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Abstract

Object detection has greatly improved over the past
decade, thanks to advances in deep learning and large-
scale datasets. However, detecting objects reflected on
surfaces remains an underexplored area. Reflective sur-
faces are ubiquitous in daily life, appearing in homes,
offices, public spaces, and natural environments. Ac-
curate detection and interpretation of reflected objects
are essential for various applications. This paper ad-
dresses this gap by introducing an extensive bench-
mark specifically designed for Reflected Object Detec-
tion. Our Reflected Object Detection (ROD) dataset
features a diverse collection of images showcasing re-
flected objects in various contexts, providing standard
annotations for both real and reflected objects. This
distinguishes it from traditional object detection bench-
marks. The ROD dataset encompasses 10 categories
and 6 reflective surfaces, including 23,520 images of real
and reflected objects on different backgrounds, com-
plete with standard bounding-box annotations and the
classification of objects as real or reflected. In addi-
tion, we present baseline results by adapting five state-
of-the-art object detection models to address this chal-
lenging task. The experimental results underscore the

limitations of existing methods when applied to reflected
object detection, highlighting the need for specialized
approaches. By releasing the ROD dataset, we aim to
support and advance future research on detecting re-
flected objects. The dataset and code are available at:
https://github.com/jirouvan/ROD.

Keywords: Reflected object detection Benchmark Ob-
ject detection ROD dataset.

1. Introduction

The field of object detection has seen remarkable ad-
vancements over the past decade, driven by the development
of deep learning techniques and the availability of large-
scale datasets [51, 54, 2]. These advancements have signif-
icantly improved the accuracy and robustness of object de-
tection systems in various applications [29]. However, one
area that remains underexplored is the detection of objects
reflected in surfaces, such as glass, metal, water, plastic,
polishing and tile. See Fig. 1 for an illustration of the dif-
ference between conventional object detection and reflected
object detection.

Reflective surfaces are ubiquitous in our daily lives, ap-
pearing in a wide array of environments and applications
[35, 49, 24]. Mirrors, glass windows, water surfaces, and
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polished metals are just a few examples of materials that
produce reflections. These reflective surfaces are prevalent
in various settings, including homes, offices, public spaces,
and natural environments, making the ability to detect and
interpret reflected objects a crucial aspect of many tech-
nological applications [35, 25, 19, 28]. For instance, in
surveillance, security systems can more effectively iden-
tify real intrusions or threats by differentiating reflections
from genuine objects [40, 41, 38]. For autonomous driv-
ing, accurate identification of real objects versus reflections
enables vehicles to navigate more safely and avoid acci-
dents caused by misinterpretation [34, 21, 50, 9]. For ser-
vice robots, robots can perform tasks with greater accuracy,
such as picking and placing items, by correctly identifying
real objects instead of their reflections [36, 24]. This im-
proved object detection also facilitates better navigation in
environments with reflective surfaces, such as warehouses
[31, 7]. In smart homes, systems can provide more tailored
responses by recognizing when a person is truly present
rather than reacting to their reflection [33, 42, 6]. In med-
ical applications, imaging and diagnostic tools yield more
accurate results when they accurately interpret reflections,
leading to better patient outcomes and more precise medi-
cal interventions.

Given the widespread presence of reflective surfaces in
daily life, developing technologies that can effectively de-
tect and interpret reflected objects is essential. This capa-
bility can enhance the performance and reliability of var-
ious applications, including smart home systems, surveil-
lance, autonomous driving, and medical devices. However,
to the best of our knowledge, there is currently no public
benchmark for reflected object detection. This paper aims
to address this gap by introducing a benchmark specifically
designed for this purpose. We propose a comprehensive
benchmark that includes a diverse set of images featuring
reflected objects in various contexts. Our benchmark is de-
signed to test the limits of current object detection methods
and provide a standardized evaluation framework for devel-
oping and comparing new algorithms tailored to reflected
object detection. The benchmark provides standard anno-
tations used in object detection for identifying both actual
(real) objects and their reflections. Additionally, it offers
extra details that indicate whether an object is real or a re-
flection. This feature distinguishes it from traditional object
detection benchmarks, which typically do not provide infor-
mation about whether an object is a reflection. In addition to
introducing the benchmark, this paper also presents baseline
results by adapting several state-of-the-art object detection
models. These results highlight the limitations of existing
methods when applied to reflected object detection and un-
derscore the need for specialized approaches. We analyze
the performance of these models across different reflection
scenarios and provide insights into the specific challenges

posed by reflections.
The deployment of reflective object detection (ROD)

systems in surveillance scenarios raises critical privacy con-
cerns. Security systems utilizing ROD may inadvertently
capture individuals’ private activities behind reflective sur-
faces (e.g., windows, mirrors). Improper handling or leak-
age of such data could compromise individual privacy rights
and entail legal liabilities. To mitigate these risks, de-
veloping ROD technologies necessitates the establishment
of comprehensive ethical guidelines and regulatory frame-
works to ensure lawful, transparent, and privacy-preserving
implementations. Concurrent technical safeguards—such
as encrypted data transmission protocols, role-based ac-
cess controls, and edge-computing architectures for local-
ized data processing—should be prioritized to enhance se-
curity while maintaining functional efficacy.

1.1. Contribution

In this work, we make the first attempt to explore re-
flected object detection by introducing the ROD benchmark,
which is specifically designed for detecting reflected ob-
jects. This benchmark provides a well-annotated dataset
and robust evaluation metrics to facilitate research in this
challenging area. The ROD benchmark fills a crucial gap in
current object detection methods by focusing on reflected
objects. It aims to provide researchers with a valuable re-
source to develop and test algorithms that handle the com-
plexities of reflected objects. ROD dataset comprises a di-
verse set of 10 classes and 6 reflective surfaces of generic
objects, totaling 23,520 images annotated with axis-aligned
bounding boxes, category labels, and object nature (real or
reflected). Sample images from the ROD dataset are illus-
trated in Fig. 2. In addition, we developed five baseline
detectors based on five state-of-the-art algorithms, namely
RO-YOLOv8, RO-YOLOv10, RO-RTMDet, RO-YOLOX,
and RO-PPYOLOE. These baselines serve to evaluate de-
tectors’ performance and provide benchmarks for future re-
search on ROD dataset. In summary, our contributions in-
clude:

• We make the first attempt to explore detecting reflected
objects, a previously underexplored area in object de-
tection. By focusing on this unique challenge, we hope
to inspire further research and innovation in the detect-
ing reflected objects.

• We introduce ROD dataset, the first benchmark ded-
icated to detecting reflected objects, consists of 10
classes and 6 reflective surfaces of generic objects,
with 23,520 images annotated with bounding boxes,
object categories, and the characteristics of the objects.
This dataset will enable detailed analysis and evalu-
ation of algorithms developed for detecting reflected
objects.



(a) Example of conventional object detection.

(b) Example of detecting reflected objects.

Figure 1: While previous object detection focused on the identification and localization of objects, this work focuses on
information beyond that and concerns about the nature of objects in addition, as shown in (a) and (b), respectively. Note the
nature of the objects (i.e., real or reflected) are marked in (b) additionally.

• To support further research on ROD dataset, we
develop five baseline detectors based on state-of-
the-art models: RO-YOLOv8, RO-YOLOv10, RO-
RTMDet, RO-YOLOX, and RO-PPYOLOE. These
baseline models will provide initial performance met-
rics and serve as reference points for future studies.

2. Related Work

2.1. Object Detection Algorithms

Object detection has been a critical area of research in
computer vision, significantly advancing over the past few
decades. Traditional object detection methods relied heav-
ily on handcrafted features and shallow learning techniques.
The advent of deep learning has revolutionized this field,
leading to the development of more robust and accurate al-
gorithms. Modern object detection methods are categorized
into two types: two-stage detectors and one-stage detec-
tors. Two-stage detectors, such as R-CNN [16], Fast R-
CNN [15], Faster R-CNN [39], and Mask R-CNN [18],
initially generate region proposals and then refine them
through classification and bounding box regression, achiev-
ing high precision and efficiency. Variants like Cascade
R-CNN [5] further enhance detection performance through
multi-stage detection and regression. One-stage detectors,
including SSD [30], YOLO, RetinaNet [26], and Efficient-
Det [43], predict object locations and categories in a single
step, providing faster performance suitable for real-time ap-
plications. The YOLO series has evolved to YOLOv8 [44]
and YOLOv10 [45], further optimizing speed and accuracy.

Despite these advancements, identifying objects re-
flected in surfaces like mirrors and glass remains a partic-
ularly challenging and underexplored problem. Reflections
can severely distort object appearance, introducing ambigu-
ous visual cues that complicate the detection process. Most
current object detection algorithms are not designed to dis-

tinguish between real objects and their reflections, which
can lead to frequent misclassifications. These algorithms
often struggle to differentiate between an actual object and
its mirror image, resulting in false positives and reduced
accuracy, especially in environments rich in reflective sur-
faces, such as bathrooms, retail stores, or even city streets
with glass-fronted buildings. Our work aims to address this
gap by introducing a benchmark and developing specialized
approaches for reflected object detection.

2.2. Object Detection Benchmarks

Object detection benchmarks play a crucial role in the
development and evaluation of detection algorithms by pro-
viding standardized datasets and evaluation metrics that fa-
cilitate consistent and fair comparisons among different ap-
proaches. Over the years, several prominent benchmarks
have emerged, each contributing uniquely to the field, such
as PASCAL VOC[11], MS COCO [27], and ImageNet [20].
These benchmarks provide large-scale images and standard-
ized evaluation metrics. For instance, PASCAL VOC com-
prises 20 categories with 11,530 images and 27,450 anno-
tated bounding boxes. ImageNet covers 200 categories with
approximately 500,000 annotated bounding boxes. MS
COCO includes 91 categories, over 300,000 images, and
2.5 million annotated instances. These datasets have been
instrumental in pushing the boundaries of object detection
research, promoting the development of more accurate and
robust models. In addition to these established bench-
marks, several domain-specific benchmarks have emerged
to address particular challenges in object detection. For
instance, KITTI [14] focuses on autonomous driving sce-
narios, providing annotated data for detecting objects such
as cars, pedestrians, and cyclists in street scenes. UAVDT
(UAV Detection and Tracking) [10] provides benchmarks
for aerial object detection, emphasizing challenges unique



Figure 2: Samples from six categories (i.e., ‘banana’, ‘keyboard’, ‘chair’,’book’, ’cup’, and ’bowl’, from left to right) and
their corresponding natures (i.e., ‘real’ and ‘reflected’ from top to bottom) in the ROD dataset. Note that the objects have
been marked with green bounding boxes.

to unmanned aerial vehicle (UAV) imagery, such as varying
altitudes and viewpoints.

Despite significant advancements in object detection, no
public benchmark specifically targets reflected object detec-
tion. This gap hinders the development and evaluation of
algorithms for handling reflections. Reflective surfaces are
common in real-world scenarios such as surveillance, au-
tonomous driving, and smart homes. Accurate detection
of reflected objects is crucial for enhancing performance
and safety in these applications. This paper addresses this
gap by introducing a benchmark specifically tailored for re-

flected object detection. This benchmark includes a variety
of scenes with reflective surfaces, such as mirrors, windows,
and glossy floors, providing a diverse set of scenarios where
reflections are prominent. The benchmark not only serves
as a tool for evaluating the performance of detection algo-
rithms in these challenging conditions but also encourages
the development of more sophisticated methods capable of
distinguishing between real objects and their reflections.



(a) Number of images per category in ROD dataset. (b) Number of images per reflected in ROD dataset.

Figure 3: Statistics for each object category and reflection nature in the dataset.

Figure 4: Number of images containing real or reflected
objects in the ROD dataset.

2.3. Dealing With Mirrors and Reflections in Vision

Mirrors or other reflective surfaces are common in nat-
ural images, and can cause false positive results in the
tasks of detection, segmentation, counting, robotic naviga-
tion, scene reconstruction, and etc [4, 8, 35, 25, 19, 28].
Reflection detection focuses on identifying regions in an
image that contain reflections. When we take a picture
through glass windows, the photographs are often degraded
by undesired reflections. One of the primary approaches to
dealing with reflections involves removing or suppressing
the reflections in images. For instance, Abiko et al. em-
ployed generative adversarial networks (GANs) to enhance
the quality of reflection removal, yielding more natural and
clear images [1]. Arvanitopoulos et al. propose a single
image reflection suppression method based on a Laplacian
data fidelity and an l-zero gradient sparsity regularization
term [3]. Particularly, mirror surface detection aims to iden-
tify and segment mirror surfaces within a scene. For in-
stance, Yang et al. proposed to address the mirror segmen-
tation problem with a computational approach [49]. Since
then, numerous methods have been developed to address

mirror detection and segmentation [35, 25, 19, 28]. As these
methods have progressed, several specialized datasets have
been created to assess their performance. Notably, both the
MSD and Progressive Mirror Detection datasets share the
goal of advancing mirror detection by providing images and
annotations for training and evaluation. However, the MSD
dataset [49] is smaller in scale and focuses primarily on in-
door scenes, offering limited scene diversity. In contrast, the
Progressive Mirror Detection dataset [25] is larger, encom-
passing both indoor and outdoor scenes with more diverse
data and higher-quality annotations. These advancements in
datasets, alongside the progression of algorithms, continue
to drive innovation in dealing with mirrors and reflections.

Despite extensive research efforts dedicated to dealing
with mirrors and reflections in vision, most of these works
focus primarily on identifying, localizing, segmenting, and
suppressing reflective regions in images. In this work, we
make the first attempt to differentiate reflected objects from
real ones, a critical capability for various applications, in-
cluding surveillance, autonomous driving, service robots,
and smart homes.

3. Benchmark for Reflected Object Detection

We construct a dedicated dataset for Reflected Object
Detection (ROD) dataset, which is a dataset that contains
labels of both class and object nature, with prediction
bounding-box labeled for each image.

3.1. Image Collection

For image collection, We selected 10 objects with 6 com-
mon reflective surfaces in daily life, guided by the selection
principles of PASCAL VOC [12] and COCO [27]. The cho-
sen objects for ROD dataset are bowl, apple, mouse, key-
board, banana, carrot, cup, orange, chair, and book, all of
which are categories included in the COCO dataset. How-
ever, gathering varied images of these objects or their re-
flected ones in different scenes can be challenging. To ad-
dress this, we initially sourced images using web crawlers



and online repositories that focus on real-world scenar-
ios with reflective surfaces. Additionally, we conducted
field photography sessions in various environments such as
homes, offices, and public spaces to capture images that
include mirrors and other reflective surfaces. To ensure
that the dataset was representative of real-world conditions,
we made sure to capture images under various lighting
conditions and from different angles. The final collection
comprises 23,520 images, encompassing 10 distinct objects
(bowl, apple, mouse, keyboard, banana, carrot, cup, orange,
chair, and book) and 2 attributes that indicate the nature of
the objects (i.e., real or reflected). These objects are repre-
sented across 6 types of reflective surfaces (i.e., glass, metal,
water, plastic, and tile). The shooting location is Guilin,
Nanjing and Bengbu City of China. The vivo x100 pro is
used to screen the pictures while ensuring the natural and
clear objects in the pictures. The resolution will be reduced
to 1600x1200 and 1200x900 in the later stage, and the cod-
ing method is H.265. Fig. 2 presents some sample images
from ROD dataset, demonstrating that each object category
is captured in multiple scenes.

3.2. Annotation

This section provides a detailed introduction to the im-
age annotation process, covering three aspects: category,
bounding box, and the nature of the object, as follows:

• Category: one of: bowl, apple, mouse, keyboard, ba-
nana, carrot, cup, orange, chair, and book.

• Bounding box: an axis-aligned bounding box that en-
closes the visible part of the object in the image.

• Nature of the object: a real or reflected object.

We follow three steps, i.e., manual annotation, visual in-
spection, and box refinement, to complete the annotation
of images, guided by the annotation guidelines proposed in
[12] and [27]. Specifically, all the images are first anno-
tated by an expert, i.e., a student engaged in object detec-
tion, during the initial stage. Manual annotation can lead
to occasional errors or inconsistencies, prompting the ver-
ification team to carefully review the annotated files in the
second step. Annotation errors identified by the validation
team in the third stage will be sent back to the initial anno-
tation stage for refinement. By employing this three-stage
strategy, the dataset ensures its contained objects have high-
quality annotation. We imported all the images into the
label-studio tool and annotated each image carefully, ex-
ported them into COCO and VOC data set formats, and pro-
vided three formats of annotated files: json, xml and excel.
Fig. 2 displays five examples of box annotations from ROD
dataset.

3.3. Dataset Statistics

The statistics of the ROD dataset are summarized in
Fig. 3. Fig. 3 (a) presents a histogram showing the
number of images in the dataset for each category. Ob-
servations indicate that the number of objects in each cat-
egory is relatively balanced, with the ’chair’ category be-
ing the most prevalent, comprising 2,512 images. Fig. 3
(b) presents a histogram that illustrates the dataset is domi-
nated by the ’glass’ category, which contains 5,005 images.
The ’metal’ category follows with 3,278 images, while ’wa-
ter’ has 1,839. The ’plastic’, ’polishing’, and ’tile’ cate-
gories contain 1,264, 1,226, and 1,093 images, respectively.
This distribution underscores the prominence of ’glass’ and
’metal’ as the most frequent reflective surfaces. The glass
and metal materials are smooth, the reflection is more obvi-
ous, and the detailed texture of the reflected object is more,
while the reflective surface such as the polishing of the plas-
tic box is more fuzzy, the surface is more rough, and the
detailed characteristics of the reflective surface are less.

Fig. 4 further illustrates the number of images contain-
ing real or reflected objects. This detailed breakdown high-
lights the distribution and prevalence of each object cate-
gory within the dataset, offering insights into its composi-
tion and the representation of reflections. The dataset con-
tains 9,815 real images and 13,705 images of reflected ob-
jects. A total of 15,112 images were captured using the Vivo
X100 Pro camera, which includes 6,695 images at a reso-
lution of 1600x1200 and 8,417 images at a resolution of
1200x900. Additionally, 8,407 images were sourced from
open-source image sites, web crawlers, and public image
portfolios. To facilitate training and evaluation, the ROD
dataset is divided into two primary subsets: the training set
and the test set, with a ratio of 7:3.

4. Baseline Detectors for Detecting Reflected
Objects

We develop five baseline detectors based on five state-
of-the-art object detection algorithms, i.e., RTMDet [32],
YOLOv10 [45], YOLOv8 [44], YOLOX [13], and PPY-
OLOE [48], to facilitate the development of detecting re-
flected objects. For each model, we add an additional head
or branch to predict the nature of the objects without al-
tering the overall framework. The resulting baseline detec-
tors are named RO-RTMDet, RO-YOLOv10, RO-YOLOv8,
RO-YOLOX, and RO-PPYOLOE, respectively. Given
space constraints and the fact that YOLOv10, YOLOv8,
YOLOX, and PPYOLOE are all YOLO variants, we detail
only RO-RTMDet, YOLOv8 and RO-YOLOv10 in the fol-
lowing sections. The extension to YOLOX and PPYOLOE
is straightforward and will not be elaborated upon here.



Figure 5: The network structure of the RO-RTMDet detector, inherited from RTMDet, is different from the addition of an
additional branch head for the object nature.

Figure 6: The network structure of the RO-YOLOv8 detector is inherited from YOLOv8, except for the addition of an
additional reflected nature branch head.

4.1. RO-RTMDet

The network architecture of the proposed RO-RTMDet
is shown in Fig. 5. CSPNet [46] serves as the backbone,
generating output features C3, C4, and C5 with 128, 256,
and 512 channels, respectively. These features are fused
into CSP-PAFPN [32], the neck of RO-RTMDet, which em-
ploys the same block as the backbone. The classification

head and the regression head are two parallel components
used for classification and regression, respectively, forming
the head of the original RTMDet. Building upon the origi-
nal RTMDet model, we introduce a new classification head
to predict the nature of objects (i.e., real or reflected). Dur-
ing RO-RTMDet training, the overall loss of the model is



defined as follows:

L = Lcls + Lreg + λLnat, (1)

where Lcls, Lreg, and Lnat represent the losses for clas-
sification, regression, and object nature prediction, respec-
tively. λ is a constant that weights the loss for the reflected
objects prediction head. Below are their specific definitions:

Lcls =
1

Npos

Npos∑
n=1

∑
cls∈classes

−|yclsn − pclsn |β

((1− yclsn )log(1− pclsn ) + yclsn log(pclsn )),

Lreg =
1

Npos

Npos∑
n=1

[
1

− (IOU(btn, b
p
n)−

|C − btn
⋃
bpn|

|C|
)

]
,

Lnat =
1

Npos

Npos∑
n=1

∑
nat∈natures

−|ynatn − pnatn |β

((1− ynatn )log(1− pnatn ) + ynatn log(pnatn )),

(2)

where yclsn and ynatn are the labeled value of classification
and the object nature, pclsn and pnatn are the corresponding
predictions, Npos is the number of positive anchor, β is the
hyperparameter for the dynamic scale factor, which is set
to 2, btn and bpn represent the ground truth bounding boxes
and the prediction, respectively; IOU and C are the IOU
loss function and the smallest enclosing convex box of these
two bounding boxes. We utilize the same training pipeline
as RTMDet for training RO-RTMDet.

4.2. RO-YOLOv8

The network architecture of the proposed RO-YOLOv8
detector is shown in Fig. 6. RO-YOLOv8 uses a modified
CSPDarknet [46] as backbone. It replaces the CSPLayer
used in YOLOv5 with a C2f module [44]. These features
are input into the neck to enhance feature representation,
which is made up of the PAN (Path Aggregation Network).
The original YOLOv8 model includes two types of heads:
one for regression and another for classification tasks. In
RO-YOLOv8, we introduce an additional prediction head
for detecting the nature of objects. During RO-YOLOv8
training, the overall loss of the model is defined as follows:

L = λclsLcls + λregLreg + λdflLdfl + λnatLnat, (3)

where Lcls and Lnat represent the losses for classification
and the object nature prediction, respectively, while Lreg

and Ldfl indicate the Complete Intersection over Union
(CIoU) Loss [52] and the Distribution Focal loss (DFL)
[22]. λcls, λreg, λdfl, λnat are constants to weight these
loss terms. The definitions of Lcls and Lnat are provided

below. The specific definition of Lreg and Ldfl are omitted,
as it is too intricate to elaborate on here and may divert from
the main focus of our discussion. For a comprehensive un-
derstanding of Lreg and Ldfl, we recommend referring to
the detailed explanations provided in the original documen-
tation by Zheng et al. [52] and Li et al. [22].

Lcls =
1

Npos

Npos∑
n=1

∑
cls∈classes

yclsn log(pclsn )

+ (1− yclsn )log(1− pclsn ),

Lnat =
1

Npos

Npos∑
n=1

∑
nat∈natures

ynatn log(pnatn )

+ (1− ynatn )log(1− pnatn ),

(4)

where yclsn and ynatn are the labeled value of classification
and the object nature, pclsn and pnatn are the corresponding
predictions, Npos is the number of positive anchor. We uti-
lize the same training pipeline as YOLOv8 for training RO-
YOLOv8.

4.3. RO-YOLOv10

The network architecture of the proposed RO-YOLOv10
detector is shown in Fig. 7. RO-YOLOv10 uses a modi-
fied CSPDarknet as backbone. It replaces the C2f module
used in YOLOv8 [44] with a compact inverted block (CIB)
module and introduces an efficient partial self-attention
(PSA) module [45]. These features are input into the
neck to enhance feature representation, which is made up
of the PAN (Path Aggregation Network). The original
YOLOv10 model has two types of heads: (1) a one-to-
many (o2m) head for regression and classification tasks,
and (2) a one-to-one (o2o) head for precise localization. In
RO-YOLOv10, we add object nature prediction branch into
both of these two heads. During RO-YOLOv10 training,
the overall loss of the model is defined as follows:

L = Lo2m−head + Lo2o−head,

Lo2m−head = Lo2m−cls + λLo2m−nat

+ Lo2m−reg + Lo2m−dfl,

Lo2o−head = Lo2o−cls + λLo2o−nat + Lo2o−reg

+ Lo2o−dfl.

(5)

In the o2m head, Lo2m−cls and Lo2m−nat represent the
losses for classification and object nature prediction, respec-
tively, while Lreg and Ldfl indicate the Complete Intersec-
tion over Union (CIoU) Loss [52] and the Distribution Fo-
cal loss (DFL) [22]. Similarly, each loss function in the o2o
head carries the same meaning as in the the o2m head. λ
is a constant that weights the loss for the object nature pre-
diction branch. Below, the Lcls and Lnat in the o2m head



Figure 7: The network structure of the RO-YOLOv10 detector is inherited from YOLOv10, except for the addition of an
additional reflected nature branch head.

are used as examples to provide their specific definitions.
The specific definition of Lreg and Ldfl are omitted, as it is
too intricate to elaborate on here and may divert from the
main focus of our discussion. For a comprehensive under-
standing of Lreg and Ldfl, we recommend referring to the
detailed explanations provided in the original documenta-
tion by Zheng et al. [52] and Li et al. [22].

Lcls =
1

Npos

Npos∑
n=1

∑
cls∈classes

yclsn log(pclsn )

+ (1− yclsn )log(1− pclsn ),

Lnat =
1

Npos

Npos∑
n=1

∑
nat∈natures

ynatn log(pnatn )

+ (1− ynatn )log(1− pnatn ),

(6)

where yclsn and ynatn are the labeled value of classification
and the object nature, pclsn and pnatn are the corresponding
predictions, Npos is the number of positive anchor. We uti-
lize the same training pipeline as YOLOv10 for training
RO-YOLOv10.

5. Evaluation

5.1. Evaluation Metrics

In the experiment, the proposed baseline detectors are
evaluated for the performance by using two common met-
rics, i.e., average precision (AP) and mean average preci-
sion (mAP). IOU (Intersection over Union) measures the
overlap between the predicted bounding box (bbox) and
the ground truth bbox. In object detection tasks, a com-
plete prediction comprises two main components: first, the

model must identify specific objects within a given image,
and second, it needs to accurately determine their respec-
tive locations. Specifically, precision is the proportion of
objects predicted by the model that match the real objects,
whereas recall measures the proportion of real objects de-
tected by the model. These two measures are combined in
mAP, which highlights the significance of properly balanc-
ing each during the evaluation process.

Guided by the COCO evaluation [27], three IoU thresh-
olds are used: fixed thresholds at 0.5 and 0.75 and a range
threshold from 0.5 to 0.95 with a step size of 0.05. The
corresponding average precisions (APs) are evaluated under
these IoU thresholds, denoted as AP@0.5, AP@0.75, and
AP@[.50:.05:.95], respectively. In the experiment, COCO
mAP is employed to evaluate the performance of detectors
in detecting reflected objects. Following [37, 17, 47, 23,
53], we use APc, APn, and APcn to represent the precision
metrics for predicting the object’s category, the object’s na-
ture, and their combination, respectively. Additionally, an
extra prefix ’m’ is added to represent mean AP, i.e., mAP.

APcn represents an evaluation metric that integrates both
category and nature characteristics. The output of a stan-
dard object detection task consists of three components:
bounding box (bbox), identifier (id), and confidence scores.
The fusion strategy for these components is as follows:

• Bounding-box: Reusing bounding boxes for both cate-
gory and nature attributes.

• ID: Since the model must infer both class and reflected
nature, two decoupled heads, for cls and nature, are
employed. To ensure consistency, a unified encoding
method is required. In the dataset annotation, we as-
signed the category to the least significant bit and the



Table 1: The evaluation results of the five proposed baseline detectors, i.e., RO-YOLOv8, RO-YOLOv10, RO-RTMDet, RO-
YOLOX, and RO-PPYOLOE, on the ROD dataset. It is important to note that APc, APn, and APcn represent the precision
metrics for predicting the object’s category, the object’s nature, and the combination of both.

Method {APc, APn, APcn}@0.5 {APc, APn, APcn}@0.75 {mAPc, mAPn, mAPcn}

RO-YOLOv8 (0.795,0.729,0.571) (0.741,0.684,0.541) (0.683,0.637,0.522)
RO-YOLOv10 (0.812,0.790,0.570) (0.744,0.731,0.542) (0.679,0.677,0.515)
RO-RTMDet (0.720,0.474,0.537) (0.656,0.438,0.511) (0.601,0.406,0.480)
RO-YOLOX (0.754,0.735,0.490) (0.654,0.638,0.445) (0.574,0.558,0.378)

RO-PPYOLOE (0.713,0.565,0.538) (0.649,0.514,0.512) (0.598,0.476,0.481)

reflected nature to the next significant bit. Given that
there are 10 categories in the ROD dataset, our encod-
ing should be in decimal format. Consequently, the
merged identifier can be expressed as IDc+10IDn.
For instance, if the identified category is ’cup’, with
IDc marked as 6, and it is in the reflected nature with
IDn marked as 1, the fused IDcn would be calculated
as 6+10x1=16. This indicates that the fused IDcn will
only yield the correct value if both the category and
reflected nature identifiers are accurate.

• Scores: Calculate the geometric mean of the APc and
APn scores.

Bboxcn = Bboxc = Bboxn,

IDcn = IDc + 10IDn,

Scorescn =
√
Scoresc × Scoresn.

(7)

Since the value of IDcn must satisfy the condition that
both the category and reflected nature are correct simultane-
ously, the value of APcn should be lower than that of APc
and APn. This relationship is also demonstrated in the sub-
sequent experiments.

5.2. Evaluation Results

Overall performance. We conducted a comprehensive
evaluation of the five baseline detectors proposed in this
paper—RO-YOLOv8, RO-YOLOv10, RO-RTMDet, RO-
YOLOX, and RO-PPYOLOE—on the ROD dataset. All
models were trained on Nvidia Tesla P40 GPUs with a
batch size of 32 over 300 epochs, ensuring that each model
achieved convergence. For instance, RO-PPYOLOE con-
verges at the 30th epoch, while RO-YOLOv10 converges
at the 90th epoch. This trend indicates that the aver-
age precision (AP) values for each model gradually in-
crease, followed by a slow decline after reaching the con-
vergence epoch, ultimately attaining optimal performance
at the point of convergence. Table 1 presents the evalua-
tion results using the three accuracy metrics defined in Sec-
tion 5.1, namely APc, APn, and APcn. It can be seen that
RO-YOLOv10 is the best-performing detector, significantly
outperforming the other detectors in all AP metrics.

Additionally, the evaluation results of the five baseline
detectors on target categories show that the AP under fixed
IoU thresholds (especially 0.5 and 0.75 IoU) and the aver-
age AP for categories are both lower than those for target
attributes. For all these detectors, the difference between
category AP and attribute AP exceeds 2%. Notably, the
RO-YOLOX detector demonstrates the largest gap, reach-
ing 20%. This indicates that in the ROD dataset, identify-
ing and locating the objects themselves is more challenging
than recognizing their attributes.

It is also worth noting that when traditional object de-
tection is combined with target attribute prediction to form
a compound task, known as reflective object detection, the
performance of the detectors is lower than when handling
each task individually. This suggests that the reflective ob-
ject detection task proposed in this paper is more challeng-
ing than traditional object detection. This performance drop
highlights the importance of developing more specialized
algorithms and training strategies to better address the com-
plexity of this compound task.

Performance on per Category. To get a deeper analysis
and understanding of the performance in detecting the na-
ture of objects using our proposed baseline detectors, we
further conduct performance evaluations on each category.
Table 2 presents the mAPcn of the five detectors evaluated
on ROD dataset.

As observed, these five detectors perform best on the
chair category, while they perform worst on the carrot cate-
gory. For the chair category, the mAPcn values all exceed
90%, except for the RO-YOLOX detector. For the banana
category, the mAPcn values are all below 80%, as for the
carrot category with RO-RTMDet, and RO-PPYOLOE even
scoring below 50%. This disparity can be explained by the
fact that images typically contain only one chair object, of-
ten presented at a standard size. In contrast, images fre-
quently contain a large number of carrot objects, leading
to crowding and occlusion. Please refer to Figure 8 for a
visual comparison of examples from these five categories.
The first row shows qualitative results for the keyboard cat-
egory from the five detectors. The challenges of detect-
ing keyboards on the screen are exacerbated by their size
and the reflective properties of the screen itself. Compared



Figure 8: A qualitative comparison of the five detectors on 5 samples from the keyboard, chair, cup and the book category,
respectively. Note that all these detectors successfully detect the object but fail to detect the keyboard correctly. The predicted
bounding box, object category, object nature, and the corresponding scores have been marked in the images.

Table 2: Comparison of the mAPcn of the five baseline detectors on the ROD dataset. It is important to note that mAPcn is
the mAP for prediction of the composite of the object’s category and its nature.

bowl apple mouse keyboard banana carrot cup orange chair book

mAPcn(RO-YOLOv8) 0.766 0.672 0.874 0.883 0.794 0.673 0.847 0.721 0.924 0.792
mAPcn(RO-YOLOv10) 0.764 0.731 0.849 0.858 0.794 0.811 0.881 0.782 0.915 0.801
mAPcn(RO-RTMDet) 0.755 0.637 0.891 0.889 0.770 0.457 0.821 0.499 0.922 0.557
mAPcn(RO-YOLOX) 0.713 0.556 0.797 0.838 0.729 0.742 0.787 0.763 0.875 0.744

mAPcn(RO-PPYOLOE) 0.755 0.608 0.885 0.879 0.768 0.463 0.832 0.489 0.923 0.827

to a mirror, the screen has a lower reflectance coefficient,
which complicates the recognition of keyboards in reflec-
tions. This reduced reflectance hampers detectors such as
RO-YOLOX and RO-PPYOLOE in accurately identifying
the reflective features of keyboards. Additionally, the sim-
ilar color and appearance between carrots and oranges fur-

ther confuse detectors like RO-PPYOLOE, leading to mis-
classification in object categorization. In contrast, these de-
tectors excel in detecting chairs due to the high reflectance
of mirrors and the absence of cluttered backgrounds. Fur-
thermore, the experimental results in Table 2 also indicate
that the performance of the same detector varies across dif-



Figure 9: A qualitative evaluation was conducted on 12 samples from ROD dataset. The first two rows display examples
accurately predicting the nature of objects using RO-YOLOv10 and RO-RTMDet detectors, while last row shows error
detection results generated by these two detectors. Note that the predicted bounding box, object category, object nature, and
the corresponding scores have been marked in the images.

Table 3: The ablation study of the RO-YOLOv10 model is conducted on ROD dataset using various weighting coefficients.

λ {APc, APn, APcn}@0.5 {APc, APn, APcn}@0.75 {mAPc, mAPn, mAPcn}

0.2 (0.821, 0.778, 0.565) (0.760, 0.729, 0.536) (0.694, 0.678, 0.515)
0.4 (0.815, 0.786, 0.569) (0.754, 0.732, 0.537) (0.688, 0.680, 0.518)
0.6 (0.819, 0.796, 0.579) (0.754, 0.742, 0.548) (0.689, 0.692, 0.525)
0.8 (0.819, 0.791, 0.584) (0.754, 0.739, 0.554) (0.690, 0.687, 0.528)
1.0 (0.812, 0.790, 0.570) (0.744, 0.731, 0.541) (0.679, 0.677, 0.515)
1.2 (0.793, 0.776, 0.552) (0.729, 0.720, 0.519) (0.666, 0.666, 0.493)
1.4 (0.808, 0.782, 0.559) (0.744, 0.723, 0.529) (0.678, 0.670, 0.501)
1.6 (0.800, 0.774, 0.556) (0.737, 0.715, 0.525) (0.670, 0.659, 0.498)
1.8 (0.797, 0.774, 0.545) (0.732, 0.715, 0.516) (0.665, 0.660, 0.487)
2.0 (0.791, 0.770, 0.549) (0.725, 0.714, 0.517) (0.662, 0.658, 0.489)

ferent categories. This disparity may be attributed to the
inherent differences in object characteristics, such as size,
shape, texture, and background environment in the images,
as well as the imbalance in category distribution. These
results underscore the importance of considering object-
specific challenges when detecting reflective objects.

Qualitative Evaluation. Given the potential for over-
whelming viewers with too many methods in a single im-
age, Fig. 9 presents qualitative detection results from just
the RO-YOLOv10 and RO-RTMDet detectors. The first

two rows display eight correctly predicted samples, while
the third row shows examples where the detectors inaccu-
rately predicted the object’s nature. In these cases, reflected
objects might blend into low-light backgrounds or lack dis-
tinct texture features (i.e., the first and second samples),
or their mirrored background may resemble the real back-
ground (i.e., the third and fourth samples), leading to missed
or inaccurate detections. This evaluation highlights that in
complex scenes, the detectors are prone to struggle with ac-
curately identifying the nature of objects.



In view of the shortcomings of the model itself in pro-
cessing complex reflective surface information, more pow-
erful feature extraction modules, such as the module based
on attention mechanism, can be considered to make the
model more focused on the key features of the reflected ob-
ject and ignore the interference information brought by the
reflected surface. For object occlusion, we can learn from
some advanced algorithms in the field of object detection,
such as multi-view information fusion or occlusion reason-
ing mechanism based on deep learning, to improve the de-
tection performance of the model in occlusion scenes. At
the same time, how to improve the training strategy of the
model is discussed, such as adding more adversarial training
samples, simulating various complex reflection and occlu-
sion scenes, so that the model can learn more robust feature
representation.

5.3. Ablation Study

Since RO-YOLOv10 obtained the best mAP value in
the comparison experiment and the model converged at the
90th epoch, the ablation experiment would keep the batch
size and other hyperparameters consistent and take the 90th
epoch in each experiment. We train the RO-YOLOv10
model on ROD dataset using different weighting coeffi-
cients, i.e., λ in Eq. (5), which varies from 0.2 to 2.0 in
steps of 0.2, in order to study the impact of the coefficient
for weighting the loss of predicting the nature of objects.
This experiment aims to determine how different weight-
ings influence the model’s ability to balance the two tasks:
detecting the objects and predicting their nature. By adjust-
ing λ, we can observe how the model prioritizes the nature
prediction task relative to the conventional object detection
task. Table 3 presents the experimental results for the mAP
and the AP at fixed IoUs (0.5 and 0.75). RO-YOLOv10
achieves some of the best AP values when λ is set to 0.6
or 0.8. Although APcreaches its maximum value at λ =
0.2, its corresponding APcn is significantly low, resulting in
poor performance. A notable discrepancy between APc and
APn is evident.

Overall, as λ varies from 0.2 to 1.6, APc initially in-
creases before decreasing, while APn consistently rises,
reaching optimal values at 0.6 and 0.8, respectively. A com-
promise is achieved at λ =0.8, which serves as the default
setting, where APcn attains its highest value. Specifically,
the maximum mAPc of 0.694 occurs at λ = 0.2, the maxi-
mum mAPn of 0.692 occurs at λ = 0.6, and the maximum
mAPcn of 0.528 occurs at λ = 0.8. The results suggest that
there may be a counteracting impact between object local-
ization and prediction of objects’ nature when these two
tasks are done concurrently as a composite task. More ef-
fective methods for mitigating this counteracting effect are
needed.

6. Conclusions

In this paper, we investigated the underexplored chal-
lenge of reflective object detection and introduced the
Reflective Object Detection (ROD) dataset, an extensive
benchmark specifically designed for this task. ROD dataset
includes 10 categories, 6 reflective surfaces and 23,520 im-
ages of real or reflected objects in various backgrounds, ac-
companied by standard annotations of bounding boxes and
the nature of the objects (real or reflected), distinguishing
it from traditional object detection benchmarks. In addi-
tion to introducing ROD dataset, we adapted five state-of-
the-art object detection models to this challenging task and
presented baseline results. The experimental findings re-
veal the limitations of current methods when applied to re-
flected object detection, underscoring the necessity for spe-
cialized approaches. By releasing ROD dataset, we aim to
foster and advance future research in detecting reflected ob-
jects. This dataset provides a valuable resource for devel-
oping and evaluating new methods, ultimately contributing
to improved performance in applications such as surveil-
lance, autonomous driving, service robots, smart homes,
and medical imaging. While the current ROD dataset en-
compasses diverse reflective surfaces and object categories,
it lacks scene complexity and environmental variety. Base-
line models exhibit suboptimal performance in handling in-
tricate reflections. Future research should prioritize dataset
expansion through multi-environment image collection un-
der varying illumination, coupled with advanced deep learn-
ing frameworks integrating reflection-aware mechanisms
with complementary techniques (e.g., semantic segmenta-
tion, object tracking) to address complex vision tasks.
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and M. Pietikäinen. Deep learning for generic object detec-
tion: A survey. International Journal of Computer Vision,
128:261 – 318, 2018. 1

[30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part I 14, pages 21–37. Springer, 2016. 3

[31] V. N. Lu, J. Wirtz, W. H. Kunz, S. Paluch, T. Gruber, A. Mar-
tins, and P. G. Patterson. Service robots, customers and ser-
vice employees: what can we learn from the academic litera-
ture and where are the gaps? Journal of Service Theory and
Practice, 2020. 2

[32] C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu,
S. Zhang, and K. Chen. Rtmdet: An empirical study
of designing real-time object detectors. arXiv preprint
arXiv:2212.07784, 2022. 6, 7



[33] D. Marikyan, S. Papagiannidis, and E. Alamanos. A sys-
tematic review of the smart home literature: A user per-
spective. Technological Forecasting and Social Change,
138:139–154, 2019. 2

[34] I. Noriaki, O. Shintaro, S. Yoshihiro, O. Kazuya, and
R. Grewe. Collision risk prediction utilizing road safety
mirrors at blind intersections. In 27th International Tech-
nical Conference on the Enhanced Safety of Vehicles (ESV)
National Highway Traffic Safety Administration, number 23-
0164, 2023. 2

[35] D. Owen and P.-L. Chang. Detecting reflections by
combining semantic and instance segmentation. ArXiv,
abs/1904.13273, 2019. 1, 2, 5

[36] D. Park and Y. H. Park. Identifying reflected images from
object detector in indoor environment utilizing depth infor-
mation. IEEE Robotics and Automation Letters, 6:635–642,
2021. 2

[37] L. Qin, H. Zhou, Z. Wang, J. Deng, Y. Liao, and S. Li. De-
tection beyond what and where: a benchmark for detecting
occlusion state. In Chinese Conference on Pattern Recogni-
tion and Computer Vision (PRCV), pages 464–476. Springer,
2022. 9

[38] B. R. Ray, M. Aalsma, N. D. Zaller, E. B. Comartin, and
E. Sightes. The perpetual blind spot in public health surveil-
lance. Journal of correctional health care : the official
journal of the National Commission on Correctional Health
Care, 2022. 2

[39] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. Advances in neural information processing systems,
28, 2015. 3

[40] Y. Shen and W. Q. Yan. Blind spot monitoring using deep
learning. 2018 International Conference on Image and Vi-
sion Computing New Zealand (IVCNZ), pages 1–5, 2018. 2

[41] C. Singhal and S. Barick. Ecms: Energy-efficient collabora-
tive multi-uav surveillance system for inaccessible regions.
IEEE Access, 10:95876–95891, 2022. 2

[42] B. K. Sovacool and D. D. F. Del Rio. Smart home tech-
nologies in europe: A critical review of concepts, benefits,
risks and policies. Renewable and sustainable energy re-
views, 120:109663, 2020. 2

[43] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 10781–10790, 2020. 3

[44] Ultralytics. Yolov8: Real-time object detection and image
segmentation, 2023. Accessed: 2024-06-27. 3, 6, 8

[45] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and
G. Ding. Yolov10: Real-time end-to-end object detection.
arXiv preprint arXiv:2405.14458, 2024. 3, 6, 8

[46] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-
W. Hsieh, and I.-H. Yeh. Cspnet: A new backbone that
can enhance learning capability of cnn. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 390–391, 2020. 7, 8

[47] Y. Wu, H. Ye, Y. Yang, Z. Wang, and S. Li. Liquid content
detection in transparent containers: A benchmark. Sensors,
23(15):6656, 2023. 9

[48] S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, G. Wang,
Q. Dang, S. Wei, Y. Du, et al. Pp-yoloe: An evolved version
of yolo. arXiv preprint arXiv:2203.16250, 2022. 6

[49] X. Yang, H. Mei, K. Xu, X. Wei, B. Yin, and R. W. H. Lau.
Where is my mirror? 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 8808–8817, 2019.
1, 5

[50] C. Zhang, F. Steinhauser, G. Hinz, and A. Knoll. Traffic
mirror-aware pomdp behavior planning for autonomous ur-
ban driving. In 2022 IEEE Intelligent Vehicles Symposium
(IV), pages 323–330. IEEE, 2022. 2

[51] Z.-Q. Zhao, P. Zheng, S. tao Xu, and X. Wu. Object detection
with deep learning: A review. IEEE Transactions on Neural
Networks and Learning Systems, 30:3212–3232, 2018. 1

[52] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and
W. Zuo. Enhancing geometric factors in model learning
and inference for object detection and instance segmentation.
IEEE Transactions on Cybernetics, 52:8574–8586, 2020. 8,
9

[53] H. Zhou, Y. Wu, J. Li, L. Pan, H. Ye, and S. Li. Beyond ani-
mal detection: a benchmark for detecting animal age group.
In Fifth International Conference on Artificial Intelligence
and Computer Science (AICS 2023), volume 12803, pages
506–515. SPIE, 2023. 9

[54] Z. Zou, Z. Shi, Y. Guo, and J. Ye. Object detection in 20
years: A survey. Proceedings of the IEEE, 111:257–276,
2019. 1


