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Abstract

Massive crowd simulation offers valuable insights
into human behavior, with applications in urban plan-
ning, public safety, computer animation, and beyond.
However, traditional methods that treat crowds as in-
dividual agents face significant scalability challenges as
crowd sizes grow, resulting in performance bottlenecks.
While there are advanced animation engines capable of
supporting the efficient rendering of large-scale crowds,
existing crowd simulation frameworks often face limita-
tions in scalability and flexibility. In response to these
challenges, we present TaiCrowd, an open-source crowd
simulation framework. TaiCrowd employs a generic
parallel approach specifically designed for agent-based
methods, filling the current gap for a scalable, efficient,
and user-friendly crowd simulation framework. Exper-
iment results show that TaiCrowd achieves a substan-
tial 60-fold improvement for crowd simulations involv-
ing hundred thousand individuals compared to other
simulation frameworks, outperforming existing frame-
works and enabling real-time simulation for large-scale
crowd management. TaiCrowd can be accessed from
https://github.com/Worter623/TaiCrowd.

Keywords: Crowd simulation, High-performance com-
putation, Open-source framework, Physics-based compu-
tation

1. Introduction

Massive crowd simulation not only provides insights
into human behavior but also facilitates the creation of re-
alistic virtual environments, which are critical for appli-
cations ranging from emergency evacuation planning to
immersive gaming experiences[18]. However, traditional
simulation methods face efficiency constraints as crowd
scales increase. This limitation stems from the conventional
treatment of crowds as collections of individual agents, a
methodology that excels in capturing heterogeneous crowd
dynamics but faces challenges in scalability[17, 29]. The
computational demands imposed by massive crowds can
strain existing frameworks, hindering the seamless integra-
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tion of different simulation methods across diverse plat-
forms. While advanced animation engines like Unreal En-
gine 5 and Unity offer powerful tools for rendering large-
scale crowds, there remains a critical gap: the lack of
an integrated, scalable, and user-friendly crowd simula-
tion framework that seamlessly complements these render-
ing platforms. To address these challenges, we propose
TaiCrowd, aims to bridge the gap between advanced render-
ing engines and scalable crowd simulation methods, offer-
ing a practical and high-performance solution for massive
crowd simulations.

Taichi[10] is a programming language that excels in han-
dling parallel computation, with sparse data structures, ideal
for scenarios like massive crowd simulations with sparse
spatial configurations. Through our dedicated design of sys-
tem architecture and data structures, TaiCrowd aims to meet
the urgent demand for a scalable, efficient, and user-friendly
crowd simulation framework. The main contributions of
this paper are as follows:

• We introduce a generic parallel approach for high-
performance massive crowd simulation. This approach
achieves 60-fold improvement for agent-based crowd
simulations with hundred thousand individuals.

• We propose TaiCrowd, an open-source crowd simula-
tion framework. TaiCrowd not only caters to perfor-
mance requirements but also provides a user-friendly
solution for massive crowd simulation.

• We showcase the TaiCrowd’s capability and identify
its optimal configurations for high-performance mas-
sive crowd simulation on limited hardware, setting the
stage for future advancements.

The remainder of this paper is structured as follows: In
section 2, we discuss previous work on crowd simulation
and Taichi. We analyze existing crowd simulation frame-
works, identifying their characteristics and limitations. In
section 3, we describe details of our simulation framework
TaiCrowd. In section 4, we evaluate TaiCrowd’s capabili-
ties. In section 5, we review our work and directions for
future research.
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Figure 1. An abstraction of crowd simulation based on three oper-
ational layers.

2. RELATED WORK

2.1. Simulating crowds

Generally, the crowd simulation problem can be decom-
posed into three layers as illustrated in Figure 1: action se-
lection, path determination, and result presentation. Firstly,
specify initial positions, goals, and schedules, computing a
base plan to reach goals under specified constraints. Sec-
ondly, adapt the base plan to unforeseen scenarios arising
from the dynamic environment and individual characteris-
tics. This process, facilitated by the locomotion model, ad-
dresses collisions and integrates local interactions, ensur-
ing safety and smoothness. Finally, visualize or analyze
the simulation results. Each operational layer requires inter-
action with the simulation environment, conducting spatial
relationship queries during each simulation frame to obtain
neighborhood information for agents.

This architecture is not a novel abstraction; instead, it has
gained widespread adoption and substantial representation
in previous works, solidifying its status as a classic model
for agent-based crowd simulation[17, 20]. While certain
techniques diverge in their approach to simulating massive
crowds, such as Hughes[12] employing continuum theory
and Treuille et al.[26] formulating crowds with dynamical
potential fields, they tend to treat crowds as a cohesive,
continuous entity. Crowd movement regulated by poten-
tial fields or fluid dynamics, etc., often overlook underlying
details and individual-level interactions among agents and
environment[29, 27]. In contrast, the agent-based method
stands out for its ability to simulate diverse crowd behav-
iors, showcasing individual-level interactions and crowd
heterogeneity[15, 19, 4]. However, as the size of the crowd
increases, the computational demand grows linearly, im-
pacting the efficiency of the agent-based method. Paral-
lel computing can distribute the simulation calculations for
each agent across different computing hardware, facilitating

massive crowd simulations[30, 24].

2.2. Existing crowd simulation frameworks

Extensive research has been conducted on crowd sim-
ulation frameworks. Proprietary simulation frameworks
like AutoPed[21] and commercial software such as PTV
Viswalk hinder detailed analysis and the integration of new
methodologies. Table 1 lists major open-source crowd sim-
ulation frameworks developed in recent years. However,
these frameworks do not fully meet the concurrent require-
ments of scalability, efficiency, and user-friendliness.

Both FDS[16] and JuPedSim[28] focus on microscopic
crowd dynamics within the realm of evacuation scenarios,
potentially limiting their broader applicability and extensi-
bility. PedsimRos[25], while adaptable to various scenar-
ios, faces constraints in extensibility as it solely supports
the social force model[8]. Addressing scalability concerns,
Vadere[14] aims to compare and validate locomotion mod-
els, while SocNavBench[2] focuses on providing real-world
pedestrian data and a suite of metrics for evaluating navi-
gation algorithms. Both prioritize facilitating experimenta-
tion and analysis of new methodologies rather than high-
performance crowd simulation, diverging from the empha-
sis of this paper.

In alignment with the objectives of our work,
SteerSuite[23], ADAPT[22], Menge[5, 6], and
MomenTUM[13] provide a comprehensive framework
for dynamically simulating a wide range of scenarios and
behaviors. ADAPT provides narrative scene configuration
through Unity plugins, however, is tightly coupled with
Unity and exhibits efficiency issues, supports approxi-
mately 150 agents with full fidelity at interactive frame
rates. The rest frameworks only provide simple GUI and
I/O APIs, requiring the specification of scene information
using configuration files such as XML files or WKT files,
which can be bothering for massive crowd simulation.
None of these frameworks supports directly importing an
overhead view picture as a simulation scene, hindering
user-friendliness.

2.3. Taichi: high-performance computing language

Taichi is a Python-based domain-specific language de-
signed for high-performance parallel computation. Its just-
in-time compilation and support for sparse data structures
make it particularly suited for TaiCrowd’s architecture.
Leveraging Taichi’s strengths, TaiCrowd utilizes hierarchi-
cal data structures and sparse spatial configurations to en-
able scalable simulations on modest hardware.

Building on Taichi’s success in domains such as particle
simulation and soft robotics[9, 3, 11], TaiCrowd addresses
a critical gap by providing a scalable, efficient, and user-
friendly crowd simulation framework.



Table 1. Open-source crowd simulation frameworks in recent years. The statistics for “Latest Update” are based on the last update time of
the official code download source and the latest reply time on the GitHub repository’s issues accurate as of February 2025. “Conf.” is short
for configuration files.

Simulator Language Latest
Update

Locomotion Model Input / Output API

Rule Force Speed Conf. Picture CSV

SteerSuite[23] C++ 2019
ADAPT[22] C++,C# 2021

SocNavBench[2] Python 2023
MomenTUM[13] Java 2023

Menge[5, 6] C++ 2023
Vadere[14] Java 2023

PedsimRos[25] C++ 2024
FDS[16] Fortran 2025

JuPedSim[28]
C++,

Python 2025

TaiCrowd Taichi 2025

3. TAICROWD’S ARCHITECTURE

This section will delve into the details of TaiCrowd.
In Section 3.1, we will demonstrate how TaiCrowd im-
plements the proposed generic agent-based parallel archi-
tecture through several typical agent-based methods. Sec-
tion 3.2 will expound on the generic parallel approach tai-
lored for agent-based simulation methods. Finally, Sec-
tion 3.3 will elucidate the implementation of each module
in TaiCrowd.

3.1. Architecture design

Traditional agent-based crowd simulation methods face
significant performance bottlenecks as the size of the crowd
grows. While advanced animation engines excel in ren-
dering large-scale crowds, there lack an scalable, effi-
cient, and user-friendly simulation framework for integra-
tion. TaiCrowd addresses these challenges by implementing
a generic parallel approach specifically designed for agent-
based methods. This approach, outlined in Algorithm 1,
forms the basis for achieving high-performance paralleliza-
tion in agent-based crowd simulation methods. The bold
content in the algorithm signifies innovations distinguish-
ing it from the conventional agent-based crowd simulation
paradigm.

Figure 2 illustrates how TaiCrowd aligns agent-based
methods with the parallel paradigm defined in Algorithm 1.
TaiCrowd has integrated several prominent agent-based
simulation models as both demonstrations and representa-
tives. These models encompass the steering model for rule-
based crowd simulation, the social force model for force-
based crowd simulation, and the ORCA (Optimal Recip-
rocal Collision Avoidance) model[1] for crowd simulation
based on velocity space.

Algorithm 1: Parallel Agent-based Crowd Simula-
tion Method

1 ScenarioInitialization()
2 while not reached specified simulation time do
3 do in parallel for each agent
4 StateMachineUpdate()
5 DesiredVelocityComputation()
6 NeighborhoodInformationUpdate()
7 FeasibleVelocityComputation()
8 AgentPositionUpdate()

9 Visualization()

TaiCrowd’s computation pipeline is demonstrated in Fig-
ure 3. In addition to TaiCrowd’s pre-implemented mod-
ules designed for immediate utilization, we facilitate the ef-
fortless substitution of user-defined implementations to pro-
mote ease in experimentation and comparison.

In addition to its utilization of the Taichi language for
parallel computation, TaiCrowd embodies a paradigm shift
in crowd simulation through a series of innovative architec-
ture design, distinguishing TaiCrowd from mere implemen-
tations of existing methodologies:

• State machine architecture enables nuanced behav-
ioral transitions, allowing simulated individuals to dy-
namically respond to diverse environmental stimuli
with realistic and contextually appropriate actions.

• Optimized neighborhood search mechanism facili-
tates swift and accurate interaction calculations among
individuals, enhancing simulation efficiency without
compromising accuracy.



Figure 2. Integration of agent-based methods in TaiCrowd’s parallel architecture.

Figure 3. Computation pipeline of TaiCrowd. Modules are shown in black boxes. White dotted boxes show how TaiCrowd’s modules
correspond to the three abstraction layers.

• Optimized post-processing supports advanced ef-
fects, such as grouping dynamics, personality-specific
behaviors, and emotional contagion, without hindering
simulation efficiency.

• User-friendly input-output interfaces provide intu-
itive controls, fostering ease of use and customization
for users of varying expertise levels.

Through these advancements, TaiCrowd stands as a testa-
ment to innovation in crowd simulation, offering a holis-
tic solution that addresses the evolving needs of simulation
practitioners across various domains.

3.2. Formalized definition

To facilitate parallel computation in agent-based meth-
ods, the overall process of crowd simulation is defined as
iteratively solving an Initial Value Problem at each simula-
tion frame:

ẋi(t) = vi(t) = Fi(t,E,Ai(t)), (1)

where xi(t),vi(t) represents the position and velocity of
agent i at time t, Ai(t) denotes the individual attributes of

agent i at time t, and E denotes the static simulation envi-
ronment information, like obstacle positions and map size.
Align with the abstraction in section 2.1, the key computa-
tion function Fi is decomposed into three conceptual func-
tions as illustrated in Equation 2. It is noteworthy that the
functions Gi, Pi, Qi are designed to be executed by each
agent.

Fi(t+ 1) = Qi(t,E, Pi(t,Ai), Gi(t,E,Ai)). (2)

The subsequent content will provide a detailed exploration
of the taxonomy of Ai and the definitions of Gi, Pi, and Qi.

Ai is categorized as vector:

Ai =
[
xi vi ni si

]T
, (3)

where xi,vi∈R2. The vector ki =
[
xi vi

]T
is referred

to as the key attributes, or k-attributes. TaiCrowd cur-
rently assumes that crowd simulation is performed in a two-
dimensional space. This simplification is sufficient for most
applications. ni represents the dynamic neighborhood in-
formation, such as the relative positional details of other



agents around agent i:

ni = {
⋃
j

[
xj vj

]
| j ∈ Ci}, (4)

where Ci represents the risk disk of agent i. ni is referred
to as the neighborhood attributes, or n-attributes. The re-
maining attributes, encompassing the agent’s heterogeneous
characteristics such as goals, constraints, social identity,
and emotions, are equally crucial as they collectively con-
tribute to generating more realistic and diverse simulation
effects. This part of agent attributes is referred to as the
supplementary attributes, or s-attributes.

Defining Gi, Pi, and Qi is equivalent to elucidating the
computational process of crowd simulation, which will be
presented according to the three hierarchical layers outlined
in Figure 1.

In the action selection layer, the computation function
Gi calculates the instantaneous desired velocity for agent i
based on time, the agent’s current position, and its goal:

Gi : t,E,Ai → vdesire. (5)

In the path determination layer, we innovatively de-
signed this layer to consist of two functions to fully iso-
late the computation pipeline for each agent for high-
performance parallelism. Firstly, we define

Pi : t,A 7→ A′
i, (6)

where A′ represents the vector updated through the function
Pi. To be more specific, Pi updates the n-attributes for agent
i based on time and k-attributes of other agents, formulated
as

ni(t+ 1) = Pi(A(t)). (7)

Secondly, we define

Qi : t,E,A′
i,vdesire → vfeasible. (8)

Function Qi adapts the ideal velocity vdesire for agent i
based on its state at time t, and outputs a feasible velocity,
which equals to vi(t) in Equation 1.

In the result presentation layer, we dynamically update
visualization results or outputs A to file for subsequent data
analysis, according to user requirements.

As E represents static and unchanging environmental in-
formation, and considering that the k-attributes for each
agent remain constant until the result presentation layer, the
only variable being modified throughout the entire crowd
simulation task is Ai. Assuming E as an implicit parameter,
the key function Fi can be formulated as the composition of
Gi, Pi, Qi as in Equation 2. The position of agent i at each
frame is then determined by solving for xi(t).

3.3. Modules implementation

Scenario initialization module INI files can be used to
globally configure TaiCrowd, enabling or disabling spe-
cific modules, setting the simulation timestep, and choos-
ing from TaiCrowd’s native provided locomotion models.
For specifying the simulation environment, TaiCrowd of-
fers multiple implementations. This includes creating sim-
ple obstacle walls by specifying the start and end points
of obstacle segments, generating convex obstacles with a
vertex list, and inputting binary pictures for more intricate
simulation environments such as mazes. To specify the
initial conditions of agents, options include providing an
explicit list of each agent’s position, velocity, and target,
setting k-attributes through two-dimensional numpy arrays,
or importing a CSV file containing such information. To
facilitate comparisons between simulations, TaiCrowd na-
tively includes several optional predefined classical simula-
tion scenarios.

State machine update module TaiCrowd offers this
module as an optional feature to simplify the description of
crowd behavior by dividing intricate motion scenarios into
a finite set of states and transition conditions. TaiCrowd
allows users to define arbitrary states and transition con-
ditions. In many cases, the basic states are already self-
consistently implemented in the feasible velocity computa-
tion module with mature locomotion models. In such cases,
the state machine module can be used to define extended
states or specify a series of distinct targets.

Desired velocity computation module In the desired ve-
locity computation module, TaiCrowd aims to support the
paradigm of global path planning plus local navigation in
crowd simulation. In cases where global path planning is
not required, the functionality of this module is simply to
calculate the vector from the current position of each agent
to its target. TaiCrowd incorporates the global path plan-
ning algorithm mainly based on A*[7], preventing short-
sighted congestion in crowd movement. We enhance the
performance by parallelizing the steps of “extracting the
highest-priority node q from the open list” and “expanding
the neighboring nodes of q”.

Neighborhood information update module TaiCrowd
employs neighborhood information update approaches
which can be categorized into dynamic and static methods.

The dynamic approach utilizes two Taichi Dynamic
SNode fields, parallelly traversing all agent k-attributes, and
recording the number and identifiers of agents within each
grid.

The static approach pre-allocates memory for Taichi
Pointer SNode fields before program execution and utilizes



Figure 4. TaiCrowd simulation scenarios, (a)Scene Circle with windows GUI, (b)Scene Doorway with windows GUI, (c)Scene Doorway
with Unreal Engine, (d)Crowd evacuation scenarios at major events in China with Unreal Engine.

parallel prefix sum algorithms to compute neighborhood in-
formation. This method capitalizes on a crucial property:
each agent at any given moment belongs to only one grid,
ensuring that the sum of agents contained in all grids is
equal to the total number of agents in the crowd. By em-
ploying a Taichi field of the same size as the total number of
agents, this method records the identifiers of agents within
each grid in row-major order. Calculating the starting and
ending positions of agents corresponding to each grid in this
field reveals the number of agents and their corresponding
identifiers within each grid. This approach achieves effi-
cient computations on GPU though sacrificing some mem-
ory space.

Feasible velocity computation module The feasible ve-
locity computation module computes a feasible velocity that
maximally satisfies the desired velocity while adhering to
the rules dictated by the current state. Users can utilize
the pre-loaded representative crowd simulation models in
TaiCrowd, as shown in Figure 2, or develop custom models
using the Taichi language. This flexibility enables research
into how changes in locomotion models affect overall sim-
ulation.

Agent position update module The agent position up-
date module is responsible for parallelly solving xi based
on Equation 1.

Visualization module The visualization module is capa-
ble of graphically representing, exporting, or analyzing the
spatial dynamics of the crowd in each simulation frame.
TaiCrowd provides real-time simulation visualization and
supports data-driven crowd simulation with professional
rendering engines using exported data.

TaiCrowd predefines various simulation evaluation met-
rics, primarily categorized into two categories. The first
category evaluates the realism and feasibility of the simula-
tion, including metrics such as the count of pedestrian col-
lisions, arrival rates, and average travel time. The second
category evaluates the performance of simulation, encom-
passing metrics such as simulation time, and memory us-
age. TaiCrowd supports extensibility for personalized cus-
tomization of evaluation metrics based on specific analyti-
cal requirements.



Figure 5. Crowd evacuation scenarios at major events in China with TaiCrowd.

4. APPLICATION AND EVALUATION

4.1. Experiment scenario

The performance data were measured on a standard
desktop PC with GPU RTX 3070, an Intel i7 3.4GHz pro-
cessor with 32GB of memory.

In our experiments, for environment representation, both
rule-based and force-based feasible velocity computation
models utilized the common grid-based approach. The
obstacle information for each grid is stored in the two-
dimensional Taichi field, as illustrated in Figure 6. For mod-
els based on velocity space, an obstacle structure is defined
to record information for each obstacle vertex in the two-
dimensional plane. This information is then stored in Taichi
Struct fields.

Concerning the representation of crowd attributes, we
employ the AOS (Array of Structures) approach to tightly
organize each agent’s k-attributes and s-attributes within the
Taichi Dense SNode. As for storing the n-attributes of the
crowd, we utilize the Taichi Dynamic SNode, which facili-
tates dynamic addition and removal of elements similar to a
C++ vector.

4.2. Simulation results

TaiCrowd facilitates real-time visualization of simula-
tion results directly through the Taichi GUI. We employ
coloured disks to signify different types of crowds. The
angle of rotation of the indicative triangle in the center of

Figure 6. TaiCrowd’s data representation approach, white box in-
dicates active nodes, grid[i, j] represents the grid at row i and
column j.

the circle indicates the direction of the force at the current
moment. The RGB color value of the circle represents the
magnitude of the force. Figure 4 provides several simula-
tion example.

For more precise control over crowd motion animations,
one can utilize the data-driven crowd simulation approach
with professional rendering engines, using the crowd k-
attributes data exported from TaiCrowd. Figure 5 illustrates
a practical application of TaiCrowd in evacuation scenario.

TaiCrowd empowers users to define complex individual
behaviors with ease, while maintaining high performance.
We illustrate this capability by incorporating personality-
specific behavior and grouping dynamics within TaiCrowd.

We refer the readers to our Github repository to view the
complete simulation results.

• Scene doorway In Scene Doorway, 200 agents are po-



Table 2. Likert scale ratings (1–5) for Realism, Dynamic Coherence, and Applicability by Experts Across Scenarios.“A.” represents the
average score given by the three experts for each scenario.

Metric
Scene Doorway Evacuation Scenario Grouping Dynamics Metric

AverageE1 E2 E3 A. E1 E2 E3 A. E1 E2 E3 A.

Realism 4 4 3 3.67 5 5 4 4.67 4 5 4 4.33 4.22
Dynamic

Coherence
4 4 3 3.67 4 5 4 4.33 3 4 4 3.67 3.89

Applicability 4 4 4 4.00 5 5 5 5.00 4 5 4 4.33 4.44

sitioned on either side of a narrow and long corridor, to
traverse through a narrow door to the opposite side. In
this scenario, the noticeable queue blockages near the
narrow doorway create challenges for obstacle avoid-
ance and interactions among dense agents.

• Scene circle In Scene Circle, 200 agents form a cir-
cle, aiming to exchange positions with agent along the
diagonal. This scene involves no obstacles, and the
crowd density becomes extremely high when people
exchange positions in the middle of the circle, requir-
ing complex collision detection among agents.

• Scene maze In Scene Maze, 100 agents are initialized
in the lower right corner of a complicated maze, and
their goal is to get through the maze to the exit on the
left. This scenario shows that TaiCrowd is capable of
handling global navigation and environmental obsta-
cles at a high computational speed.

• Evacuation scenario This scenario serves as a case
study for using TaiCrowd to simulate and com-
pute evacuation plans for large-scale events involving
nearly 70,000 spectators. The simulation precisely cal-
culates the optimal exit routes and times for the crowd,
with the results visually rendered in Unreal Engine,
demonstrating TaiCrowd’s effectiveness.

• Personality-specific behavior This scenario involves
100 agents forming a 10x10 queue and moving to-
wards a destination on the right side of an open
space. Each agent is assigned a unique gender, per-
sonality, and physical fitness level at random. Male
agents are represented by blue disks, while female
agents are depicted in green. The depth of color indi-
cates the agent’s speed capability. This demonstrates
TaiCrowd’s ability to simulate individual behaviors
and interactions within a structured group with little
computational cost.

• Grouping dynamics In this scenario, 60 agents tra-
verse through Scene Maze, with several subgroups
evident within the crowd. Agents within the same
subgroup, connected by lines of the same color, ex-
hibit a tendency to move more closely together. This

showcases TaiCrowd’s ability to simulate grouping dy-
namics and effortlessly analyze the influence of social
groups on crowd behavior.

User study To evaluate the authenticity of TaiCrowd’s
simulation results, we conducted a user study with three
domain experts in crowd simulation. The study focused on
three core scenarios, with each expert assessing them on
three dimensions using a 1–5 Likert scale, along with op-
tional open-ended feedback. The full questionnaire is avail-
able in our source code.

The Likert scale results as shown in Table 2 demon-
strated a strong performance by TaiCrowd across all dimen-
sions. The highest score, 4.44/5, was achieved for applica-
bility among three metrics, affirming TaiCrowd’s potential
for real-world applications regarding large-scale crowd sim-
ulation. Experts praised TaiCrowd’s scalability and quality
across scenarios while suggesting improvements in path op-
timization under dense crowds and adding new use cases.
The study confirms TaiCrowd’s authenticity and practical
potential, with future evaluations requiring broader user
studies.

4.3. Performance evaluation

We compare TaiCrowd with several actively maintained
and recently updated open-source frameworks in align-
ment with the objectives of our work, including Menge,
JuPedSim, and Vadere, in terms of efficiency improvements
across different simulated crowd scales. The feasible veloc-
ity is computed with the force-based method. All perfor-
mance statistics are the average computation time over 20
tests. The results are shown in Table 3 and Figure 7.

Regardless of simulation frameworks, there is a slight
decrease in Scene Doorway’s FPS performance, reflecting
the additional computational load incurred by the queue
blockage and collision with static obstacles. In both sce-
narios, TaiCrowd has enhanced crowd simulation efficiency,
showing even more remarkable effectiveness as the simu-
lated crowd size exceeds 5,000. In general, TaiCrowd out-
performs the comparison frameworks across various crowd
scales, achieving a 5-fold improvement in the thousand-
individual tier, a 30-fold enhancement in the ten-thousand-



Figure 7. Efficiency comparison between TaiCrowd and other frameworks.

Table 3. Performance statistics(ms) of TaiCrowd and other frameworks in different simulation scenarios. Bold indicates better results. A
“-” sign indicates that the value of this item is bigger than 10,000 and is not collected.

Agent Scene Circle-Figure 4(a)

Num 0.5k 1k 5k 10k 30k 50k 70k 100k

Vadere 15.87 37.04 151.52 625.0 5000.0 - - -
JuPedSim 4.81 8.26 33.33 76.92 222.22 370.37 769.23 1111.11

Menge 4.03 5.78 37.04 71.43 185.19 312.5 500.0 833.33

TaiCrowd 3.16 3.19 3.76 5.65 10 12.35 14.49 23.81

Agent Scene Doorway-Figure 4(b)(c)

Num 0.5k 1k 5k 10k 30k 50k 70k 100k

Vadere 20.83 126.58 2500.0 - - - - -
JuPedSim 5.21 25.64 38.46 90.91 312.5 666.67 833.33 1250.0

Menge 4.44 17.86 100.0 181.82 434.78 714.29 1111.11 1666.67

TaiCrowd 3.32 3.34 4.02 4.5 7.63 15.63 20.83 33.33

individual tier, and a remarkable 60-fold improvement in
the hundred-thousand-individual tier.

The exceptional performance highlighted above posi-
tions TaiCrowd as an efficient framework for massive crowd
simulations, emphasizing its robust crowd simulation ca-
pabilities. Moreover, as shown in Table 1, TaiCrowd pro-
vides various feasible velocity computation models, I/O
APIs, and optional modules, surpassing other simulation
frameworks in scalability and user-friendliness. Consider-
ing the aforementioned aspects, TaiCrowd can be character-
ized as a scalable, efficient, and user-friendly crowd simu-
lation framework, facilitating researchers in analyzing sim-
ulation outcomes and algorithm performance.

4.4. Performance analysis

We analyze the performance improvements of TaiCrowd
by focusing on three key modifications that enable better
parallelization and enhanced integration with Taichi:

• Parallelization of agent-based computation
TaiCrowd uses fully parallelized agent-based com-
putations, allowing agents to update their states
simultaneously without synchronization delays. By
leveraging Taichi’s parallel loops across CPU and
GPU threads, we achieved a significant reduction in
simulation time (see Table 3 and Figure 7).

• Data structures and memory layouts optimization
We designed data structures aligned with a sparse, hi-
erarchical memory layout(see Section 3.2), reducing
memory footprint and improving data access efficiency
(Figure 6). Custom quantization techniques store at-
tributes efficiently, further enhancing performance.

• Optimized neighborhood search mechanism The
neighborhood search optimization reduces computa-
tional overhead during updates, enabling efficient spa-
tial queries in parallel, which maintains accuracy even



Figure 8. Configuration analysis in TaiCrowd using social force model in Scene Circle. The prefix number represents the number of
CPU threads, the suffix “d” represents the dynamic neighborhood information update approach and the suffix “s” represents the static
neighborhood information update approach. Figure(c) use the AOS data organization method and dynamic neighborhood information
update approach on GPU.

in dense crowd scenarios (Section 3.3).

These improvements are rooted in our system architec-
ture and design, ensuring that TaiCrowd’s performance is
not language-dependent and can be implemented in other
similar programming languages without sacrificing effi-
ciency.

4.5. Configuration analysis

We conducted a series of experiments to identify the op-
timal configuration for massive crowd simulation using the
configurable parameters provided by TaiCrowd.

As depicted in Figure 8(a) and Figure 8(b), the impact of
the data organization method on performance is more pro-
nounced on the GPU than on the CPU, owing to the pecu-
liarities of GPU memory. In general, the AOS method en-
hances cache hit rates, leading to a substantial improvement
in simulation efficiency compared to the SOA (Structures
of Array) method; the parallelism of GPU surpasses that of
multi-threaded CPU.

Figure 8(c) compares the performance of different fea-
sible velocity computation models natively supported by

TaiCrowd. TaiCrowd’s parallel optimization for various
feasible velocity computation models significantly acceler-
ates simulation efficiency.

Based on the aforementioned experimental results,
when conducting massive parallel crowd simulations with
TaiCrowd, it is suitable to use the GPU, adopt a static neigh-
borhood information update approach, and implement AOS
data organization for computation.

5. CONCLUSION

Traditional agent-based crowd simulation excels in cap-
turing diverse crowd dynamics but struggles with scala-
bility. This paper introduces TaiCrowd, an open-source
framework addressing the need for a scalable, efficient,
and user-friendly crowd simulation solution. Utilizing
the general parallel approach we proposed for agent-based
methods, TaiCrowd achieves significant performance im-
provements, with a 5-fold enhancement in the thousand-
individual tier, 30-fold in the ten-thousand-individual tier,
and an impressive 60-fold improvement in the hundred-
thousand-individual tier. Best practices for TaiCrowd in-
clude GPU utilization, the static neighborhood information



update approach, and the AOS data organization method.
TaiCrowd’s evolution holds promise for addressing a wider
range of crowd simulation challenges, fostering innova-
tion, and facilitating the integration of diverse modelling
approaches.

The future of TaiCrowd involves exploring real-world
video comparisons to validate its ability to model real-life
crowd behaviors. Beyond agent-based methods, we aim to
adapt TaiCrowd’s architecture for compatibility with other
massive crowd simulation methods, expanding its versatil-
ity.
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