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Abstract

The semi-supervised method has greatly promoted
the development of medical image segmentation, as it
alleviates the pressure of obtaining a large number of
medical image annotations. In this article, we pro-
pose a new spatial-spectral and commonality learning
network (SSCL) that better utilizes unlabeled data for
semi-supervised medical image segmentation. The mo-
tivation of the SSCL model is to observe that, existing
methods only focus on the features of the target area
during segmentation, ignoring the features which can
represent the total image, we call them common fea-
tures. Because there is also feature information in the
common features that can better assist the network in
segmentation. In addition, due to the low contrast and
high noise characteristics of medical images, only allow-
ing the model to learn features in the spatial domain is
not sufficient for the network to learn enough informa-
tion. Due to insufficient feature information, the net-
work will make more erroneous predictions when seg-
menting the edges of the target area than when segment-
ing the central area. Therefore, our proposed SSCL
model consists of two new designs to address the above
issues. First, we propose a reliable commonality learn-
ing module to learn the common features to help the net-
work improve the segmentation performance. Second,
we design a spectral convolution module to learn spec-
tral feature information. Experimental results on three
medical image datasets show that our framework out-
performs previous state-of-the-art methods.

Keywords: Semi-supervised learning, Medical image
segmentation, Spectral feature, Common feature, Com-
monality learning

1. Introduction

In the medical field, accurately segmenting internal
structures from medical images plays an important role in
many clinical applications [19], such as disease diagnosis
and quantitative analysis. Due to the power of deep neu-
ral networks, many researchers have tried to use them to
solve the task of medical image segmentation, and segmen-
tation models based on a large amount of labeled data have
achieved great results[7, 37, 40, 24, 10].

However, since medical image labeling often requires
specialized knowledge and clinical experience, the labeling
work is only suitable to be done by doctors or professionals,
which makes it very difficult and expensive to acquire large
amounts of labeled data. But obtaining a large amount of
unlabeled data is much easier than obtaining labeled data,
so how to use a small portion of labeled data and a large
amount of unlabeled data to train the network to be able to
solve the task of medical image segmentation becomes very
important, this is called semi-supervised. Semi-supervised
medical image segmentation methods have arisen under
such a need and become an important research direction in
computerized medical vision tasks.

Semi-supervised learning can be subdivided into two
categories of methods: pseudo-labeling and consistency
learning. Pseudo-labeling [13] methods are based on previ-
ously labeled data, where unlabeled data is simply pseudo-
labeled and used along with labeled data to train the net-
work; this method aims to expand the training dataset
and thus improve the performance of the model. Con-
sistency learning [27, 4, 38] methods encourage agree-
ment in predictions between different perturbations by in-
troducing perturbations to the model structure or input im-
ages, an approach designed to further train the network
to improve its performance. However, previous methods
[4, 38, 32, 31, 9, 25, 14, 16, 17, 30, 34] further improve the
accuracy of segmentation results, there are still two prob-
lems with current semi-supervised medical image segmen-
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Figure 1. Visualization of the model’s erroneous predictions and the number of incorrectly predicted pixels. The red masks represent the
model’s wrong predictions, and the white numbers represent the number of wrong pixels.

tation methods: (1) The network only focuses on the fea-
tures of the target area, neglecting the features that can rep-
resent the total image, we call them common features. In
previous work, labels or pseudo labels were usually used
to supervise the network learning of the features of the tar-
get area in the image, which made the network only focus
on extracting the features of the target area and ignoring
other feature information in the image. However when us-
ing pseudo labels, due to inaccurate supervised signals, it
is difficult for the network to learn accurate target area fea-
tures. There is some information in common features that
can help the network better segment the target area. There-
fore, learning only the features of the target area limits the
network’s ability to segment the target area; (2) Lack of
sufficient feature information leads to more errors in edge
segmentation. Due to the poor imaging quality of medi-
cal images, the edge information of medical images is very
difficult to distinguish, they may contain very limited in-
formation in the spatial domain, so the networks only learn
features in the spatial domain and cannot obtain sufficient
feature information, leading to more erroneous predictions
when segmenting the target area. As shown in Figure 1,
displayed the model’s incorrect predictions and the number
of pixels with incorrect predictions. It can be seen that the
erroneous pixels are mainly located in the edge area of the
target, which is caused by insufficient information obtained
by the network from the image. Therefore, learning image
features only in the spatial domain can not provide sufficient
feature information for the segmentation network.

To alleviate the above existing problems, we propose a
spatial-spectral and commonality learning network (SSCL)
for semi-supervised medical image segmentation. Firstly,
we propose a commonality learning module to learn com-
mon features, to solve the problem of networks only fo-
cusing on the features of the target region while ignoring
common features. Specifically, outside of the segmentation
network, we trained a reconstruction network as a common-
ality learning module. The commonality learning module
does not require additional labeling to learn common fea-
tures, because the label of the reconstruction network is the
input image, and the common features learned by the recon-
struction network are provided as compensation informa-
tion to the segmentation network to help it better segment

the target area. Furthermore, in the field of semi-supervised
medical image segmentation, we have for the first time in-
troduced the extraction and processing of spectral domain
information, to solve the problem of insufficient feature in-
formation leading to more edge segmentation errors. Previ-
ous work [8] has shown that there are spectral features that
existing methods may miss in medical images, and semi-
supervised learning requires more information than fully
supervised learning. Therefore, we combine spectral and
spatial features to provide more information to the network.
Specifically, we have added a new spectral encoder to the
network. During the training process, the input image will
be fed to the spatial encoder and spectral encoder to learn
spatial and spectral features respectively. In this way, the
network can learn more feature information.

In summary, the main contributions of this paper are as
follows:

· We propose a commonality learning module to learn
common features, which is used to help the segmentation
network better grasp the features of the target area and train
the module without adding additional labels, ensuring the
accuracy of learning features. (Section 3.2)

· We introduce spectral features that extract and process
information from the spectral domain to provide more fea-
ture information for the network, to solve the problem of
only learning features in the spatial domain without suffi-
cient feature information. (Section 3.3)

· We validate the proposed SSCL on three public bench-
mark datasets, and the experimental results show that the
proposed SSCL outperforms other state-of-the-art methods
in all three benchmarks, indicating that SSCL is a superior
architecture for semi-supervised medical image segmenta-
tion. The ablation experiments further demonstrate the ef-
fectiveness of each proposed module. (Section 4)

2. Related Work

2.1. Medical Image Segmentation

Segmenting target organs or lesions from medical im-
ages plays a vital role in many clinical applications, as ac-
curate segmentation information can help doctors better as-
sess a patient’s condition. The development of deep learn-
ing has greatly improved the accuracy and stability of med-



ical image segmentation results. In the field of medical im-
age segmentation, U-Net [21, 6] and its encoder-decoder
framework have been widely used due to their simplicity
and accuracy. The main advantage of U-Net is its skip con-
nection design. To improve performance, various methods
have been proposed, such as redesigning skip connections
[41], introducing residual/dense convolution blocks in the
network [1, 15], or optimizing feature maps by introduc-
ing attention mechanisms [20]. nnU-Net [12] proposed by
Isensee et al. enables the segmentation network to adapt
to training strategies and network frameworks automati-
cally. In recent years, with the remarkable achievements
of transformer in traditional computer vision tasks, trans-
former have also received widespread attention in the field
of medical segmentation, and many transformer-based seg-
mentation methods have been proposed. Chen et al. [3]
improved the segmentation performance by replacing the
encoder in U-Net with a transformer. Cao et al. [2] con-
structed a pure transformer segmentation network, Swin-
Unet, by using transformer blocks to replace the convolu-
tion blocks in the U-Net framework. VNet [18] was pro-
posed by Milletari et al. to address the challenges in med-
ical image segmentation, especially when processing 3D
volume data. Although these methods have achieved great
results in the medical segmentation field, they are all based
on supervised training mode, and obtaining medical image
annotations is very complex and costly, which limits these
methods to a small amount of labeled data.

2.2. Semi-supervised learning

Semi-supervised learning trains a network by utilizing
a combination of labeled and unlabeled data, allowing the
network’s performance to approach that of fully supervised
learning. The theoretical basis of semi-supervised learn-
ing comes from three fundamental assumptions [28]: (1)
smoothness assumption: for two adjacent input samples x1,
x2 ∈ X in the input space, the corresponding labels y1 and
y2 should be the same, and vice versa. (2) low-density as-
sumption: samples within a single class tend to form a clus-
ter, so the decision boundary of the classifier should pass
through low-density areas in the input space, and not high-
density regions. (3) manifold assumption: samples located
on the same low-dimensional manifold should belong to the
same class, reflecting the local smoothness of the decision
boundary.

As mentioned in the introduction section, semi-
supervised learning methods can be divided into two
categories:pseudo-labeling and consistency learning. The
pseudo-labeling method attempts to generate pseudo-labels
similar to ground truth labels to expand the training set for
network training. Lee et al. [13] proposed using the pre-
dictions of a fully supervised network as pseudo-labels for
unlabeled data, but this method introduces a lot of noise

during the training process. To address this issue, Sohn et
al.[26] reduced the number of erroneous predictions by set-
ting a threshold for the predicted values and only retaining
high-confidence annotations.

The core idea of consistency learning is that for an in-
put, even if perturbed, the network can still produce an out-
put that is consistent with the original. One typical rep-
resentative is the mean teacher proposed by Tarvainen et
al. [27], which applies two different augmentations to the
same input to increase perturbation and uses the output of
the teacher model to supervise the student model. After that,
many works have extended the mean teacher framework dif-
ferently. Because the teacher network in the mean teacher
framework updates parameters through exponential moving
average (EMA) [27], the performance of the teacher net-
work is limited by the student network. Therefore, Chen et
al. [4] proposed a cross-pseudo-supervision method where
two networks with different parameter initialization super-
vise each other and independently update their parameters.

2.3. Semi-supervised Medical Image Segmentation

The difficulty in obtaining labeled medical image data
and the success of semi-supervised learning have driven
the development of semi-supervised medical image seg-
mentation research. Variants of the mean teacher frame-
work have been widely used in semi-supervised medical
image segmentation. Yu et al. proposed a mean teacher
framework UA-MT [38] that uses uncertainty informa-
tion to guide the student network to learn more reliable
targets from the teacher network and enhances network
performance by introducing transformation perturbations.
Wang et al. proposed a dual uncertainty-weighted method
Double-UA [32] based on this uncertainty-aware teacher-
student model, which simultaneously considers the uncer-
tainty of predictions and features and refines the predic-
tions of the teacher model during training. Afterward, Wang
et al. proposed a triple uncertainty-guided mean teacher
framework Triple-UA [31] by defining two auxiliary tasks
on the mean teacher network to help the model learn dif-
ferent features and make better predictions. Hang et al.
used the global-local structure-aware entropy minimization
method LG-ER-MT [9] based on the mean teacher network.
CoraNet [25] proposed a model that can generate both de-
terministic and uncertain regions, where the student net-
work assigns different weights to the regions given by the
teacher network. In addition, some other methods have also
achieved good results. SASSNet [14] introduced a shape-
aware semi-supervised segmentation strategy that integrates
more flexible geometric representations into the network
to improve performance. DTC [16] proposed a dual-task
consistency framework by building task-level regulariza-
tion training, which encourages consistent predictions of
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Figure 2. The process of our proposed SSCL framework.

the same input under different tasks. Luo et al. proposed
a pyramid multi-scale architecture (URPC) [17], which en-
courages consistent regularization of predictions of unla-
beled inputs at multiple scales. Wang et al. proposed a
generative Bayesian deep learning model (GBDL) [30] to
learn the joint distribution of data and labels. Wu et al. pro-
posed a new competitive winning method (ComWin) [33]
to improve the quality of pseudo labels. Xu et al. pro-
posed a novel ambiguity-consensus mean-teacher(AC-MT)
[23] model. Shen et al. proposed a multi-network collab-
orative training UCMT [36] with high-confidence pseudo
labels. Although previous methods have improved the ac-
curacy of segmentation results, they only learn the features
in the spatial domain and cannot provide sufficient feature
information for the segmentation network; And only learn
the features of the target area, ignoring the information in
the common features may also play a promoting role in net-
work segmentation. This article proposes solutions to these
problems.

3. Method

In this section, we first introduce our proposed SSCL
segmentation network. After this, we describe the mod-
ules in the SSCL framework, and the loss functions are de-
scribed. Finally, the testing stage is illustrated.

3.1. Overview of the Framework

In the task of semi-supervised medical image segmenta-
tion, we assume a complete dataset that contains two types
of data: labeled data and unlabeled data. The number of
labeled data is N , and the number of unlabeled data is M ,
where M ≫ N . For the sake of simplicity, we define the

two types of data as two subsets of the dataset, denoted as
D = {DL, DU}. The labeled subset is represented as DL

= (XL
i , Y

L
i )Ni=1, and the unlabeled subset is represented as

DU = (XU
i )Mi=1. Here, X ∈ RW×H×D represents the in-

put image during the training phase, and Y represents the
corresponding labels (only for labeled data). The goal of
semi-supervised medical image segmentation is to predict
the label mapping Ŷ ∈ {0, 1, ..., C}W×H×D for each voxel
k ∈ X , where 0 represents the background class, and the
rest correspond to target classes.

The overall training process of the proposed SSCL is il-
lustrated in Figure 2. SSCL is based on the Mean Teacher
framework, which consists of a teacher network T (FT (·)), a
student network S(FS(·)), and commonality learning mod-
ule R (FR(·)), where the commonality learning module is
a reconstruction network. A batch of input data X contains
an equal number of labeled data (XL, YL) and unlabeled
data XU . The input data X is first passed through the re-
construction network to obtain the common features Fc and
the reconstruction prediction X̂ for the two types of data.

X̂, Fc = FR(X) (1)

Note that the common features Fc are the output of the
encoder in the reconstruction network. Then, the common
features Fc, along with the input data X , are separately fed
into the teacher and student networks to obtain the predicted
values:

ŶT = FT (X
U , Fc) (2)

ŶS = FS(X,Fc) (3)

The overall network output includes the segmentation pre-
dictions ŶT and ŶS from the teacher and student networks,



respectively, as well as the reconstruction predictions X̂
for the two types of data. The student network is pseudo-
supervised using the predictions from the teacher network.
The loss function Lseg consists of both supervised and un-
supervised losses, which are combined by cross-entropy
loss and dice loss [18], this is a popular approach in medical
image segmentation. The input for the reconstruction net-
work, as well as the supervised labels, is the input image X .
Therefore, this network does not differentiate between the
two types of data. The loss function Lrec is composed of
the MSE loss. The reconstruction network and the student
network independently update their parameters based on the
calculated losses, while the teacher network updates its pa-
rameters using exponential moving average (EMA) [27].

3.2. Commonality learning module

The purpose of the commonality learning module is to
learn the common features of labeled and unlabeled data
and help the segmentation network better capture the fea-
tures of the target regions. In semi-supervised segmentation
networks, the lack of reliable supervision signals prevents
the segmentation network from accurately learning the fea-
tures of the target regions in unlabeled data. The proposed
commonality learning module, as shown in Figure 2, con-
sists of a VNet [18]. The input and supervised labels for
this module are both the input image, and the output is the
reconstructed input image. The entire network is trained by
calculating the loss between the reconstructed and input im-
ages. Therefore, we use the common features learned by the
commonality learning module as compensatory information
provided to the segmentation network.

When the input image X enters the commonality learn-
ing module, the network extracts the common features Fc.
Here, we take the features outputted by the last layer of the
encoder in the network as the common features Fc provided
to the segmentation network. The common features Fc are
added to the final features Ff (which will be discussed in
the next section) outputted by the last layer of the encoder
in the segmentation network. The combined features are
then passed to the decoder for segmentation, resulting in
the final segmentation result Ŷ :

Ŷ = D(Fc + Ff ) (4)

Since the commonality learning module is trained in a
fully supervised manner, it can ensure the accuracy of the
learned common features. By providing common features
as supplementary information to the segmentation network,
the segmentation network can improve the segmentation
performance of the target area with the help of common fea-
tures.
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Figure 3. The Spectral Encoder (a) and Fourier block (b).

3.3. Spectral Feature extraction

As shown in Figure 2, the student and teacher networks
for image segmentation consist of two encoder branches,
Espa and Espe, and a decoder D. Espa is a spatial encoder
(the blue part in Figure 2) used to extract spatial features
Fspa from the image, which has the same structure as the
encoder in the VNet and is composed of five convolution
blocks. On the other hand, Espe is a spectral encoder (the
yellow part in Figure 2) used to extract spectral features
Fspe from the image. Its structure, as shown in Figure 3(a),
consists of five Fast Fourier Convolution (FFC) [5] blocks,
which have the same overall structure as the spatial encoder
but with FFC blocks instead of convolution blocks. D is a
VNet decoder that outputs the segmentation results. Since
medical images have limited inherent information, using
only a spatial encoder to learn image features may not be
sufficient. Therefore, we introduce a spectral encoder to ex-
tract and process spectral features from the spectral domain,
providing additional feature information to the segmenta-
tion network and helping improve segmentation accuracy.

The input of the spectral encoder Espe is the same as
that of the spatial encoder Espa. When the input image en-
ters the spectral encoder Espe, its processing procedure is
similar to the spatial encoder Espa. FFC blocks are used
to convolve and learn features, followed by downsampling
operations. The features Fspe outputted by the spectral en-
coder Espe are added to the features Fspa to get the final
features Ff , complementing the network with spectral fea-
ture information.

Ff = Fspa + Fspe (5)

The final features Ff , combined with the common features
Fc obtained from the commonality learning module, then
passed to the decoder D to obtain the final results.



The FFC block in the spectral encoder, as shown in Fig-
ure 3(b), first performs a 3D Fast Fourier Transform (FFT)
on the input to obtain the real and imaginary parts, a + bi
∈ C. The concatenated real and imaginary parts were then
passed through a convolutional layer with a kernel size of
1 to learn spectral features. After that, the output of the
convolutional layer goes through an activation layer and
batch normalization layer. The output is then split into two
parts, the real and imaginary parts, finally, a 3D inverse
Fast Fourier Transform (IFFT) is performed to transform
the spectral features back to the spatial domain, aligning
the spectral features with the corresponding spatial domain
features.

3.4. Loss Function

In the SSCL framework, two networks need to be up-
dated through loss computation: the student network and
the reconstruction network. Therefore, the loss function in-
cludes two parts: the segmentation loss Lseg for training the
student network and the reconstruction loss Lrec for train-
ing the reconstruction network.

The segmentation loss Lseg for training the student net-
work consists of two components: the supervised loss and
the unsupervised loss. It can be represented as follows:

Lseg = Lsup + λLunsup (6)

Lsup is the supervised loss, Lunsup is the unsupervised
loss, and λ is a balancing parameter with a default value
of 0.5. Both supervised and unsupervised losses are com-
posed of a combination of dice loss [18] and cross-entropy
loss. The difference is that the supervised loss is super-
vised by ground truth labels, while the unsupervised loss
is pseudo-supervised using pseudo-labels generated by the
teacher network. The representation is as follows:

Lsup = DICE(Ŷ L, Y L) + CE(Ŷ L, Y L) (7)

Lunsup = DICE(Ŷ U , Y P ) + CE(Ŷ U , Y P ) (8)

Y P represents pseudo-labels, which are determined by ap-
plying a common threshold of 0.5 to the predicted values
ŶT of the teacher network.

The reconstruction loss Lrec for the reconstruction net-
work is relatively straightforward. It is trained by calcu-
lating the MSE loss between the reconstructed image out-
putted by the network and the input image. It can be repre-
sented as follows:

Lrec = MSE(X̂,X) (9)

X̂ represents the reconstructed image, and X represents the
input image.

The teacher network updates its parameters W k+1
T at

the (k+1)th iteration using an exponential moving average

(EMA). The update of the teacher network parameters is
represented as follows:

W k+1
T = αW k

T + (1− α)W k
S (10)

Here, α is the weight parameter, default is 0.999, and W k
S

represents the parameters of the student network at the k-th
iteration.

Student Model

Commonality Learning Model Testing Phase 

Figure 4. The process of testing phase. Note that only the stu-
dent model and the commonality learning model are needed in the
testing phase.

3.5. Testing Phase

The testing phase of SSCL is shown in Figure 4. During
testing, we use two networks: the trained student network
and the reconstruction network. The reconstruction network
is kept during testing because the common features learned
by the reconstruction network can be added to the features
of the segmentation network to improve the segmentation
performance. For a test image Xt, it is sent to both net-
works separately. The reconstruction network provides the
common features Fc of the test image Xt to the student net-
work, and the final prediction Yt can be obtained from the
student network:

Yt = FS(Xt, Fc) (11)

4. Experiments

4.1. Dataset and Implementation Details

Left Atrial Dataset (LA) [35]: The LA dataset is the
benchmark dataset for the 2018 Atrial Segmentation Chal-
lenge, containing 100 3D gadolinium-enhanced magnetic
resonance imaging (GE-MRI) scans with labels. Following
the settings used in DTC [16] and UA-MT [38], we use 80
data for training and 20 data for testing. In our experiments,
we conducted two typical semi-supervised settings, using
10% and 20% labeled data for training.

NIH-pancreas dataset [22]: The Pancreas CT dataset
is publicly available from the National Institutes of Health
Clinical Center and includes 82 abdominal CT images man-
ually annotated by experienced physicians. The size of
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Figure 5. Visualizations of several semi-supervised segmentation methods obtained by SS-NET [34], UAMT [38], LG-ER-MT [9], DTC
[16], SASSNET [14], our SSCL model with 20% labeled data and ground truth on LA dataset.

Method Volumes used Metrics
2-7 Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

VNet 8(10%) 0 0.786 0.670 21.20 6.07
VNet 16(20%) 0 0.870 0.773 11.85 3.22
VNet 80(100%) 0 0.914 0.844 5.48 1.51

UA-MT [38] (MICCAI 2019) 0.843 0.735 13.83 3.36
SASSNet [14] (MICCAI 2020) 0.873 0.777 9.62 2.55

Double-UA [32] (MICCAI 2020) 0.859 0.758 12.67 3.31
LG-ER-MT [9] (MICCAI 2020) 0.855 0.751 13.29 3.77
Tripled-UA [31] (MICCAI 2021) 0.868 0.768 10.42 2.98

URPC [17] (MICCAI 2021) 0.850 0.744 15.37 3.96
DTC [16] (AAAI 2021) 8(10%) 72(90%) 0.875 0.782 8.23 2.36

SS-Net [34] (MICCAI 2022) 0.886 0.796 7.49 1.90
CoraNet [25] (TMI 2022) 0.866 0.781 12.11 2.40
GBDL [30] (CVPR 2022) 0.884 0.792 5.89 1.60
UCMT [23] (IJCAI 2023) 0.881 0.791 9.14 3.06

AC-MT [36] (MedIA 2023) 0.891 0.805 11.05 2.19
SSCL (ours) 0.893 0.807 7.40 2.03

UA-MT [38] (MICCAI 2019) 0.889 0.802 7.32 2.26
SASSNet [14] (MICCAI 2020) 0.895 0.812 8.24 2.20

Double-UA [32] (MICCAI 2020) 0.897 0.814 7.04 2.03
LG-ER-MT [9] (MICCAI 2020) 0.896 0.813 7.16 2.06
Tripled-UA [31] (MICCAI 2021) 0.893 0.810 7.42 2.21

URPC [17] (MICCAI 2021) 0.887 0.799 12.73 3.66
DTC [16] (AAAI 2021) 16(20%) 64(80%) 0.894 0.810 7.32 2.10

SS-Net [34] (MICCAI 2022) 0.889 0.802 8.02 2.36
CoraNet [25] (TMI 2022) 0.887 0.811 7.55 2.45
GBDL [30] (CVPR 2022) 0.894 0.822 4.03 1.48
UCMT [23] (IJCAI 2023) 0.904 0.825 6.31 1.70

AC-MT [36] (MedIA 2023) 0.903 0.824 6.21 1.76
SSCL (ours) 0.905 0.828 6.39 1.94

Table 1. Comparison with state-of-the-art semi-supervised segmentation methods on the LA dataset.



CT scans ranges from 512 × 512 × 181 to 512 × 512 ×
466 voxels, with interlayer spacing ranging from 1.5 to
2.5mm. During preprocessing, we used a soft tissue CT
window range of [-125,275]HU and resampled all images
to isotropic resolution of 1.0 × 1.0 × 1.0mm. In the ex-
periments, we used 62 samples for training and the remain-
ing 20 samples for testing, following the setting in CoraNet
[25].

Kits19 dataset [11]: It is a kidney tumor segmentation
dataset containing 210 labeled 3D computed tomography
(CT) scans for training and validation. Following previous
work [30], we use 160 data for training and 50 data for test-
ing.

Implementation details: We implemented our model
in PyTorch and conducted all experiments on an NVIDIA
3090TI GPU with a fixed random seed. We use the SGD
optimizer with an initial learning rate of 0.01, weight de-
cay of 0.0001, and momentum of 0.9 to train the model.
VNet is used as the backbone and sets the batch size to 4,
including 2 labeled data and 2 unlabeled data. The itera-
tion numbers for pre-training and formal training were set
to 4k and 30k, respectively. To avoid overfitting, rotation,
and flip operations are implemented to augment the data,
following previous work. Since 3D data training requires a
lot of computation, we cropped all training data into small
patches during training. The training patch sizes for LA,
Pancreas-CT, and Kits19 were 112 × 112 × 80, 96 × 96 ×
96, and 128 × 128 × 64, respectively. During the testing
phase, we use the slide window strategy to obtain the final
results, with a step size of 18 × 18 × 4 for LA and Kits19,
and a step size of 16 × 16 × 16 for Pancreas-CT.

4.2. Evaluation Metrics

We use four metrics to evaluate the performance of the
model, including Dice, Jaccard, average surface distance
(ASD), and 95% Hausdorff distance (95HD). The Dice and
Jaccard coefficients are primarily used to calculate the per-
centage of overlap between two object regions. The ASD
measures the average distance between the boundaries of
the two object regions, while the 95HD measures the dis-
tance between the closest points of the two object regions.

4.3. Results

LA dataset: We first evaluated our proposed method
on the left atrial segmentation task. The compared meth-
ods included UA-MT [38], SASSNet [14], Double-UA [32],
Tripled-UA [31], CoraNet [25], URPC [17], DTC [16], SS-
Net [34], LG-ER-MT [9], GBDL [30], AC-MT [36], and
UCMT [23]. We conducted semi-supervised experiments
under different labeling ratios (10% and 20%). In addi-
tion, VNet is used as the baseline with 10% and 20% la-
beled data. As shown in Table 1, all methods benefited
from the unlabeled data, and our method outperformed the

state-of-the-art methods in terms of Dice and Jaccard co-
efficients in both cases, for example, compared with UA-
MT and GBDL, the Dice coefficients of SSCL increased
by 5% and 0.9%, respectively, on 10% of labeled data. It
can also be seen that our segmentation results are signif-
icantly better than the compared methods from Figure 5,
whether in 2D or 3D results, our SSCL prediction is closest
to the Ground Truth. Figure 1 also shows that our SSCL re-
duces more false predictions at the target edge compared to
UAMT, DTC, LG-ER-MT, and SS-NET. Demonstrating the
superiority of SSCL in semi-supervised medical image seg-
mentation. On the two metrics of 95HD and ASD, it can be
seen that our SSCL is better than most methods, but GBDL
achieved the best results on both indicators in both cases.
We consider that this is possibly due to GBDL extracting
voxel data as slices for segmentation instead of directly seg-
menting the voxel data, as the heart is an irregularly shaped
organ, therefore, slice segmentation may achieve better re-
sults on these two metrics than directly segmenting voxels.

NIH-Pancreas dataset: We further evaluated our pro-
posed method on the pancreas dataset with 20% labeled
data. Since the pancreas is located deep in the abdomen
and has large variations in size, location, and shape, and
the pancreas CT has a more complex background than left
atrial MRI, pancreas segmentation is more challenging than
left atrial segmentation. However, our proposed SSCL still
showed good performance. We compared our method with
DAN [39], ADVNET [29], VNet [18], UA-MT [38], SASS-
Net [14], DTC [16], and CoraNet [25], ComWin [33], as
shown in Table 2. Compared with these methods, SSCL
performed significantly better in terms of Dice, Jaccard, and
95HD, especially, on Dice, it improved by 0.9% compared
to CoraNet, and on Jaccard, it improved by 0.8% compared
to ComWin, confirming that our proposed SSCL can better
utilize unlabeled data and has stronger information extrac-
tion ability.

Kits19 dataset: The experimental results on the kid-
ney segmentation dataset are shown in Table 3, where we
experimented with 10% labeled data. We compared our
method with UA-MT [38], SASSNet [14], Double-UA [32],
Tripled-UA [31], CoraNet [25], and GBDL [30]. From the
table, we can see that our method SSCL exhibited the best
performance in all four evaluation metrics, outperforming
all compared methods and further validating the effective-
ness of SSCL in medical image segmentation. It is worth
noting that our SSCL not only outperforms GBDL in Dice
and Jaccard but also outperforms GBDL in 95HD and ASD
metrics in this dataset, which was not achieved in the LA
dataset. We think this may be because the kidney has a
more regular shape compared to the heart, so the advantage
of slicing for segmentation on these two metrics is lost.



Method Volumes used Metrics
2-7 Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

VNet 12(20%) 0 0.706 0.567 22.54 6.29
VNet 62(100%) 0 0.818 0.697 5.13 1.34

VNet [18](3DV 2016) 0.700 0.556 14.27 1.64
DAN [39](MICCAI 2017) 0.767 0.633 11.13 2.97

ADVNET [29](CVPR 2019) 0.753 0.617 11.72 3.88
UA-MT [38](MICCAI 2019) 0.773 0.638 11.90 3.06

SASSNet [14](MICCAI 2020) 12(20%) 50(80%) 0.777 0.641 10.93 3.05
DTC [16](AAAI 2021) 0.783 0.648 8.36 2.25

CoraNet [25](TMI 2022) 0.797 0.667 7.59 1.89
ComWin [33](TMI 2023) 0.796 0.670 6.95 1.34

SSCL (ours) 0.806 0.678 5.83 1.63

Table 2. Comparison with state-of-the-art semi-supervised segmentation methods on the NIH-Pancreas dataset.

Method Volumes used Metrics
2-7 Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

UA-MT [38](MICCAI 2019) 0.883 0.802 9.46 2.89
SASSNet [14](MICCAI 2020) 0.891 0.822 7.54 2.41

Double-UA [32](MICCAI 2020) 0.895 0.828 7.42 2.16
Tripled-UA [31](MICCAI 2021) 16(10%) 144(90%) 0.887 0.815 7.55 2.12

CoraNet [25](TMI 2022) 0.898 0.820 7.23 1.89
GBDL [30](CVPR 2022) 0.911 0.840 6.38 1.51

SSCL (ours) 0.913 0.843 5.08 1.30

Table 3. Comparison with state-of-the-art semi-supervised segmentation methods on the Kits19 dataset.

4.4. Ablation Studies

Effectiveness of Each Component: To better under-
stand and evaluate the components of our proposed SSCL
method, we conducted ablation experiments on the LA
dataset with 10% labeled data, and the results are shown in
Table 4. We used VNet as the backbone and trained it using
only 10% labeled data, with its performance as the baseline,
and trained it using 100% labeled data, with its performance
as the upper limit. We evaluated the effectiveness of each
module by gradually adding the proposed modules to the
baseline model and observing the changes in segmentation
performance. REC refers to the commonality learning mod-
ule, and FFC refers to the spectral feature learning module.
From Table 4, we can see that after adding the two modules
separately to the baseline method, all metrics improved sig-
nificantly, with the Dice coefficient increasing by more than
3% for each module. Moreover, the performance obtained
by combining the two modules was further improved based
on the separate addition of the two modules, and the im-
provement was very significant. The experimental results
indicate that the addition of these two modules contributes
to the segmentation performance, and when the two mod-
ules are combined, the performance gain is maximized.

Weight λ in Loss Function: To balance the weights of
supervised and unsupervised losses, we weighted the un-

supervised loss and set the default value of λ to 0.5. We
conducted experiments on the LA dataset with 10% labeled
data by changing λ = {0.5, 1, 1.5, 2, 2.5, 3} to observe the
effects of different weights on the network performance and
the results are shown in Table 5. From the table, we can see
that the best performance was achieved when λ = 0.5, and
the performance of the model did not differ much when λ ≤
2. However, when λ> 2, the model performance decreased
significantly.

Weight α in EMA: In the teacher-student network
framework, the parameters of the teacher network are up-
dated using the exponential moving average (EMA) based
on the parameters of the student model. And the weight was
set to 0.99 default. However as shown in Table 6, we found
that changing the weight from 0.99 to 0.999 improved the
performance of the model. This may be because as param-
eter updates became slower, the robustness of the teacher
model was enhanced, allowing the student network to learn
more stable information from the teacher network.

Effectiveness of Threshold: Figure 6 shows the perfor-
mance of the SSCL model trained with different pseudo-
label thresholds on the LA dataset. The results indicate that
as the pseudo-label threshold increases, the overall perfor-
mance of the model on all four evaluation indicators shows
a downward trend. This may be because as the pseudo-label



Method Volumes used Metrics
2-7 Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

Baseline 8(10%) 0 0.831 0.717 21.46 6.55
Upper-bound 80(100%) 0 0.911 0.836 10.09 2.67

Baseline + REC 0.867 0.768 14.86 4.50
Baseline + FFC 8(10%) 72(90%) 0.878 0.784 13.48 3.62

SSCL 0.893 0.807 7.40 2.03

Table 4. Ablation studies of different parts in SSCL on LA dataset.
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Figure 6. The results of SSCL with different thresholds on the LA datasets.

λ Metrics
2-5 Dice↑ Jaccard↑ 95HD↓ ASD↓

λ = 0.5 0.893 0.807 7.40 2.03
λ = 1.0 0.890 0.803 8.28 2.56
λ = 1.5 0.888 0.800 9.96 3.12
λ = 2.0 0.887 0.797 11.82 3.29
λ = 2.5 0.869 0.771 12.02 3.87
λ = 3.0 0.711 0.560 26.88 9.43

Table 5. Ablation studies of weights λ in the loss function with
10% labeled data.

threshold increases while filtering out erroneous informa-
tion, effective information is also greatly filtered. There-
fore, we ultimately used a pseudo-label threshold of 0.5 to
generate pseudo-labels on all datasets.

5. Discussion

Compared to other methods, SSCL performs better for
two main reasons. Firstly, it provides common features that
are missed during segmentation for the segmentation net-

λ Metrics
2-5 Dice↑ Jaccard↑ 95HD↓ ASD↓

α = 0.99 0.891 0.805 7.89 2.04
α = 0.999 0.893 0.807 7.40 2.03
α = 0.99 0.900 0.820 6.99 2.44
α = 0.999 0.905 0.828 6.39 1.94

Table 6. Ablation studies of weights α in EMA with 10% and 20%
labeled data.

work. Other methods have ignored the common features
of the image, while in our method, we successfully com-
pensated the lost common features back to the segmenta-
tion network. The experimental results confirm that helping
the segmentation network compensate for common features
can better improve the segmentation effect. The second rea-
son is to add a spectral encoder to the segmentation net-
work to learn the spectral features of the image. The visu-
alization of segmentation results also shows that due to the
increase in feature information, our SSCL produces fewer
erroneous predictions for edge segmentation compared to



other methods. Due to these two reasons, our SSCL ulti-
mately achieved very good segmentation results.

Although the proposed SSCL method has achieved suc-
cess in semi-supervised medical image segmentation, the
fusion strategy of the three features in the proposed model is
a simple addition processing, and the three networks trained
in the model result in high training time costs. Future work
can attempt to find better feature fusion strategies to more
effectively utilize feature information, and design a better
network structure to reduce the training cost of SSCL.

6. Conclusion

In this paper, we propose a semi-supervised medical im-
age segmentation framework called SSCL, which recon-
structs input images to obtain common features and intro-
duces spectral feature information to help the network bet-
ter learn the features of the target region in the image and
improve segmentation accuracy. The proposed commonal-
ity learning module in SSCL ensures the accuracy of com-
mon features without introducing additional labels in a fully
supervised manner. The spectral feature extraction module
helps the network obtain more feature information by learn-
ing the spectral features of the input image. We conducted
experiments on three common benchmark datasets with two
different modalities, including the left atrial dataset of MR
scans, the pancreas dataset, and the kidney segmentation
dataset of CT scans, the segmentation results outperformed
the previous state-of-the-art methods, demonstrating the ef-
fectiveness, robustness, and generalization of SSCL, as well
as its potential in semi-supervised medical image segmen-
tation.
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