 2 and k = 5 in this study. The
intermediate output feature maps of the upper and lower
branches in this step are Ph

i and P v
i respectively, which can

be described as:

Ph
i = DWConv1×k(DWConv1×k(Pi)), i = 3, 4, 5 (6)

P v
i = DWConvk×1(DWConvk×1(Pi)), i = 3, 4, 5 (7)

where DWConv denotes the depthwise strip convolution
and Pi is the input feature map.

To further enhance the feature representation for weak
defects, Ph

i and P v
i go through the attention mechanism in

both the channel and spatial dimensions. The channel ten-
sor 1× 1× C predicts the importance of each channel and
pays attention to what is in the image, while the spatial map
H ×W × 1 indicates the significance of each location and
focuses on where is the defect. The channel and spatial at-
tention module are arranged in a parallel fashion, and then
multiplied by Ph

i and P v
i , respectively. As usual, a point-

wise convolution 1× 1×C is followed to compute the lin-
ear combination of the output from preceding layers, fully
mixing inter-channel information and producing Sh

i and Sv
i

which can be formulated as:

Sh
i = PWConv1×1(P

h
i ⊗ CA(Ph

i )⊗ SA(Ph
i )) (8)

Sv
i = PWConv1×1(P

v
i ⊗ CA(P v

i )⊗ SA(P v
i )) (9)

where PWConv represents the pointwise convolution. CA
and SA are the channel and spatial attention, respectively.

Finally, we perform an element-wise multiplication of
Sh
i and Sv

i , and then introduce a residual connection with
Pi by element-wise summation. Both of these fusion oper-
ations are followed by one 1× 1× C convolution to refine
the features, generating the more comprehensive P ′

i . Math-
ematically, P ′

i can be written as:

P ′
i = Conv1×1(Pi ⊕ Conv1×1(S

h
i ⊗ Sv

i )), i = 3, 4, 5
(10)

SCEM considers the long but narrow spatial dependen-
cies along both horizontal and vertical directions over the
whole scene, thus improving the capability of modeling
long-range information for strip defects. Simultaneously,
the depth-separable convolutions considerably reduce the
computational complexity and module size, making SCEM
lightweight and easily plugged into any architecture.

The output feature maps of SCEM, P ′
i (i = 3, 4, 5), in-

herently encode long-range spatial dependencies and dis-
criminative features, which are then utilized to predict
multi-scale defects.



3.5. Training objective

The training objective of LAGNet is the weighted sum of
the box regression loss, confidence loss, and classification
loss. The box loss (Lbox) is the CIoU loss:

Lbox = LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ αv (11)

IoU =
|b ∩ bgt|
|b ∪ bgt|

(12)

v =
4

π2

(
arctan

w

h
− arctan

wgt

hgt

)2

(13)

where b and bgt represent the predicted and ground-truth
boxes, respectively. ρ refers to the distance between the
center points of the two bounding boxes, and c is the diago-
nal length of the smallest outer rectangle of the two boxes.
α is the weight coefficient and is usually set to 0.5. w and h
denote the width and height of the predicted box, while wgt

and hgt are the width and height of the ground-truth box.
The confidence loss (Lobj) and classification loss (Lcls)

are Binary Cross-Entropy (BCE) Loss. The total loss func-
tion L is the weighted sum of these three parts:

L = λboxLbox + λobjLobj + λclsLcls (14)

where λbox, λobj , and λcls are the weight coefficients and set
to 0.05, 1, and 0.5, respectively.

4. Experiments

In this section, we first elaborate the implementation de-
tails and evaluation metrics of the experiments and intro-
duce the defect datasets employed in this paper. Subse-
quently, we present comprehensive comparisons of results
regarding LAGNet and the current SOTA methods. Finally,
we analyze and validate the effectiveness of each compo-
nent in LAGNet through extensive ablation studies.

4.1. Implementation details

The proposed LAGNet and other comparison algorithms
are carried on the PyTorch framework. We implement all
the experiments on a computing platform equipped with an
NVIDIA GeForce RTX4090 GPU. The stochastic gradient
descent (SGD) algorithm is utilized to optimize the model
parameters, where the momentum and weight decay are set
to 0.937 and 0.0005, respectively. The initial learning rate
is set to 0.01, and a warm-up strategy and cosine annealing
learning rate strategy are introduced with a total training
epoch of 500. The batch size is uniformly set to 16. Dur-
ing the training process, we apply data augmentation tech-
niques such as Mosaic and Mixup for both RGB images and
LAM to improve the generalization ability of the models.
Moreover, LAGNet is based on the MobileNetV3-Large as

Pu Ws Ss Cg Rp

In Os Wl Wf Cr

Figure 6. Examples of defects in the GC10-DET dataset.

pit smudge R_angle sand_hole wrinkle

Figure 7. Examples of defects in the GB-DET dataset.

the backbone for feature extraction, while a small version is
created by adopting MobileNetV3-Small to meet industrial
demands, namely LAGNet-s.

4.2. Datasets

We validate the proposed LAGNet and LAGNet-s on two
publicly available defect detection datasets (NEU-DET [30]
and GC10-DET [31]) and one self-constructed dataset (GB-
DET). NEU-DET (Figure 1) contains 6 classes of common
steel surface defects: patches, crazing, rolled-in_scale, pit-
ted_surface, inclusion, and scratches. Each category com-
prises 300 images, making a grand total of 1800 defect im-
ages, each with a size of 200 × 200. The whole dataset
is randomly partitioned into the training and test set with a
ratio of 7:3 in [30], namely 1260 images for training and
540 images for testing. GC10-DET shown in Figure 6 con-
tains 10 types of defects: punching (Pu), welding line (Wl),
crescent gap (Cg), water spot (Ws), oil spot (Os), silk spot
(Ss), inclusion (In), rolled pit (Rp), crease (Cr), and waist
folding (Wf ). There are 2294 images in total, each with the
size of 2048× 1000 pixels. Following other algorithms, we
randomly divide the whole dataset into the training and test
set with a ratio of 9:1 [32], namely 2064 images for train-
ing and 230 images for testing. The images in both datasets
are scaled to 640 × 640 as input during training and test-
ing. Among these 10 types of defects, Ss, Wl, and Cr are
typically strip-like defects. GB-DET is a self-constructed
dataset for surface defect detection of renewable energy
batteries, which contains 5 types of defects: pit, smudge,
R_angle, sand_hole, and wrinkle. As shown in Figure 7, the
images containing circular bottom shells have a resolution
of 320 × 320, whereas the images containing rectangular
side shells have a resolution of 800 × 512. There are 6368
images in total, and we randomly divide them into the train-
ing and test set with a ratio of 7:3, namely 4458 images for
training and 1910 images for testing.



Table 1. Detection results of state-of-the-art methods on NEU-DET.
Method Backbone FPS Params mAP(%) crazing inclusion rolled-in_scale scratches patches pitted_surface

Object detectors
Faster R-CNN [11] ResNet50 22.3 28.4M 77.9 52.5 76.5 74.4 90.3 89.0 84.7
SSD512 [12] VGG16 64.9 27.0M 72.1 39.9 79.6 61.9 84.4 86.7 79.8
YOLOv5 [17] CSPDarkNet 109.3 46.1M 76.2 38.4 82.0 64.5 94.0 94.8 83.3
YOLOv7 [18] - 62.5 36.5M 75.9 42.0 83.9 63.0 89.1 94.3 83.0
YOLOX [33] CSPDarkNet 53.7 54.2M 76.8 47.6 81.7 60.9 94.4 92.9 83.3
YOLOv10 [34] CSPDarkNet 161.1 24.4 M 75.9 40.6 87.1 67.4 91.5 84.2 84.5

Defect detectors
DIN [35] - - - 80.5 61.4 85.6 64.6 88.3 93.0 90.3
RDN [36] ResNet18 - - 80.0 53.7 84.9 64.4 95.9 93.8 87.0
DDN [30] ResNet50 - - 82.3 62.4 84.7 76.3 90.1 90.7 89.7
EFD-YOLOv4 [37] CSPDarkNet - - 79.9 45.7 85.4 72.7 93.6 97.0 85.0
Zhang’s [38] CSPDarkNet - - 78.2 40.6 90.3 60.7 96.1 94.4 86.9

Multi-branch detectors
CFT [39] CSPDarkNet 23.8 206.2M 83.1 60.5 83.8 82.5 93.1 92.7 86.2
ICAFusion [40] CSPDarkNet 24.5 120.3M 83.0 62.3 81.8 79.7 94.3 91.9 88.2
SuperYOLO [41] CSPDarkNet 99.1 9.9M 78.9 54.9 80.1 72.1 86.9 91.4 87.2
Ghost [42] CSPDarkNet 54.1 7.7M 72.0 46.5 72.2 72.3 71.7 89.3 80.9
LAGNet (Ours) MobileNetV3 45.1 31.9M 85.5 64.2 86.4 82.4 96.1 94.4 89.2
LAGNet-s (Ours) MobileNetV3 73.6 8.9M 84.9 63.6 85.3 80.5 95.5 94.4 90.9

4.3. Evaluation metrics

We utilize the average precision (AP), mean average pre-
cision (mAP), number of model parameters (Params), and
frame per second (FPS) to evaluate the performance of dif-
ferent algorithms on NEU-DET and GC10-DET. The AP
denotes the average accuracy of the model about a certain
class, which is measured by the area under the precision-
recall curve. The mAP represents the mean accuracy of the
model for all classes, which is calculated by the average
value of all APs. AP and mAP are defined as follows:

P =
TP

TP + FP
,R =

TP

TP + FN
(15)

AP =

1∫
0

P (R)dR (16)

mAP =
1

N

n∑
i=1

APi (17)

where P and R represent the precision and recall. TP ,
FP , and FN refer to true positives, false positives, and
false negatives, respectively. The Params and FPS are to
evaluate the model size and inference speed, respectively.
The threshold of intersection over union (IoU) is set to 0.5.
Besides, we also draw the Precision-Recall (PR) curves
to evaluate the classification performance across different
threshold settings. These metrics help to fully and compre-
hensively evaluate the performance of different methods.

4.4. Comparisons with the SOTA detectors

To demonstrate the effectiveness of the proposed
method, we compare it with state-of-the-art detectors, in-
cluding general object detectors, defect detectors, and

multi-branch object detectors on both NEU-DET and
GC10-DET datasets.

4.4.1 Results on NEU-DET

Quantitative results. Table 1 shows the extensive results
of the proposed LAGNet and other state-of-the-art detec-
tors on NEU-DET. It is observed that LAGNet achieves the
highest 85.5% mAP, with an increment of 9.3% over the
baseline YOLOv5 (76.2%). Compared with other RGB-
only detectors, such as classic YOLOX (76.8%) and defect
detector DDN (82.3%), LAGNet still has significant per-
formance improvements. Although the multi-branch RGB-
and LAM-based detectors, such as CFT (83.1%) and ICA-
Fusion (83.0%), are of relatively higher accuracy, they have
too many parameters to be deployed and applied. Fortu-
nately, the proposed LAGNet can still exceed such detectors
over 2 points with fewer parameters.

Notably, LAGNet-s substantially reduces the model size
from 31.9M to 8.9M compared with LAGNet, which can be
deployed on a computationally limited platform. Although
the mAP of LAGNet-s (84.9%) has decreased slightly in
comparison with LAGNet (85.5%), it can still outperform
the lightweight SuperYOLO (78.9%) and Ghost (72.0%)
by large margins with approximate model size. Addition-
ally, LAGNet and LAGNet-s consistently achieve better re-
sults in terms of the AP. Especially for weak defect craz-
ing, the AP of LAGNet is significantly improved to 64.2%,
which lies in the enhanced location information from the
LAM branch. Similarly, for scratches that have long and
thin shapes, LAGNet encodes the long-range spatial depen-
dencies by SCEM and further elevates the AP to 96.1%.
The experimental results demonstrate the effectiveness of
LAGNet for defect detection, especially the weak and strip
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Figure 8. Comparison of activation maps generated by YOLOv5
and LAGNet on NEU-DET.

defects.

We also evaluate the inference speed and time effi-
ciency of different algorithms on NEU-DET, as shown in
the third column of Table 1. LAGNet introduces an addi-
tional LAM branch and extra parameters, so it inevitably
impairs the model efficiency compared with the baseline
network (109.3 FPS). Even so, LAGNet and LAGNet-s
could still achieve 45.1 and 73.6 FPS, respectively. Espe-
cially, LAGNet-s could achieve the best trade-off among
the detection accuracy, model size, and time efficiency in
comparison with prevailing detectors.

Qualitative results. To visually demonstrate the local-
ization ability of the models, we draw the activation maps
using the well-trained YOLOv5 and LAGNet on NEU-DET,
as shown in Figure 8. The topmost row is the defect im-
ages of 6 classes with ground-truth boxes. By contrast, it
is observed that the proposed LAGNet could highlight the
defective areas more completely and comprehensively com-
pared with YOLOv5. We believe that the LGB enables the
network to effectively focus on and enhance the represen-
tations of weak defects by supplementing location informa-
tion, thus considerably improving the localization perfor-
mance of the model. Figure 9 presents the comparison of
the PR curves for different detectors. It is observed that
the proposed LAGNet achieves a better trade-off between
precision and recall, demonstrating superior classification
performance compared with other algorithms.

Furthermore, we display the visualization detection re-
sults of LAGNet compared with YOLOv5 (general detec-
tor), CFT (multi-branch detector), and Zhang’s (defect de-
tector) on NEU-DET in Figure 10. The prediction boxes of
different classes are distinguished by different colors. It can
be visualized that LAGNet can accurately locate the weak
defects in the low contrast background, such as crazing in
the first column. Likewise, our method can also predict the
strip defects in the fifth column more precisely than other
detectors, demonstrating the effectiveness of SCEM in cap-
turing long-range spatial dependencies.

Figure 9. Comparison of PR curves for different models on NEU-
DET.

4.4.2 Results on GC10-DET

To further verify the effectiveness and robustness of
LAGNet, we also conduct experiments on GC10-DET, and
the comparison results are illustrated in Table 2. LAGNet
and LAGNet-s achieve 76.6% and 75.4% mAP, boosting
the baseline YOLOv5 (66.0%) by 10.6 and 9.4 points, re-
spectively. For general object detectors, YOLOv7 yields a
desirable result with a mAP of 72.4%, which is the best re-
sult among YOLO families. For defect detectors, Zhang’s
obtains the excellent mAP of 71.9% using CSPDarkNet as
the backbone. For multi-branch detectors, although CFT
gets the impressive 74.4% mAP, it is under the guidance
of the Transformer [43] scheme with a large model size
(206.2M). Fortunately, LAGNet and LAGNet-s could out-
perform these different types of detection algorithms with
acceptable parameter quantity.

It is noticeable that the APs of other methods vary greatly
within a wide range, which may result from the imbalance
of data distribution in GC10-DET. Despite that, LAGNet
has yielded relatively stable APs for all defect classes. Ad-
ditionally, Figure 11 depicts the visualization results of
LAGNet on GC10-DET, where the weak defect Rp and
slender defect Cr could be successfully predicted. No-
tably, LAGNet produces more accurate and compact bound-
ing boxes than YOLOv5, which indicates that our model is
more sensitive to the location of defects due to the introduc-
tion of LAM.

4.4.3 Results on GB-DET

We further evaluate LAGNet on our own dataset GB-DET
with more defective images. The results are shown in Ta-
ble 3. LAGNet achieves 93.2% mAP, which is superior to



Table 2. Detection results of state-of-the-art methods on GC10-DET.
Method Backbone Params mAP(%) Pu Wl Cg Ws Os Ss In Rp Cr Wf

Object detectors
Faster R-CNN [11] ResNet50 28.4M 59.6 91.0 38.9 87.9 79.7 59.9 60.1 31.3 40.5 49.3 57.5
SSD512 [12] VGG16 27.0M 60.6 95.7 91.7 96.7 66.6 60.8 45.7 16.1 22.1 26.1 84.6
YOLOv5 [17] CSPDarkNet 46.1M 66.0 82.9 75.4 93.1 75.9 66.5 73.2 45.4 26.0 44.2 77.5
YOLOv7 [18] - 36.5M 72.4 91.0 97.1 93.0 79.0 70.0 74.0 46.0 31.0 67.0 74.0
YOLOX [33] CSPDarkNet 54.2M 71.0 84.2 96.1 93.4 78.0 64.7 69.9 42.2 28.0 80.0 73.8
YOLOv10 [34] CSPDarkNet 24.4M 62.6 93.5 79.1 86.8 72.4 64.8 60.2 22.4 33.9 28.6 84.2

Defect detectors
MSC-DNet [21] ResNet50 34.1M 69.1 97.7 95.2 92.5 75.2 67.0 61.1 37.6 48.8 31.2 84.5
MSC-DNet [21] ResNet101 - 71.6 95.5 96.1 94.9 76.5 66.5 65.8 34.1 53.4 48.5 84.0
EFD-YOLOv4 [37] CSPDarkNet - 54.7 96.3 98.0 85.3 75.0 53.3 43.2 18.2 50.0 27.3 0
DCC-CenterNet [23] ResNet50 32.8M 61.9 84.1 85.5 96.2 77.3 50.9 54.8 30.2 13.9 49.9 76.6
Zhang’s [38] CSPDarkNet - 71.9 97.8 88.9 96.2 79.1 67.3 53.2 33.2 43.7 75.8 83.6

Multi-branch detectors
CFT [39] CSPDarkNet 206.2M 74.4 96.0 78.5 90.1 76.5 68.4 67.9 49.8 66.5 72.8 77.1
ICAFusion [40] CSPDarkNet 120.3M 72.5 91.8 81.6 90.9 72.2 65.1 72.0 54.8 54.1 65.5 77.6
SuperYOLO [41] CSPDarkNet 9.9M 69.1 85.9 76.8 87.1 70.6 66.6 62.4 56.8 63.1 49.5 72.5
Ghost [42] CSPDarkNet 7.7M 64.5 89.9 59.9 82.1 65.4 63.4 68.8 35.4 51.0 62.0 67.4
LAGNet (Ours) MobileNetV3 31.9M 76.6 93.7 85.3 95.1 77.7 66.5 75.0 56.8 59.1 79.5 77.1
LAGNet-s (Ours) MobileNetV3 8.9M 75.4 94.8 85.1 91.9 77.2 70.5 74.7 60.1 65.3 56.2 78.4
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Figure 10. The visualization results of different models on NEU-DET. The green boxes in the first row indicate the ground-truth boxes.

other algorithms. Two-stage detectors such as Faster R-
CNN (43.2%) and CascadeR-CNN (53.1%) do not perform
well, mainly because they adopt a single-scale detection
strategy and are not friendly to detect small defects in GB-

DET. Especially, LAGNet also ranks the first AP in terms of
4 types of defects: pit (96.1%), sand hole (95.9%), smudge
(81.8%), and wrinkle (97.1%). The results further validate
the robustness and effectiveness of LAGNet.



Original images YOLOv5 LAGNet

Figure 11. The visualization results of LAGNet on GC10-DET, where different colors represent different defect classes.

Table 3. Detection results of state-of-the-art methods on GB-DET.
Method mAP(%) R_angle pit sand_hole smudge wrinkle

Faster R-CNN [11] 43.2 90.1 72 3.9 50.2 0
Cascade R-CNN [44] 53.1 92.4 83.1 23.9 66.2 0
SSD512 [12] 64.0 91.6 78.1 34.6 55.3 60.4
RetinaNet [45] 72.1 83.2 66.2 62.9 63.2 84.9
YOLOv3 [15] 79.8 92.1 82.8 77.6 67.5 79.0
YOLOv5 [17] 90.6 94.6 91.5 91.8 78.1 97
YOLOX [33] 79.7 96.2 92.2 75.0 75.2 59.2
YOLOv7 [18] 88.8 94.9 90.2 90.6 73.8 94.7
SuperYOLO [41] 89.6 93.6 90.1 92.3 78.0 94.1
YOLOv10 [34] 89.3 93.7 94.8 92.2 78.0 87.6
LAGNet (Ours) 93.2 95.1 96.1 95.9 81.8 97.1

Table 4. Ablation studies of LAM and SCEM on NEU-DET.
Method Backbone Params mAP(%)

YOLOv5 CSPDarkNet 46.1M 76.5
YOLOv5+LAM CSPDarkNet 86.8M 82.3
YOLOv5+SCEM CSPDarkNet 53.0M 78.6
YOLOv5+LAM+SCEM CSPDarkNet 93.7M 84.6

YOLOv5+LAM MobileNetV3 25.7M 83.6
YOLOv5+SCEM MobileNetV3 28.6M 77.8
YOLOv5+LAM+SCEM MobileNetV3 32.2M 85.5

4.5. Ablation studies

Impact of each module. We first validate the effects
of the separate LAM branch and SCEM, as shown in Table
4. By incorporating the LAM branch into the baseline net-
work using CSPDarkNet as the backbone, the mAP is dra-
matically improved from 76.5% to 82.3%. The significant
performance gain results from the improvement of network
localization capability, that is, the LAM could provide the
RGB branch with more complementary location informa-
tion. Meanwhile, integrating SCEM separately brings a 2.1-

Table 5. Ablation studies of kernel size and number in SCEM.

Dataset
n

mAP k 1×3
3×1

1×5
5×1

1×7
7×1

1×9
9×1

NEU-DET
1 83.9 84.4 84.8 85.0
2 84.0 85.5 84.5 83.8
3 84.6 83.8 83.5 82.9

GC10-DET
1 71.3 74.1 73.4 76.3
2 74.4 76.6 75.8 74.8
2 74.3 70.7 70.2 68.0

point performance gain as well. When both the LAM and
SCEM are introduced, the mAP further goes up to 84.6%.

Considering the significant parameter increase when in-
tegrating both LAM and SCEM, we replace the backbone
with the lightweight MobileNetV3. Surprisingly, not only
the number of parameters drastically decreases to 32.2M
from 93.7M, but the mAP also achieves an improvement of
0.9%. We argue that this may be attributed to the squeeze-
and-excite bottleneck in MobileNetV3, which is benefi-
cial for extracting features of weak defects. Additionally,
the lightweight backbone’s suitability for training defect
datasets with fewer images may also contribute to this out-
come.

Kernel size and number in SCEM. We conduct com-
parison experiments to validate the optimal kernel size (k)
and number (n) of strip convolutions utilized in SCEM. As
demonstrated in Table 5, the best results (85.5% mAP on
NEU-DET and 76.6% mAP on GC10-DET) are achieved
when applying two 1×5 and 5×1 strip convolutions in hor-



izontal and vertical directions, respectively. It is found that
the performance can be first improved and then dropped as
the kernel size and number increase. We believe that ap-
propriately increasing the kernel size and number of strip
convolutions helps enlarge the receptive field of neurons,
but excessively large and many kernels may introduce irrel-
evant background interference information, thus hampering
the detection accuracy. In conclusion, we set the kernel size
k = 5 and number n = 2 in SCEM.

5. Conclusion

In this paper, we present a novel LAGNet for weak and
strip surface defect detection. The LAM is introduced to
focus on the discriminative areas and enhance the subtle
visual differences between defective and defect-free areas.
Meanwhile, the LGB inherently guides the RGB branch to
pay more attention to the spatial features, thus improving
the localization ability for weak defects in images. Further-
more, SCEM is delicately designed using depth strip con-
volutions, tailored for encoding the long-range spatial rela-
tions of strip defects efficiently. The experimental results
demonstrate the effectiveness and efficiency of LAGNet.
To further achieve efficient model deployment on industrial
production lines, it is worth simplifying the network by get-
ting rid of the auxiliary LAM branch in the inference stage
in our future work.
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