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Abstract

Automatic spine segmentation from X-ray images
is an important step for diagnosing spinal diseases
like scoliosis. However, manual segmentation is time-
consuming and prone to errors due to subjective judg-
ments. Thesis proposes a supervised convolutional neu-
ral network for accurate and efficient spine segmenta-
tion based on X-ray images. The proposed network
adopts DUCK-Net, a U-Net structure with six parallel
convolution paths, as the backbone and introduces sev-
eral improvements. To detect vertebrae with different
sizes, we introduce Attention Gates between encoder-
decoder layers to strengthen multi-scale feature fusion.
Channel Interaction Attention block is proposed to en-
hanced feature fusion process for more discriminate fea-
ture representation. Additionally, a curvature loss is in-
cluded as a regularization term during training to dis-
courage connected vertebrae segmentation. We evaluate
our method on a spine segmentation dataset and a polyp
segmentation dataset, showing that it achieves reliable
performance on Dice coefficient, Jaccard similarity, Pre-
cision and Recall. Our model have achieved state-of-the-
art performance in spine segmentation from X-ray im-
ages and has been implemented in an automated scolio-
sis diagnosis system in hospital, which shows significant
clinical application value and theoretical significance.

Keywords: Medical images, scoliosis, spine segmenta-
tio, semantic segmentatio, convolutional neural networks.

1. Introduction

The spine is one of the most vital structures in human
body. It serves numerous essential functions, including
bearing the weight of body and protecting the spinal cord
and nerves within it. In both anterior and posterior views,
the normal spine should be upright and located in the cen-
ter of the pelvis, while scoliosis is a pathological condition
where the spine is abnormally curved to the left or right
side. Around 2% to 5% of adolescents worldwide suffer
from scoliosis, which typically emerges during the rapid
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growth of the spine and can cause physical deformities in
body appearance. In severe cases, it can even lead to paral-
ysis. Therefore, giving an accurate diagnosis of whether
adolescent patients suffer from scoliosis is particularly im-
portant to provide treatment plans for patients. Clinically,
the general method for diagnosing scoliosis is to capture X-
ray images of the patient’s spine, manually measuring the
scoliosis severity. However, clinicians need to rely on a
great wealth of experience, leading to a significant risk of
diagnostic errors due to subjective judgments. In addition,
with the popularization of medical imaging equipment such
as X-rays, CT, MRI, etc., the number of medical images
rapidly increases, putting enormous pressure on clinicians,
further affecting the efficiency and accuracy.

Therefore, it is an urgent requirement to develop an au-
tomated technology to precisely measure scoliosis. In this
study, we present a supervised convolutional neural net-
work architecture for spine segmentation. Our model uses
DUCK-Net [4] as backbone, which is a model with U-Net
architecture, using six variations of convolutional blocks
in parallel for better feature extract. DUCK-Net is evalu-
ated on several benchmark datasets for polyp segmentation
and achieved state-of-the-art results, however, performed
poorly in spine X-ray image segmentation. The segmen-
tation results were prone to problems such as adjacent ver-
tebrae being connected, incomplete segmentation of verte-
brae or incorrect segmentation of spinal boundaries. Com-
pared with images of polyps, spine X-ray images have lower
brightness and contrast, blurred boundaries, smaller verte-
brae near neck while larger vertebrae near pelvis, and issues
with rib interference. We considered that DUCK-Net used
addition as the feature fusion method, which caused the ne-
glect of edge features that should be paid attention to after
addition. Thus, we introduce the Channel Interaction Atten-
tion block, changing the way of feature fusion to concatena-
tion without feature loss, and selecting task relevant channel
in-formation from the feature maps and reducing the num-
ber of channels. Besides, we use Attention Gates [13] on
each skip connection between encoders and decoders, ex-
changing the information among layers, enhancing the in-
formation extracted from features at different scales to adapt



to different sizes of vertebrae. Applying such two modules,
our model can utilize multi-scale information fusion to ob-
tain more discriminate features. Lastly, we introduce curva-
ture loss as a regularization term to punish the segmentation
of connected vertebrae. Our main contributions are summa-
rized as follows:

Our Attention Gates merge the relevant information from
two encoders of adjacent layers to generate a fused feature
map and send it to the decoder, effectively fusing the multi-
scale information and alleviating the information gaps be-
tween layers, to make the model focus more on the verte-
brae, even if the sizes are inconsistent.

Our CIA (Channel Interaction Attention) block can pre-
serve important features such as edges during the feature
fusion process, automatically learn the importance of chan-
nels and implicitly provide higher weights for these chan-
nels, driving the model to utilize these high weighted chan-
nels when reducing the number of channels, enabling a
learnable feature fusion process.

Our curvature loss uses the curvature of discrete points
in the segmentation results as a regularization loss, which
produces the model looks to minimize curvature loss, aims
to smooth the segmentation curvature, and makes the seg-
mentation results closer to the real vertebrae.

Our model can accurately segment the spine in the X-
ray images with low brightness and low contrast, which is
conducive to the subsequent calculation of various spinal
scoliosis parameters and the diagnosis of spinal scoliosis.

2. Related work

Giannoglou and Stylianidis [5] published a review on
scoliosis measurement for spinal scoliosis and spinal X-
ray image processing. They mentioned that the processing
order in spinal X-ray images is generally: segment image
to extract regions of interest, recognize individual vertebra,
and predict spinal curvature degree. Image segmentation is
mentioned as the first step in spine X-ray image process-
ing and the core of the entire process. The segmentation
result directly affects the subsequent calculation of param-
eters. The correct segmentation of images is an essential
step in medical image processing, with the main task be-
ing to remove unimportant parts of the image and extract
parts containing special meaning or targets for further anal-
ysis. Currently, the mainstream medical image segmenta-
tion methods are based on deep learning method.

In recent years, deep convolutional neural networks have
shown great potential in medical image segmentation. Un-
like traditional machine learning, convolutional neural net-
works do not require manual feature extraction during train-
ing and can perform end-to-end target segmentation. U-
Net [14], an encoder-decoder model developed initially for
biomedical image segmentation, combines shallow features
of compressed path and deep features of expanded path

through skip connections to achieve the trade-off between
local features and contextual information, reducing the loss
of edge features caused by downsampling operations to a
certain extent. U-Net and its variants Unet++ [20], V-
net [12], etc., have simple structures, small numbers of pa-
rameters, and require less data for network training, mak-
ing them suitable for medical image segmentation. Horng
et al. [7] extracted a rectangular region of the spine in the
X-ray image based on pixel intensity, and then fed it into
U-Net for segmentation. Imran et al. [8] made some im-
provements to U-Net. They used a convolution operation
at each layer of the U-Net decoder to extract the outputs
of that layer and fused them together as the final outputs.
These progressive lateral outputs ensured that the deep fea-
tures in the image were not lost by the decoder. The model
achieved better results in spine segmentation than U-Net.
Shen et al. [16] replaced the fully connected layers of VGG-
Net with the decoder of U-Net and incorporated a wavelet
decomposition module to enhance the detail information
of images. Shao et al. [15]established a semi-supervised
training framework that utilized Stable Diffusion to gener-
ate a large number of spinal X-ray images. They employed
ResNet50 as the backbone network and used a feature pyra-
mid network to extract features, predicting the spinal con-
tour and four corner points to calculate the Cobb angle.

In medical image segmentation task, polyp segmenta-
tion datasets are widely recognized, where many mod-
els have demonstrated their performance. Srivastava et
al. [17] added a global multi-scale feature fusion mecha-
nism based on ResNet [6], combined with cross-scale at-
tention and subsequent multi-scale feature selection mod-
ules, proposed GMSRF-Net to achieve accurate and gener-
alized segmentation of polyps. Chen et al. [2] used Trans-
former to encode tokenized image patches from a convo-
lution neural network (CNN) feature map as the input se-
quence for extracting global contexts, and then used de-
coder to upsample the encoded features which are then com-
bined with the high-resolution CNN feature maps to enable
precise localization. Tomar et al. [18] used residual blocks
with ResNet-50 as the backbone and takes the advantage
of transformer self-attention mechanism as well as dilated
convolution, proposed TransResU-Net. Dumitru et al. [4]
used their custom-built convolutional block, DUCK (Deep
Understanding Convolutional Kernel), which allowed more
in-depth feature selection, enabling the model to locate the
polyp targets accurately and correctly to predict the bor-
ders, and residual downsampling, which allowed the model
to use the initial image information at each resolution level
in the encoder. DUCK-Net achieved the state-of-the-art in
polyp segmentation task. We employed the DUCK-Net as
the backbone and made some improvements and proposed
our spine segmentation model.



3. Methodology

Fig. 1 shows the architecture of our proposed model. Our
enhancement involves employing Attention Gates to en-
hance the information exchange from adjacent layers with
different scales for vertebrae of different sizes, introducing
Channel Interaction Attention block to strengthen the fea-
ture fusion process also facilitate a learnable feature inte-
gration process, and taking curvature loss as a regularization
loss to punish the segmentation of connected vertebrae.

3.1. Backbone: DUCK-Net

DUCK-Net uses the encoder-decoder architecture of the
U-Net, with two significant improvements: a novel convo-
lutional block called DUCK block and residual downsam-
pling. DUCK block contains six variations of convolutional
blocks in parallel to locate the target precisely and detect
the border accurately. The Residual block, which is first
introduced in ResUNet++ [11], is one of the DUCK block
components, aiming to understand the small details. There
are combinations of one, two and three Residual blocks
in parallel. The other two components are Midscope and
Widescope blocks using dilated convolutions to understand
the higher-level features. The last one is the Seperated
block, which uses a 1 x N kernel and an N x 1 kernel
to simulate an N x N kernel, enabling the model to cap-
ture the spatial connections in both vertical and horizon-
tal directions. DUCK-Net replaces the 3 x 3 convolutional
blocks used by U-Net with the DUCK block and adds a
secondary downscaling layer that does no convolutional op-
erations as the residual downsampling to handle the issue
caused by DUCK block such as losing details. DUCK-Net
evaluated on several benchmark datasets for medical image
segmentation and achieved state-of-the-art results in terms
of mean Dice coefficient, Jaccard index and other metrics,
showing strong generalization abilities with limited training
data. Therefore, we use DUCK-Net as the model backbone
for spine X-ray image semantic segmentation.

3.2. Attention Gates

U-Net adopts an encode-decoder structure and directly
sends the results of the encoders to the decoders through
skip connections, alleviating the loss of features caused by
downsampling to some extent. However, only connections
between encoders and decoders within the same layer ex-
ist in U-Net, which may lead to ineffective utilization of
features at different scales, while vertebrae are of differ-
ent sizes that features from all scales matter. To address
this issue, we introduce Attention Gates, which were orig-
inally used in natural image analysis, knowledge graphs,
and natural language processing (NLP) for image caption-
ing, machine translation, and classification tasks. Attention
U-Net [13] proposed a novel self-attention gating module
that can be utilized in U-Net for image segmentation tasks.

The Attention Gate takes the output features of two adja-
cent encoder layers as inputs and generates attention coeffi-
cients. This allows the signals of the same region of interest
in the two feature maps to be enhanced, while the different
regions between them can also serve as auxiliary informa-
tion, achieving the aggregation of information between two
feature maps of different scales. As shown in Fig. 1, the
Attention Gate performs a pixel-wise 1 x 1 convolution on
the outputs of two adjacent encoder layers, adds them up as
an attention coefficient map, to obtain more accurate results
than multiplicative attention. After that, a ReLU activation
function and a linear transformation through a 1 x 1 convo-
lution are applied. Finally, we normalize the attention co-
efficients using sigmoid activation function. The Attention
Gate is formulated as follows:

Fout = oo(Ws(on (W1 Fy + WaFs +b1)) +b3) (1)

where W1,W5 and W3 represent the linear transformations,
b1 represents the sum of the bias terms corresponding to Wy
and Wy, bs represents the bias term corresponding to Ws,
o1 corresponds to ReLU activation function and o5 corre-
sponds to sigmoid activation function. The result attention
map is a grid signal based on image spatial information, ag-
gregating information from multiple imaging scales. After
performing attention calculation with the encoder output,
the result is superimposed on the decoder. Attention Gates
are integrated into the skip connections of each layer, utiliz-
ing two feature maps from the current layer and the subse-
quent deeper layer. Through the Attention Gates, relevant
information in the feature maps of two scales are merged
to generate a fused feature map, which is then concatenated
with the upsampled results, facilitating the exchange of in-
formation between layers within the U-Net structure.

3.3. Channel Interaction Attention Block

In the DUCK block [4], features extracted from six par-
allel paths are fused using the add operation, which is a
simple and efficient way of feature fusion. Although the
amount of computation is small, add operation has the dis-
advantage of losing features because after addition, the orig-
inal features disappear directly and the number of features
decreases, which cannot be learned or under controlled.
Therefore, we changed the feature fusion method in the
block to concatenation operation. Concatenation operation
directly stacks the features of different paths on the channel
dimension without causing feature loss, preserving impor-
tant features like edges. However, after stacking, the num-
ber of features expands to 6 times than the original number,
needed to be screened. Inspired by ECA-Net proposed by
Wang et al. [19] and DACE framework proposed by Chen
et al. [1], we propose a channel interaction attention mech-
anism that automatically learns the importance of channels,
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Figure 1. The architecture of the proposed model. Input images are resized as 3 X 512 x 512 and are downsampled for 5 times in the
encoder. Attention Gates are integrated into the skip connections of each layer. CIA blocks are introduced in both encoder and decoder for
feature extract. Curvature is introduced in loss function as a regularization loss.

to assign different weights to each channel, and finally re-
duce the number of channels with 1 x 1 convolution. Fig. 2
shows the architecture of the proposed Channel Interaction
Attention block.

The main idea of Channel Interaction Attention block is
to automatically select task relevant channel information in
the feature map and provide higher weights for these chan-
nels. Specifically, given the output feature map F' of each
convolutional block as an input, a Global Average Pooling
is firstly performed, describing the global information as a
channel descriptor, and generating defined statistical infor-
mation for each channel, which can be defined as:

h w
1
F' = GAP(F) = o > > F(i,j) 2
i=1 j=1

where h and w denote the height and width of each feature
map. The CIA block generates weights for each channel

using one-dimensional convolution with a kernel size of a.
Finally, the responses from each channel are re-calibrated
using the corresponding weights, with the output defined
as: which is formulated as follows:

F =0(C1Dy(F")) - F' 3)
where C'1D(-) denotes a one-dimensional convolution op-
eration, «v denotes the kernel size of one-dimensional con-
volution, ¢ represents the generation of normalized weights
using a simple gating mechanism with sigmoid activation.

After obtaining the channels with their importance re-
calibrated by attention weights, a 1 x 1 convolution is in-
troduced to reduce the number of channels. During training,
channels with high weight values contribute significantly to
the results and have higher gradients. This drives the pa-
rameter updates of the 1 x 1 convolution to gradually favor
preserving these channels, enabling a learnable feature fu-
sion process. With the help of Interaction Attention block,
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Figure 2. The architecture of the Channel Interaction Attention block, which extracts features through six parallel paths and then fuses
feature by concatenation operation to avoid information loss. We introduce channel interaction attention mechanism to learn the importance

of channels and reduce channels according to channel weights.

the proposed model can better utilize features and achieve
discriminate feature fusion.

3.4. Loss function

Due to the relatively small gap between spinal blocks, it
is easy for adjacent vertebrae to be connected on the left or
right side in the segmentation result. The shapes of ver-
tebrae are basically similar and can be approximated as
rounded rectangles. However, in the segmentation result
where the vertebrae are connected with each other, two ver-
tebrae are connected on one side and there is a very obvi-
ous hollow on the other side. To address this phenomenon,
we calculate the curvature of each piece of vertebra seg-
mentation results and use the curvature as a regularization
loss. The correct segmentation of the vertebrae can be ap-
proximated as many rounded rectangles, with small curva-
ture at each point on edges, while the curvature of the con-
cave parts in two connected vertebrae is very large. During
the training process, the model seeks to minimize curvature
loss, aiming to smooth the segmentation curvature, thereby
penalizing the segmentation of vertebrae into a continuous
entity. This can be interpreted as adding a prior knowledge
to the model: the desired shape of the segmentation out-
come is to achieve a more stable and smooth form. Given
that pixel points are discrete, the curvature approximation
of a discrete point is described in differential form. The
curvature calculation formula is as follows:

df@ _ arctan(Yir1 — Yi, Tiy1 — ;)
ds  \/(yis1 — yi)? + (Tig1 — 24)?
where (z;,y;) and (2;41,Yy:;+1) denote two neighboring

points on a contour, # represents the angle difference be-
tween two points to approximate the radian, s denotes the

“4)

curvature =

distance between two points to approximate the arc length.
df/ds represents the rate of change of radians with respect
to arc length, which is curvature. By representing the cur-
vature using discrete values, the average curvature of the
entire contour is taken as the regularization term 10ss L.

The Dice loss is a loss function commonly used in med-
ical image segmentation tasks. It uses the Dice coefficient,
which measures the overlap between two sets. In image
segmentation, the Dice loss can penalize the model for in-
correct or incomplete segmentation of objects, and handle
class imbalance, which is often a concern in medical im-
age segmentation, where some classes may be much more
prevalent than others. The whole loss function is defined as:

L= Ldice +A- Lcur (5)

where A is the coefficient for the curvature loss. Initially,
we set it to a small value of 0.001, aiming for the Dice loss
to dominate the overall loss function. As the number of
training epochs increased, we gradually raised A to 0.005,
intending for the model to focus on the connected vertebrae
in the segmentation results during the later stages of train-
ing.

4. Experiment
4.1. Settings

We used a dataset of 1367 high-resolution spine X-Ray
images with evidence of scoliosis to various extents. We
split the dataset into training (1147), testing (110), and val-
idation (110) sets. To keep the original aspect ratio of im-
ages, the training images were zero-padded into square and
then resized to 512 x 512. We trained the model for 200
epochs using Adam optimizer, with learning rate set to le-
4. In addition to the spine X-ray image dataset, we also val-



idated our model on a polyp segmentation dataset, Kvasir-
SEG [10], to assess its performance on other medical imag-
ing segmentation datasets. We evaluated the segmentation
results generated by the model using four metrics to mea-
sure the extent of similarity between the predicted mask and
the ground truth: the Dice coefficient (Dice), Jaccard simi-
larity (JS), precision (PRE), and recall (REC).

4.2. Experiments on spine segmentation

From Table 1, we have the following observations: 1) At-
tention U-Net exhibits a significant performance improve-
ment over U-Net, indicating that the Attention Gate struc-
ture can play a vital role in spine segmentation. 2) DUCK-
Net outperforms both U-Net and ResUNet, demonstrating
the feasibility of the DUCK block and residual downsam-
pling. 3) Our model achieves the highest scores on all
metrics and beats DUCK-Net, GMSRF-Net and TransRe-
sUnet, which were the state-of-the-arts on the Kvasir-SEG
dataset, confirming the viability of our proposed CIA block
and curvature loss. Especially in terms of the precision
metric, the experimental results show a more significant
improvement, which demonstrates the effectiveness of cur-
vature loss. This is because the introduction of curvature
loss inhibits the connection between spines, and the con-
nected parts are false positives, which would reduce pre-
cision. Thus, these comparative results demonstrate the
effectiveness of the proposed model for spine segmenta-
tion. Fig. 3 shows an examples of spine segmentation re-
sults compared to other models, from which we can see that
Unet++ and TransResU-Net are affected by ribs or other
factors that segmentation results contain incorrect parts, in-
complete vertebrae segmentation results exist in Attention
U-Net, ResUNet and TransUNet, and there are connected
vertebrae in UNet, nnU-Net, GMSRF-Net and DUCK-Net.
The results of our model were not affected by interference,
with a relatively complete spine segmentation, and there is
no phenomenon of vertebrae that connect with each other,
which proves the effectiveness of our improvement. Fig. 4
shows the changes in loss function and Dice coefficient of
the proposed model during the training process, from which
we can see that as the number of training epochs increases,
the Dice coefficient gradually rises while the loss consis-
tently decreases, indicating an improvement in the model’s
performance. Furthermore, after the 160th training epoch,
the trends of the Dice coefficient and the loss stabilize, sig-
nifying that the model has converged and reached a rela-
tively stable level of performance.

4.3. Experiments on Kvasir-SEG dataset

Table 2 shows the experiments conducted on the polyp
segmentation dataset Kvasir-SEG, aiming to evaluate the
performance of our model on other medical image seg-
mentation datasets, compared with the other state-of-the-

Method Dice JS PRE REC

U-Net [14] 0.7764 | 0.6345 | 0.7827 | 0.7703
ResUNet [3] 0.7835 | 0.6441 | 0.7898 | 0.7773
Unet++ [20] 0.7860 | 0.6474 | 0.7922 | 0.7799
Attention U-Net [13] | 0.7961 | 0.6613 | 0.8026 | 0.7897
TransUNet [2] 0.8029 | 0.6707 | 0.8094 | 0.7965
GMSRF-Net [17] 0.8097 | 0.6802 | 0.8028 | 0.7988
TransResU-Net [18] | 0.8279 | 0.7064 | 0.8540 | 0.8034
nnU-Net [9] 0.8293 | 0.7085 | 0.8360 | 0.8229
DUCK-Net [4] 0.8379 | 0.7211 | 0.8372 | 0.8387
Ours 0.8725 | 0.7739 | 0.8801 | 0.8651

Table 1. Segmentation results on the spine segmentation dataset.
Best model results are in bold.

Method Dice JS PRE REC

U-Net [14] 0.8125 | 0.6842 | 0.8126 | 0.8124
ResUNet [3] 0.8158 | 0.6890 | 0.8042 | 0.8278
Unet++ [20] 0.8320 | 0.7124 | 0.8125 | 0.8524
Attention U-Net [13] | 0.8340 | 0.7153 | 0.8283 | 0.8398
TransUNet [2] 0.8706 | 0.7709 | 0.8769 | 0.8645
GMSRF-Net [17] 0.9286 | 0.8667 | 0.9321 | 0.9251
TransResU-Net [18] | 0.8884 | 0.8214 | 0.9022 | 0.9106
nnU-Net [9] 0.9341 | 0.8763 | 0.9315 | 0.9367
DUCK-Net [4] 0.9502 | 0.9501 | 0.9628 | 0.9379
Ours 0.9483 | 0.9016 | 0.9555 | 0.9412

Table 2. Segmentation results on Kvasir-SEG dataset. Best model
results are in bold.

art methods. The experiment results indicate that our
model outperforms other models such as U-Net, nnU-Net,
TransResU-Net and GMSRF-Net, and is closely compara-
ble to DUCK-Net, demonstrating a robust polyp segmenta-
tion capability. The empirical evidence indicates that the
proposed model demonstrates robust generalization abili-
ties, which not only excels in the domain of spine segmenta-
tion but also shows efficacy when applied to diverse datasets
pertaining to medical image segmentation.

4.4. Ablation experiments

To evaluate the effectiveness of each component added
in the proposed model, we conduct comprehensive abla-
tion experiments by removing each component. The ex-
periment results are shown in Table 3, where CIA repre-
sents Channel Interaction Attention block, AGs represents
Attention Gates, and DUCK-Net is the baseline of our work.
All the w/o curvature loss model, w/o CIA model and w/o
AGs model outperform the backbone DUCK-Net, verify-
ing the effectiveness of the three improvements. When the
curvature loss was removed, precision decreased even more
significantly compared to dice coefficient, indicating an in-
crease in the number of false positives in the segmentation
results. Before the introduction of curvature loss, there was
a phenomenon of vertebrae connected with each other in the
segmentation results, where the connected parts correspond
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Figure 3. Comparison of spine segmentation results predicted by different models.
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Figure 4. Training process of the proposed model.

to false positives. These experiment results demonstrate the
effectiveness of curvature loss in reducing the number of

Method Dice JS PRE REC

DUCK-Net [4] 0.8379 | 0.7211 | 0.8372 | 0.8387
w/o curvature loss | 0.8492 | 0.7379 | 0.8487 | 0.8497
w/o CIA 0.8482 | 0.7364 | 0.8641 | 0.8328
w/o AGs 0.8519 | 0.7421 | 0.8678 | 0.8367
Ours 0.8737 | 0.7757 | 0.8937 | 0.8545

Table 3. Ablation studies results on spine segmentation dataset.
Best model results are in bold.

connected vertebrae. After removing CIA model, the eval-
uation scores drop significantly, and the complete proposed
model apparently outperform the w/o AGs model, indicat-
ing that under the guidance of the two modules, our pro-
posed model can better detect boundaries and distinguish
vertebrae of different sizes. The ablation experiments con-
firmed the effectiveness of the components, with no con-
flicts observed between them.

5. Conclusion

In thesis, we have proposed an effective model for X-ray
images spine segmentation. Our key contributions include
introducing Attention Gates to enhance the information ex-
tracted from features at different scales to detect different
sizes of vertebrae, designing a Channel Interaction Atten-
tion block for better feature fusion to reduce the loss of im-
portant features such as edges, introducing curvature as a
regularization term in loss function to punish segmentation
with connected vertebrae. Extensive experiments on spine
segmentation and polyp segmentation datasets demonstrate
the superiority of our method over previous state-of-the-
arts. The proposed network provides an effective solution
for automated spine segmentation based on X-ray images,
which can benefit scoliosis diagnosis.



Acknowledgement

This work was supported in part by the NSFC fund
(NO. 62206073, 62176077), in part by the Shenzhen
Key Technical Project (NO. JCYJ20241202123728037,
JSGG20220831092805009,  ISGG20220831105603006,
JSGG20201103153802006), in part by the Guangdong
International Science and Technology Cooperation Project
(NO. 2023A0505050108), in part by the Guangdong
Provincial Key Laboratory of Novel Security Intelli-
gence Technologies (NO. 2022B1212010005), in part
by the Guangdong Shenzhen joint Youth Fund under
Grant 2021A151511074, and in part by the Natural
Science Foundation of Guangdong Province under Grant
2023A1515010893.

References

[1] B.Chen, Y. Liu, Z. Zhang, Y. Li, Z. Zhang, G. Lu, and H. Yu.
Deep active context estimation for automated covid-19 diag-
nosis. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM), 17(3s):1-22, 2021.
3

[2] J.Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L.
Yuille, and Y. Zhou. Transunet: Transformers make strong
encoders for medical image segmentation. arXiv preprint
arXiv:2102.04306,2021. 2, 6

[3] F. 1. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu.
Resunet-a: A deep learning framework for semantic segmen-
tation of remotely sensed data. ISPRS Journal of Photogram-
metry and Remote Sensing, 162:94-114, 2020. 6

[4] R.-G.Dumitru, D. Peteleaza, and C. Craciun. Using duck-net
for polyp image segmentation. Scientific reports, 13(1):9803,
2023.1,2,3,6,7

[5] V. Giannoglou and E. Stylianidis. Review of advances
in cobb angle calculation and image-based modelling tech-
niques for spinal deformities. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, 3:129-135, 2016. 2

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770-778, 2016. 2

[7] M.-H. Horng, C.-P. Kuok, M.-J. Fu, C.-J. Lin, and Y.-N. Sun.
Cobb angle measurement of spine from x-ray images using
convolutional neural network. Computational and mathe-
matical methods in medicine, 2019(1):6357171, 2019. 2

[8] A.-A.-Z. Imran, C. Huang, H. Tang, W. Fan, K. Cheung,
M. To, Z. Qian, and D. Terzopoulos. Analysis of scoliosis
from spinal x-ray images. arXiv preprint arXiv:2004.06887,
2020. 2

[9] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H.
Maier-Hein. nnu-net: a self-configuring method for deep
learning-based biomedical image segmentation. Nature
methods, 18(2):203-211, 2021. 6

[10] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen,
T. De Lange, D. Johansen, and H. D. Johansen. Kvasir-seg:

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

A segmented polyp dataset. In MultiMedia modeling: 26th
international conference, MMM 2020, Daejeon, South Ko-
rea, January 5-8, 2020, proceedings, part II 26, pages 451—
462. Springer, 2020. 6

D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen,
T. De Lange, P. Halvorsen, and H. D. Johansen. Resunet++:
An advanced architecture for medical image segmentation.
In 2019 IEEE international symposium on multimedia (ISM),
pages 225-2255. IEEE, 2019. 3

F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image
segmentation. In 2016 fourth international conference on 3D
vision (3DV), pages 565-571. leee, 2016. 2

O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Hein-
rich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla,
B. Kainz, et al. Attention u-net: Learning where to look for
the pancreas. arXiv preprint arXiv:1804.03999, 2018. 1, 3,
6

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical image computing and computer-assisted intervention—
MICCAI 2015: 18th international conference, Munich, Ger-
many, October 5-9, 2015, proceedings, part Il 18, pages
234-241. Springer, 2015. 2,6

Z. Shao, Y. Yuan, L. Ma, D.-Y. Yeung, and X. Zhu. Sg-
Ira: Self-generating automatic scoliosis cobb angle mea-
surement with low-rank approximation. arXiv preprint
arXiv:2411.12604,2024. 2

X. Shen, Y. Zhang, R. Zhang, Q. Shi, Y. Song, and Q. Zhang.
Segmentation method of x-ray whole spine coronal image
based on vgg-net. Foreign Electronic Measurement Technol-
0gy, 43(01):135-140, 2024. 2

A. Srivastava, S. Chanda, D. Jha, U. Pal, and S. Ali. Gmsrf-
net: An improved generalizability with global multi-scale
residual fusion network for polyp segmentation. In 2022 26th
International Conference on Pattern Recognition (ICPR),
pages 4321-4327. IEEE, 2022. 2, 6

N. K. Tomar, A. Shergill, B. Rieders, U. Bagci, and
D. Jha. Transresu-net: Transformer based resu-net for
real-time colonoscopy polyp segmentation. arXiv preprint
arXiv:2206.08985,2022. 2, 6

Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu. Eca-net:
Efficient channel attention for deep convolutional neural net-
works. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11534-11542,
2020. 3

Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and
J. Liang. Unet++: A nested u-net architecture for medi-
cal image segmentation. In Deep Learning in Medical Im-
age Analysis and Multimodal Learning for Clinical Decision
Support: 4th International Workshop, DLMIA 2018, and
8th International Workshop, ML-CDS 2018, Held in Con-
Jjunction with MICCAI 2018, Granada, Spain, September 20,
2018, Proceedings 4, pages 3—11. Springer, 2018. 2, 6



