
Learning Adaptive Basis Fonts to Fuse Content Features for Few-shot Font
Generation

Keyang Lin1, Zhijun Fang1,2*, Sicong Zang1*, Hang Wu1

1 School of Computer Science and Technology, Donghua University, Shanghai, China
lin ke yang@163.com, {zjfang, sczang}@dhu.edu.cn, 1439111092@qq.com

2 School of Electronic and Electrical Engineering, Shanghai University Of Engineering Science,
Shanghai, China

Abstract

Few-shot font generation aims to generate all charac-
ters of a certain font by using its very few seen charac-
ters as references. Recent studies assumed that a tar-
get font can be regarded as a mixture of several source
fonts, namely basis fonts, and the style of the target font
can be generated by combining several latent represen-
tations respectively captured from a group of other fonts
with given weights. However, these basis fonts along
with their corresponding mixing weights are unlearn-
able as they are determined by a pre-trained network
for font feature extraction. The styles in their basis fonts
also have significant differences so it is not flexible to
fusion them. In this paper, we present an adaptive ba-
sis fonts and weights learning (ABW) module to learn
more appropriate basis fonts and weights, making the
results more similar to the target. We project the refer-
ence characters into a Gaussian Mixture Model (GMM)
distributed latent space, where each latent Gaussian col-
lects latent representations of fonts with similar styles.
A Rival Penalized Competitive Learning (RPCL) en-
hanced Expectation Maximization (EM) like learning
algorithm is introduced to learn the GMM-structured
latent space, jointly with the training of the network.
The ABW module is also able to automatically deter-
mine an appropriate number of Gaussians in GMM,
i.e., the number of basis fonts, making font mixing more
flexible. We collect a dataset of 500 Chinese fonts with
6.5k characters each and evaluate our method on it. Ex-
perimental results demonstrate that our method outper-
forms recent few-shot font generation methods.

Keywords: Font generation, few-shot learning, content
fusion, Gaussian mixture model

*Corresponding author.

1. Introduction

A font is a collection of characters with a certain style,
and it is used everywhere in our production and life. Tradi-
tional font design work is time-consuming and laborious. It
relies heavily on professional designers, especially in writ-
ing systems that have numerous characters, such as Chi-
nese (over 60K characters), Japanese (over 50K characters),
and Korean(over 11K characters). Few-shot font genera-
tion aims to automatically generate all characters of a cer-
tain font only using very few given characters as references.
It can greatly improve the efficiency of font design work,
and it also has important significance in font library cre-
ation, personalized font generation, historical handwriting
imitation, handwriting identification, and the restoration of
ancient calligraphy relics.

With the development of neural networks, a large num-
ber of methods have been applied in the field of font gener-
ation. Early methods [1, 2, 26, 32] are usually based on im-
provements to traditional Convolutional Neural Networks
(CNN) and Generative Adversarial Networks (GAN) [12].
These methods can only generate seen fonts (fonts that have
appeared in the training set), but cannot handle the style of
unseen fonts (fonts that have not appeared in the dataset).
They also only support style transfer between two domains,
and need to train many models when generating multiple
fonts. Another disadvantage is that they require a large
amount of data, and some require strictly paired data that
is difficult to collect. The paired data means that, for a cer-
tain character, it is necessary to input its source font image
and target font image together during training to meet the
requirement of the early image-to-image translation meth-
ods. All of these limit their practical applications.

To address these issues, SA-VAE [31] and EMD [44]
separate the representations of style and content, and many
following methods [38, 5, 28, 24, 27, 33, 21] verify that it
is an effective approach in the font generation task. On this
basis, as the style information can be extracted from only a
few reference characters, it is possible to complete the few-

1

shot font generation task. In these methods, the input of the
content feature is a manually selected source font. Since it is
challenging to achieve a complete disentanglement between
the content and style features [18, 22], the style information
of the content features is always mixed to a certain extent,
which makes the selection of the source font have a signifi-
cant impact on the generated results.

A prominent task is CF-Font [35], which uses multiple
fonts (basis fonts) in the training set to replace the source
font and weight them at multiple scales of the content en-
coder outputs. So that the style information in the content
features will be closer to the target style, resulting in bet-
ter scores. However, their approach still has some limita-
tions. Specifically, They calculate the L1 distance between
the few-shot content feature maps each other and then use
k-means clustering on the concatenated vectors to select the
basis fonts. Their basis fonts and content fusion weights are
no longer changed once they are calculated. All of the above
issues may lead their method to be stuck at local optimal.

In this paper, we propose adaptive basis fonts and
weights learning Font (ABW-Font). It is a few-shot font
generation method and can generate a new font using only
several given reference characters. Our ABW module
can learn more appropriate basis fonts and content fusion
weights to make the results more similar to the target. We
project few-shot reference character images into a Gaussian
Mixture Model (GMM) distributed latent space, where each
Gaussian component represents a generalized font style.
The font with the minimum L2 distance from the Gaus-
sian centers will be selected as the basis fonts. Our con-
tent fusion weights are obtained by a softmax operation on
the L2 distance between the content feature of the current
font and all basis fonts. Inspired by [42], we adopt its Ri-
val Penalized Competitive Learning (RPCL) [40] enhanced
Expectation Maximization (EM) like learning algorithm to
iterate them, which not only makes the basis fonts and con-
tent fusion weights learnable via the network training but
also automatically determines an appropriate number of ba-
sis fonts. To summarize, we make the following contribu-
tions:

1. We proposed an adaptive basis fonts and weights
learning module to make basis fonts and content fusion
weights learnable, yielding a better content fusion.

2. We add a compact clustering loss term to make the
content vector closer to the Gaussian centers, making the
network training more stable and accelerating the conver-
gence of the network.

3. We collect a dataset containing 500 Chinese fonts
and evaluate our method on it. Experimental results demon-
strate our method outperforms recent few-shot font genera-
tion methods.

2. Related works

The early font generation task is related to the image-
to-image translation (I2I) task, which tries to preserve the
content of the source font while merging the style of the tar-
get domain at the same time. Many I2I methods[15, 7, 30,
36, 45, 8] are used to achieve the font generation task. As
some early I2I methods can only learn the mapping between
two domains and they rely on a lot of paired data, Cycle-
GAN[45] is a noticeable work. It introduces the cycle con-
sistency into generative models and enables I2I methods to
train cross-domain translation without paired data.

For few-shot font generation, many I2I methods[4, 19,
14, 6, 23, 3] have provided references. FUNIT[23] accom-
plishes the style transfer task by encoding content and style
respectively and combining them with adaptive instance
normalization (AdaIN)[14]. Recent studies mainly focus on
disentangling content and styles from the target characters,
enriching character components with structure information,
or mixing the selected basis fonts by content fusion.

2.1. Disentangling content and style

Learning content features and style features separately
is the foundation of few-shot font generation methods. In
early font generation methods [1, 2, 26, 32], they learn
the mapping relationship between the source font domain
and the target font domain, and rely on strictly paired
data for training. Also, they can not generate the unseen
font. To solve this problem, EMD [44], SA-VAE [31],
and DC-Font [16] disentangle the style and content rep-
resentations. Style features can be extracted from only
a few samples, which provides the network possibility to
achieve the few-shot font generation task. On this basis,
SC-Font [17] transfers the writing trajectories with sepa-
rated strokes in the reference font style into those in the
target style and renders synthesized skeletons of charac-
ters with a specific handwriting style via a GAN model.
Gao and Wu [11] proposed a stacked cGAN model for un-
paired multi-chirography Chinese character image transla-
tion based on skeleton transformation and stroke rendering.
DG-Font[39] designs a network structure mainly composed
of deformable convolutions[9, 46], which more effectively
utilize universal information.

2.2. Enriching character components with structure in-
formation

A Chinese character can be separated into several com-
ponents by its structure information. Many methods en-
riched character components with their semantic features by
prior knowledge to improve font generation performance.
CalliGAN [38] is the first to decompose Chinese charac-
ters into components and encode them through a recurrent
neural network. DM-Font [5] employs the dual memory

Figure 1. The overview of ABW-Font, which consists of a content encoder Ec, a style encoder Es, a decoder D and an ABW module
for learning basis fonts and content fusion weights in a GMM-structured latent space. IC is the content image, It will be replaced by Ib,
several images that have the same content but from the current basis fonts. EC extract Ib and outputs muti-scaled features Zb, Fb1 and Fb2.
Calculating the weighted sum of Zb, Fb1 and Fb2 based on the content fusion weights obtained by ABW module to get muti-scaled content
feature Zc, Fc1 and Fc2. The FDSC module receives a concatenation of two feature maps and outputs a new one through a deformable
convolution layer. ES extract the style image IS and output the style feature ZS . D mixes the content feature and the style feature. Finally,
D outputs the generated font image with the content of IC but the style of IS .

structure (persistent memory and dynamic memory) to ef-
ficiently capture the global glyph structure and the local
component-wise styles for Korean and Thai fonts. LF-Font
[27] learn to disentangle complex glyph structures and use
localized style representations, instead of universal style
representations. MX-Font [28] extracts multiple style fea-
tures by multiple experts, each of which is guided by utiliz-
ing component labels as weak supervision to be specialized
for different local concepts. XMP-Font [24] propose a self-
supervised cross-modality pre-training strategy and a cross-
modality transformer-based encoder that is conditioned
jointly on the glyph image and the corresponding stroke la-
bels. Fs-Font [33] learn fine-grained local styles and com-
bine cross-attention mechanisms[34] and global context
awareness to get a higher score. CG-GAN [21] introduces a
Component-Aware Module which enables content-style de-
coupling at a finer granularity, specifically at the component
level, thereby providing more precise guidance to the gener-
ator. VQ-Font [41] proposes a VQGAN-based[10] frame-
work to enhance glyph fidelity through token prior refine-
ment and structure-aware enhancement. However, although
component-level supervision can improve generation qual-
ity, annotating components relies on prior knowledge and
is a labor-intensive task. Besides, component labels ensure
the correctness of the structure, thereby limiting the degree
of deformation. When generating fonts with strong artistic

styles and large deformations (such as cursive script), it will
affect the generation effect.

2.3. Mixing Basis Fonts by Content Fusion

Some studies assumed that a target font can be regarded
as a mixture of several source fonts, namely basis fonts, and
the style of the target font can be generated by combining
several latent representations respectively captured from a
group of other fonts with given weights. CF-Font [35] de-
sign a content fusion module to represent the source font
as a weighted sum of basis fonts. They make the style in
content features similar to the target, greatly reducing the
dependence on selecting the source font. However, their
methodology exhibits some limitations. They calculate the
L1 distance between the few-shot content feature maps each
other and then use k-means clustering on the concatenated
vectors to select the basis fonts. That makes the vector rep-
resenting one font contain information about other fonts.
Their basis fonts and content fusion weights are also fixed
once calculated so they can not adapt to the network up-
dating. All of these might make their method not flexible
to generate results similar to the target. Starting from this
perspective, we propose ABW-Font to make the basis fonts
and content fusion weights learnable.

3. Method

Our network is shown in Fig. 1. Firstly, we train the
neural network without ABW module to to ensure that our
network has the ability to extract features from character
images, thereby ensuring that the subsequent ABW module
can perform clustering operations on reasonable features.
Then the training of our ABW-Font can be devided into 2
phases: in phase 1, the content encoder receives few-shot
reference images of all training fonts, projects them into a
GMM distributed latent space, and calculates the posterior
probability of each font belonging to these distributions. We
select the fonts that have the minimum L2 distance to the
Gaussian centers as the basis fonts, and obtain the content
fusion weights after a softmax operation on the L2 distance
between the content feature of the current font and all basis
fonts. We adopt the RPCL enhanced EM-like learning algo-
rithm from [42] to iterate the above process. In phase 2, the
content image will be replaced by images that represent the
same character but from the basis fonts. The outputs of the
encoder at different scales will be weighted and summed.
Then they are sent to the decoder. Style encoder extracts
the style image and adds it to the decoder through AdaIN
[14].

3.1. Model Structure

The ABW-Font consists of a content encoder Ec, a style
encoder Es, a decoder D, and an ABW module for learning
basis fonts and content fusion weights in a GMM-structured
latent space. Our model is based on DG-Font and CF-Font.
We keep the U-net[29] structure and use 2 feature deforma-
tion skip connection[39], which followed the approach of
DG-Font. Differently, we have modified the shape of the
output features of the content encoder. In DG-Font and CF-
Font, the output of their Ec is a 256×20×20 feature map. Its
shape is so large for clustering. Therefore CF-Font calcu-
lates the L1 distance between the few-shot content feature
maps each other first, and then uses k-means clustering on
the obtained vectors. This means the vector representing
one font contains information about other fonts. In ABW-
Font, the output of Ic is a 128 vector. For the 16 few-shot
reference images representing a certain training font, we
can directly perform the clustering operation on the con-
catenated vectors, which ensures the feature representing a
certain font do not contain information from other fonts,
thus maintaining the rationality of clustering.

3.2. Learning Adaptive Basis and Weights

Our ABW module aims to get the learnable basis fonts
and content fusion weights. It is the core of the phase 1 in
the training process. We project few-shot reference charac-
ter images of all training fonts into a GMM distributed la-
tent space and divide them into several categories. Then we
calculate the posterior probabilities that each font belongs

to different Gaussian distributions. We use the fonts with
the minimum L2 distance to each Gaussian center as the
basis fonts, and use the output after a softmax operation on
the L2 distance between the content feature of the current
font and all basis fonts for later content feature weighted
sum operation. During training, the GMM will be iterated
via an RPCL enhanced EM algorithm, and the basis fonts
and content fusion weights will also change accordingly.
Specifically, our ABW module is implemented in the fol-
lowing:

For the number n train font, the content encoder EC ac-
cepts its 16 few-shot reference character images and outputs
a concatenated vector zn. So for all N kinds of fonts in the
training set, we get a content feature vector set {zn}Nn=1.

Initialization. We need to calculate the basis fonts and
content fusion weights at the beginning of training for the
initialization of our GMM. We perform a traditional k-
means clustering on the content feature vector set {zn}Nn=1

and get M clusters corresponding to Eq. (1).

{Ci}Mi=1 = k-means({zn}Nn=1). (1)

Each zn can be regarded as a point from a cluster in
high-dimensional space. Since a high-dimensional Gaus-
sian distribution can be determined by its mean and covari-
ance matrix, we need to calculate the means and covariance
matrices of these clusters to construct the GMM. For the
number i cluster Ci, we use all points that belonged to Ci

to calculate the mean vector µ(0)
i and the covariance matrix

Σ
(0)
i according to Eq. (2) .

µ
(0)
i ,Σ

(0)
i = fµ,Σ({zn|zn ∈ Ci}), (2)

where fµ,Σ indicates the operation of calculating the mean
vector and the covariance matrix.

We assume that the features of each dimension are inde-
pendent of each other, so we can use the diagonal matrix of
Σ

(0)
i to simplify the calculation. We obtain M means and

covariance matrices that determine M high-dimensional
Gaussian distributions. Then we calculated the L2 distance
between {zn}Nn=1 and these M Gaussian centers. As de-
scribed in Eq. (3), we choose the fonts represented by zn
that have the minimum L2 distance to M Gaussian distri-
bution centers as the initial basis fonts. Bi indicates the
number of the font that is selected to be the basis font of Ci.

B
(0)
i = argmin

n
(||zn − µ

(0)
i ||22). (3)

Next, we need to get the weights of all fonts in the train-
ing set for the content feature fusion operation in phase 2.

The weights of font n are calculated by Eq. (4).

d(0) = (d
(0)
1 , d

(0)
2 , . . . , d

(0)
M), d

(0)
i = ||zn − µ

(0)
i ||22,

w(0)
n = softmax(

−d(0)

t
),

(4)
where t is the temperature of the softmax operation.

Through the above process, the basis fonts {B(0)
i }Mi=1

and the content fusion weights {w(0)
n }Nn=1 needed in stage

2 of the training process have been obtained. When the net-
work performs stage 1 in the next execution, an EM process
will be used to update our GMM and obtain new basis fonts
and content fusion weights.

E-step. When we are in phase 1 at time τ , we start the
Expectation step (E-step) of our RPCL enhanced EM algo-
rithm. We first calculated the conditional probability of the
few-shot reference character point zn being assigned to Ci

based on Eq. (5).

P (τ−1)(zn|Ci) =
1

(2π)
d
2 · |Σ(τ−1)

i | 12
· e− 1

2κ,

κ =
(
zn − µ

(τ−1)
i

)T (
Σ

(τ−1)
i

)−1 (
zn − µ

(τ−1)
i

)
. (5)

Then, following the Eq. (6), we calculate the poste-
rior probability that zn belongs to Ci according to the prior
probability P (τ−1)(Ci):

γ
(τ)
ni =P (τ)(Ci|zn)

=
P (τ−1)(zn|Ci) · P (τ−1)(Ci)∑M

i=1[P
(τ−1)(zn|Ci) · P (τ−1)(Ci)]

. (6)

We add an RPCL operation before we update the GMM
and the prior probability P (Ci) according to Eq. (7).

γ̃
(τ)
ni =


1, winner: i = i∗, i∗ = argmaxi γ

(τ)
ni ;

−ζ, rival: i = u, u = argmaxi ̸=i∗ γ
(τ)
ni ;

0, otherwise.
(7)

In Eq. (7), the winner and rival indicate the cluster with
the largest and second-largest probabilities, respectively,
that font n belongs to. The basic idea of RPCL is that for
each input not only the winner is modified to adapt to the
input, but also its rival is delearned by a smaller learning
rate. Our motivation for using RPCL instead of conven-
tional EM is to avoid the gradual overlap of different dis-
tributions during training to keep the basis fonts contain-
ing as many generalized styles as possible. Also, RPCL is
able to automatically determine an appropriate cluster num-
ber which weakens the influence of selecting the basis fonts
numbers M .

M-step. Then we execute the Maximization step (M-
step) of EM, updating the Gaussian distribution and the
prior probability P (Ci) according to Eq. (8) to (10).

µ̃
(τ)
i =

∑
n zn · γ̃(τ)

ni∑
n γ̃

(τ)
ni

, (8)

Σ̃
(τ)
i =

∑
n[(zn − µ̃

(τ)
i)2 · γ̃(τ)

ni]∑
n γ̃

(τ)
ni

, (9)

P̃ (τ)(Ci) =

∑
n γ̃

(τ)
ni

N
. (10)

We adopt a smooth update strategy to reduce the fluc-
tuations in our GMM parameter updates and try to avoid
getting stuck in local optima. We do not directly replace
the old parameters with new ones but update them with a
learning rate η using Eq. (11) to (13).

µ
(τ)
i = (1− η)µ̃

(τ−1)
i + ηµ

(τ)
i , (11)

Σ
(τ)
i = (1− η)Σ̃

(τ−1)
i + ηΣ

(τ)
i , (12)

P (τ)(Ci) = (1− η)P̃ (τ−1)(Ci) + η P (τ)(Ci). (13)

Now we can calculate the basis fonts and content fusion
weights at time τ using the new Gaussian centers:

B
(τ)
i = argmin

n
(||zn − µ

(τ)
i ||22),

d(τ) = (d
(τ)
1 , d

(τ)
2 , . . . , d

(τ)
M), d

(τ)
i = ||zn − µ

(τ)
i ||22,

w(τ)
n = softmax(

−d(τ)

t
).

(14)
Finally, we have the basis fonts {B(τ)

i }Mi=1 and the con-
tent fusion weights {w(τ)

n }Nn=1. They will be used for fea-
ture fusion in phase 2 of the training. When the next time
phase 1 is activated, Eq. (5) to (14) will be executed to re-
peat this process. When generating unseen font during the
inference, the content fusion weights can be calculated us-
ing the few-shot reference character images of the unseen
characters and the Gaussian centers {µi}Mn=1 according to
Eq. (14).

3.3. Training an ABW-Font

Given the content image Ic and style image Is, the net-
work finally output the generated image Ig . We first train
a base network without ABW module to ensure that the
model has the ability to extract content features for our
ABW module initialization. When training the base net-
work, as the basis fonts and weights do not yet exist, Ic will
be directly input to Ec without being replaced by Ib. Simi-
larly, Ec will directly output Zc, Fc1, and Fc2.

Figure 2. Two phases of the ABW-Font training. (a) shows the phase 1: The content encoder extracts few-shot reference characters of font
n and outputs the concatenated feature vector Zn. The ABW module accepts the few-shot reference vectors and outputs the current basis
fonts and content fusion weights. (b) shows the phase 2: IC is the content image, It will be replaced by Ib, several images that have the
same content but from the current basis fonts. EC extract Ib and outputs muti-scaled features Zb, Fb1 and Fb2. Calculating the weighted
sum of Zb, Fb1 and Fb2 based on the content fusion weights obtained by ABW module to get muti-scaled content feature Zc, Fc1 and Fc2.
The FDSC module receives a concatenation of two feature maps and outputs a new one through a deformable convolution layer. ES extract
the style image IS and output the style feature ZS . D mixes the content features and the style features. Finally, D outputs the generated
font image which has the content of IC but has the style of IS .

Then we add our ABW module, and the training details
are divided into two phases as Fig. 2 shows: In phase 1: The
content encoder first accepts 16 few-shot reference charac-
ter images of all N train fonts and sends the output latent
codes to the ABW module. The ABW module will project
them to a GMM-distributed latent space and use an RPCL
enhanced EM algorithm to iterate them. At last, the ABW
module outputs M basis fonts and N content fusion weights
w. They will be used in phase 2. Phase 2 will be executed
once every 500 iterations to prevent overfitting and mean-
while ensure the training speed is not too slow.

In phase 2: The content image Ic will be replaced by
M images Ib which reference the same character as Ic but
from basis fonts. The content encoder outputs at multiple
scales to get the vector Zb, and the feature maps Fb1 andFb2.
They will be weighted and summed base on w, and we get
a vector Zc and two feature maps F1 and F2. The feature
deformation skip connection (FDSC) is from DG-Font. It
receives a concatenation of two feature maps and outputs a
new one through a deformable convolution layer. The style
encoder transfers Is to a vector Zs and adds it to some layers
of the decoder through AdaIN.

Additionally, we add a compact clustering loss term
LCCL to clearly classify the latent codes zn into a certain
cluster, making the initial training stages more stable. This
loss term can enable points at multiple class boundaries
to be more clearly classified into a certain class, thereby
preventing these points from being classified into different

classes during the RPCL enhanced EM process and caus-
ing significant fluctuations in GMM. For the number n train
font, we calculate the L2 distance between zn and the Gaus-
sian center µi corresponding to the maximum term in M
values in wn. The compact clustering loss term LCCL can
be calculated as follows:

LCCL = ΣN
n=1||zn − sg(µj)||22, j = argmax(w(τ)

n),
(15)

where sg(·) stands for the stop-gradient operator. It reduces
the distance between the few-shot reference character latent
codes and their nearest Gaussian center, thereby separat-
ing the points of different clusters and allowing the selected
basis fonts to represent better style information. Adding
LCCL to the generator loss, we have the following overall
loss function for training:

L =Ladv + λimg (Limg + λpclLpcl) + λoffset Loffset

+ λCCLLCCL, (16)

where Ladv is the adversarial loss in GAN [12]. Limg is
image reconstruction loss to ensure the generator can re-
construct the source image when given its origin style.Lpcl
is the projected character loss to better supervise the skele-
ton [35]. Loffset is the deformation offset normalization to
avoid excessive offsets in the deformable convolution in
FDSC [39]. λimg, λoffset, λpcl, and λCCL are coefficients

corresponding to the loss terms. The tuning strategy is
to ensure that these losses are on a reasonable order of
magnitude. Specifically, Ladv should dominate, followed
by λimg (Limg + λpclLpcl) and λoffset Loffset , while λCCLLCCL
should be smaller.

4. Experiment

We evaluate our ABW-Font for the Chinese few-shot
font generation task. The inputs and outputs of network are
both 80×80 images. We have implemented our method on
an NVIDIA GeForce RTX 3080Ti GPU with 16G of video
memory. We first train a network without our ABW module
for 180k iterations and it requires about 48 hours. Then we
further train the network with ABW module and the com-
pact clustering loss term for 40k iterations, which requires
around 12 hours. Our code is based on DG-Font [39] and
CF-Font [35]. In the following, we introduce the dataset,
baselines, evaluation metrics, and various experimental re-
sults to verify the effectiveness of our method.

4.1. Experimental Settings

Dataset. Due to copyright issues with fonts, the datasets
used in many previous font generation methods were non-
public datasets. In this paper, We have collected 500 types
of fonts, which is currently the dataset with the largest num-
ber of fonts as we know. It includes commonly used stan-
dard fonts such as Kai, Song, and Hei, as well as numerous
variants of them. There are also many fonts with article
styles and creativeness in our dataset, such as clerical script
fonts, cursive script fonts, grass script fonts, cartoon fonts,
and so on. The diversity of our collected fonts allows our
model to learn and generate a wide range of calligraphic
styles and enhances the model’s ability to capture the nu-
ances of Chinese handwriting. The fonts are sourced from
various repositories, including commercial and free fonts.
We ensure that all fonts are used in compliance with their
respective license agreements. As the original font files are
not distributed with this work. Users can obtain the fonts
from the provided sources. A list of the fonts and their
sources is provided in the supplementary material for ref-
erence. For further details on the specific licenses, please
refer to the original font providers.

Our character set is based on GB/T 2312 [25] which in-
cludes commonly used Chinese characters. We followed
the approach of CF-Font in constructing the dataset, allow-
ing for the most fair comparison with it. We removed some
characters not supported by comparison methods and ulti-
mately left 6446 characters. Then we divided all the char-
acters into two parts: the training characters include 800
randomly picked characters, and the testing characters in-
clude the remaining 5646 characters. We divided all 500
fonts into 400 seen fonts and 100 unseen fonts. Finally,
our dataset is as follows: The training set contains 400 seen

fonts, and each font uses the 800 seen characters. The test
set consists of 2 parts: One part is 400 seen fonts with the
5646 unseen characters, Another part is 100 unseen fonts
with 5646 unseen characters. As our model is a few-shot
font generation method, The reference images of a font are
16 randomly selected characters from the training charac-
ters. We followed the approach of CF-Font in constructing
the dataset, allowing for the most fair comparison with it.

Baselines. We compare our model with 5 recent few-
shot font generation methods, including LF-Font [27], MX-
Font [28], VQ-Font [41]), DG-Font [39], and CF-Font
[35]).

LF-Font simplifies component-wise styles by a prod-
uct of component factor and style factor, without utiliz-
ing strong locality supervision, e.g., the location of each
component, skeleton, or stroke. Many works are innova-
tive based on it, such as FS-Font[33] and VQ-Font[41].
MX-Font extracts multiple style features not explicitly con-
ditioned on component-level labels, but automatically by
multiple experts to represent different local concepts. LF-
Font and MX-Font are both representative weak supervision
methods using component-level information.

VQ-Font proposes a VQGAN-based[10] framework to
enhance glyph fidelity through token prior refinement and
structure-aware enhancement. It leverages the inherent de-
sign of Chinese characters, combining structural compo-
nents like radicals in specific arrangements to recalibrate
fine-grained styles, improving style matching and fusion at
the structural level. It is currently one of the most effective
methods of using component-level supervision.

The remaining two methods, DG-Font and CF-Font
only use universal information for few-shot font generation,
without introducing any component-level information. DG-
Font designs a network structure mainly composed of de-
formable convolutions, which more effectively utilize uni-
versal information. CF-Font [35] designs a content fusion
module to represent the source font as a weighted sum of
basis fonts. It makes the style in content features similar to
the target, greatly reducing the dependence on selecting the
source font. It introduces the basis fonts and weight, which
is closely related to our work.

Metrics. We employ the following metrics to evaluate
the quality of generation both at the pixel level and per-
ception. Specifically, pixel-level metrics are L1, root mean
square error (RMSE), and structural similarity index mea-
sure (SSIM) [37]. They focus on per-pixel consistency be-
tween the generated images and ground truth. Perceptual
metrics include Fréchet Inception Distance (FID) [13] and
Learned Perceptual Image Patch Similarity (LPIPS) [43],
both of which measure the similarity of features and are
closer to human vision.

Training details. For our dataset, font number N is 400,
the initial basis number M is 10. The input character image

Method Seen Fonts Unseen Fonts
L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓ L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓

LF-Font [27] 0.08312 0.2505 0.6682 0.1220 48.08 0.08595 0.2565 0.6536 0.1231 44.21
MX-Font [28] 0.07348 0.2317 0.7007 0.1042 33.47 0.08288 0.2504 0.6743 0.1180 40.57
DG-Font [39] 0.06362 0.2103 0.7392 0.0867 31.46 0.06950 0.2218 0.7149 0.0967 42.24
VQ-Font[41] 0.06232 0.2098 0.7495 0.1030 18.41 0.07061 0.2268 0.7183 0.1142 24.90
CF-Font [35] 0.05676 0.1938 0.7711 0.0777 23.00 0.06298 0.2072 0.7485 0.0858 23.94
ABW-Font 0.05545 0.1904 0.7770 0.0758 17.61 0.06068 0.2023 0.7554 0.0870 20.87

Table 1. Quantitative evaluation on the whole dataset. We evaluate the methods on seen and unseen fonts. The bold numbers indicate the
best performance in each column.

Figure 3. Qualitative comparison with competing methods on unseen characters of seen fonts and unseen fonts. The samples in the red box
represent structural errors.

size is 50×50 in the middle of an 80×80 blank background,
so the input image size is 80×80. Throughout the entire
training, We use Adam[20] with β1 being set to 0.9 and β2

being set to 0.99 for the style encoder, and RMSprop with α
being set to 0.99 for the content encoder. The weight decay
is set to 1e-4.

When training a base model without ABW module, the
batch size is 16, the learning rate is 1e-4, the iterations is
180k, the coefficients λimg, λoffset, λpcl, for the respective
loss terms are set to 0.1, 0.5, 0.05.

After adding ABW module and the compact clustering
loss term, the batch size is 16, the learning rate is 1e-4, the
iterations is 40k, the coefficients λimg, λoffset , λpcl, λCCL for
the respective loss terms are set to 0.1, 0.5, 0.05, 1e-5. In
phase 1 of the training, the learning rate of EM η is set to

0.05, and the learning rate of RPCL ζ is set to 1e-4.

4.2. Quantitative and qualitative evaluation

We compare our method with the baselines. To be fair,
we use font Kai as the source font in LF-Font, MX-Font,
and VQ-Font, and use font Song in DG-Font which fol-
lowed the approach in their article. We retrain all these
methods using their default settings on our dataset. When
training VQ-Font, as some characters in our dataset are not
being labeled, we generate labels according to their method.

Quantitative comparison. As Table. 1 illustrates, our
ABW-Font outperforms these recent methods. For L1 loss,
RMSE, and SSIM, the metrics focus on the pixel-level dif-
ferences between the generated image and the ground truth,
our method achieved the best results in all of them both in

seen fonts and unseen fonts. This represents that the im-
ages generated by our method are closer to the real images
both in terms of style features and spatial positions. For the
metrics closer to human perceptions, LPIPS and FID, our
method also achieves great improvements in FID of seen
fonts and unseen fonts. Our only metric worse than CF-
Font is the LPIPS on unseen fonts. We loses to it by a dis-
advantage of -1.4% but still outperforms the third place by
10.0%.

Qualitative comparison. In Fig. 3, we show the gener-
ated results using different few-shot font generation meth-
ods both on seen fonts and unseen fonts. Overall, all meth-
ods generate better results on seen fonts than on unseen
fonts. It can be seen that the results generated by LF-Font
and MX-Font often have global structural errors despite us-
ing weak supervision about components. Their generated
characters often miss some parts. For some complex char-
acters, the entire character may be blurred and it is difficult
to recognize the content information. VQ-Font classifies
characters based on prior knowledge and enhances the use
of component information using a VQGAN-based frame-
work. DG-Font does not add supervision about components
but uses a network that introduces deformable convolutions
to complete the generation task. However, the results gener-
ated by these two methods exhibit stylistic differences from
the ground truth and also contain some local structural er-
rors. The content input of the above methods requires a
manually selected source font, which will have an impact on
their results to some extent. CF-Font has introduced a con-
tent fusion module that uses multiple basis fonts as content
input rather than using a single source font. But there are
also some structural errors in its samples, and some strokes
are incoherent. Our ABW-Font learns more appropriate ba-
sis fonts and content fusion weights, and they will be con-
tinuously updated during training. Characters generated by
ours are of high quality in terms of style consistency and
structural correctness.

4.3. Comprision of Basis fonts and weights

We compare the basis fonts and content fusion weights
learned/calculated by ABW-Font and CF-Font in Fig. 4 and
Fig 5. Fig. 4 (a) shows the basis fonts obtained by two
methods. We take the Chinese character ”Ji” as an exam-
ple to illustrate the styles of the basis fonts obtained by two
methods. Fig. 4 (b) and Fig. 5 show the details of the basis
fonts and content fusion weights obtained by two methods.
A character displayed at the center of a pie chart is gener-
ated by combining features from a group of basis fonts with
different weights. Each colored region in a pie chart repre-
sents a single basis font, and its size reveals the importance
(i.e., the content fusion weight) for composing the target
font. Besides, basis fonts with content fusion weights less
than 10% are omitted.

CF-Font calculates the L1 distance between the few-shot
content feature maps each other of all fonts in the training
set and then uses k-means clustering on the obtained vectors
to get their basis fonts. For font n, given the concatenated
feature map Fn of its few-shot reference characters, the ba-
sis fonts of CF-Font can be calculated by Eq. (17).

dn = (dn1, dn2, . . . , dnN) , dnj = ∥Fn − Fj∥1 ,
en = σ (dn) ,

{Bi}Mi=1 = k-means({en}Nn=1),
(17)

where σ is the softmax operation, dnj is the L1 distance be-
tween two fonts, and set {Bi}Mi=1 contains the indices of the
selected basis fonts. The basis fonts calculated by CF-Font
will no longer change, while our basis fonts will be updated
by ABW module during training. Images of our basis fonts
shown in Fig. (4) are obtained at the end of training. It can
be seen that the basis fonts determined by CF-Font have a
stronger style. However, fonts with a stronger style are not
suitable for combination because if the difference among
the basis fonts is too large, their combination will lead to
an unreasonable result, such as Fig. 4 (b-2) and (b-10), and
Fig. 5 (1) and (6). Our basis fonts are iterated via ABW
module. We use an RPCL enhanced EM algorithm to learn
basis fonts with more generalized styles. In Fig. 4 (b-1), (b-
2), (b-7), (b-8), (b-9), and (b-10); and in Fig. 5 (5), (6), (7),
and (8), there is a significant difference in style between the
results obtained by CF-Font and the target, indicating that
the style represented by their basis fonts is less generalized.
The difference between the fonts generated by ABW-Font
and the target is smaller, reflecting the superiority of our
method in obtaining the basis fonts.

For the target font n and its content feature Fn, CF-Font
measures its similarity to the basis fonts {Bi}Mi=1. Then
the content fusion weight wn of CF-Font is calculated as
follows:

d′
n = (dn1, dn2, . . . , dnM) , dim = ∥Fn − Fm∥1 ,

wn = σ (−d′
n/t) ,

(18)
where t is the temperature of the softmax operation, Fm

is the concatenated feature map of the few-shot reference
characters for font m, which is one of the basis fonts. It can
be seen that the content fusion weights determined by CF-
Font are sparser than ours, and their basis fonts are not as
representative as ours. If there is a significant gap between
the basis font with the highest proportion and the target, the
generated results will be greatly influenced by the basis font
that has the highest weights, resulting in a decrease in the
similarity between the generated results and the target. As
shown in Fig. 4 (b-1), (b-2), (b-5), (b-6), (b-7), and (b-8);
and in Fig. 5 (3), (4), (7), and (8), the results generated by
CF-Font are more like the basis font with the highest pro-
portion rather than the target font. In this case, their method

Figure 4. Comparisons of basis fonts selection and content fusion weights for ABW-Font and CF-Font on font generation. (a) The basis
fonts selected/learned via CF-Font and ABW-Font. We take the Chinese character ”Ji” as an example to demonstrate the styles of the basis
fonts obtained by two methods. (b) Comparisons of the content fusion details for ABW-Font and CF-Font on unseen fonts. A character
displayed at the center of a pie chart is generated by combining features from a group of basis fonts with different weights. Each colored
region in a pie chart represents a single basis font, and its size reveals the importance (i.e., the content fusion weight) for composing the
target font. Besides, basis fonts with content fusion weights less than 10% are omitted.

Figure 5. Comparisons of basis fonts selection and content fusion weights for ABW-Font and CF-Font on seen fonts. A character displayed
at the center of a pie chart is generated by combining features from a group of basis fonts with different weights. Each colored region in
a pie chart represents a single basis font, and its size reveals the importance (i.e., the content fusion weight) for composing the target font.
Besides, basis fonts with content fusion weights less than 10% are omitted.

can be seen as degenerating into using a single source font.
Since using L1 distance will result in such sparser weights,
we choose to use L2 distance when calculating the basis
fonts and content fusion weights. Also, the basis fonts and
content fusion weights in CF-Font are fixed once they are
calculated, while ours can adapt to the network updating via

the ABW module. In Fig. 4 (b-3) and (b-4), and in Fig. 5
(9) and (10), the results generated by two methods are both
close to the target in style, but our method performs better
in structural details.

Method Seen Fonts Unseen Fonts
B W L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓ L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓

0.06732 0.2180 0.7249 0.0916 26.48 0.07272 0.2283 0.7052 0.1018 31.39
✓ 0.05795 0.1964 0.7666 0.0782 19.45 0.06186 0.2048 0.7507 0.0896 24.14

✓ 0.05543 0.1907 0.7766 0.0752 19.56 0.06134 0.2043 0.7526 0.0868 22.51
✓ ✓ 0.05672 0.1935 0.7706 0.0780 17.98 0.06077 0.2022 0.7542 0.0896 21.99

Table 2. Effectiveness of different components in ABW module. The first row is the result of the base network. W and B represent learning
the content fusion weights with ABW module and learning the basis fonts with ABW module.

Method Seen Fonts Unseen Fonts
L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓ L1↓ RMSE↓ SSIM↑ LPIPS↓ FID↓

LF-Font [27] 0.08312 0.2505 0.6682 0.1220 48.08 0.08595 0.2565 0.6536 0.1231 44.21
LF-Font∗ 0.08264 0.2461 0.6732 0.1210 43.75 0.08482 0.2507 0.6607 0.1223 39.48
MX-Font [28] 0.07348 0.2317 0.7007 0.1042 33.47 0.08288 0.2504 0.6743 0.1180 40.57
MX-Font∗ 0.07287 0.2275 0.7063 0.1028 32.56 0.08202 0.2464 0.6813 0.1139 36.81
DG-Font [39] 0.06362 0.2103 0.7392 0.0867 31.46 0.06950 0.2218 0.7149 0.0967 42.24
DG-Font∗ 0.06282 0.2083 0.7435 0.0869 30.20 0.06897 0.2206 0.7219 0.0957 31.00

Table 3. Quantitative evaluation of using different source fonts in LF-Font, MX-Font, and DG-Font. * represents our method, which uses
a single basis font we have learned as the source font on the whole dataset. We evaluate the methods on seen and unseen fonts.

4.4. Ablation Study

In this section, we discuss the effectiveness of the atten-
dance of different parts in our ABW module. We first train
a model without adding the ABW module as the baseline.
Then, we gradually add our ABW module to the baseline
for validation. It is worth noting that when verifying the ef-
fect of our ABW module, we separately control the ABW
module to learn only the content fusion weights, or learn
only the basis fonts, or learn both the basis fonts and content
fusion weights simultaneously to verify which part takes a
role or both. We validate the metrics achieved by the above
model on seen and unseen fonts, and the results are shown
in Table 2.

Learning basis fonts or content fusion weights separately
has improved the relevant performance compared to the
base model. Among them, the improvement brought by
learning the content fusion weights separately is greater. On
seen fonts, the results of learning both basis fonts and con-
tent fusion weights simultaneously are inferior to the model
that only learns weights in many metrics but still achieves
better in FID. On unseen fonts, except for a small decrease
in LPIPS, better results were achieved in other indicators.
We need to emphasize that all the styles of seen fonts have
appeared during training. As the early font style transfer
task required the inclusion of all font styles in the train-
ing set, the test on seen fonts was necessary at that time.
However, for the few-shot font generation task, the original
intention was to generate a whole new set of unseen fonts
based on several character images provided to us. There-
fore, the experimental results on the unseen fonts are more

valuable for reference.
The inferior performance on unseen fonts represents that

it is lack of robustness. The method of learning both the
basis fonts and content fusion weights simultaneously per-
forms better on unseen fonts, so we believe it has a stronger
generalization ability to adapt to the few-shot font genera-
tion task. The data in the last row of Table 2 is different
from our data in Table 1 because lack of our compact clus-
tering loss term.

4.5. Determining Robust Source Font by ABW Module

As emphasized in this paper, the selection of the source
font can greatly affect the results in the font generation task.
In numerous previous works, font Kai and Song were usu-
ally used as the source font, because they are the most com-
monly used fonts in Chinese text editing. However, this ap-
proach may not be the best. If the source font differs signif-
icantly from most of the fonts in the dataset, the generated
results will deteriorate.

In this paper, our ABW module can learn a better set
of basis fonts with their corresponding weights to represent
the source font, thereby avoiding the impact of selecting it.
For many tasks that still require a source font as the content
input, we can propose a simple method to determine a more
robust source font. We have verified on our dataset that this
method can achieve better results in some previous works.

Specifically, following the approach in Subsection 3.3,
we first train a base model without ABW module. Then
we pick up 16 few-shot reference characters from all train
fonts and add them to the encoder. Then we set the num-

ber of basis fonts to 1 and perform only 1 iteration, using
the calculated basis font as the source font. For our dataset,
the source font determined by this method is a Kai-like font
that is coarser and more angular. We test it in LF-Font, MX-
Font, and DG-Font, and the results using our method are
better than those obtained in their articles using font Song
or Kai as the source font, respectively. The experimental
results are shown in the Table 3. We hope that this simple
method of determining the source font can provide a ref-
erence for researchers who need to use the source font to
participate in the font generation task.

5. Conclusion

In this paper, we propose an ABW module to make the
basis fonts and content fusion weights learnable, improving
the quality of results in few-shot font generation. We also
add a compact clustering loss term making the training more
stable and accelerating the convergence of the network. The
experiment proves that our method outperforms recent ad-
vanced few-shot font generation methods.

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China (62406064) and the Fundamen-
tal Research Funds for the Central Universities (2232024D-
28).

References

[1] GitHub - kaonashi-tyc/Rewrite: Neural Style Transfer For
Chinese Characters — github.com. https://github.
com/kaonashi-tyc/Rewrite. [Accessed 18-05-
2024]. 1, 2

[2] GitHub - kaonashi-tyc/zi2zi: Learning Chinese Character
style with conditional GAN — github.com. https://
github.com/kaonashi-tyc/zi2zi. [Accessed 18-
05-2024]. 1, 2

[3] K. Baek, Y. Choi, Y. Uh, J. Yoo, and H. Shim. Rethinking the
truly unsupervised image-to-image translation. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 14154–14163, 2021. 2

[4] S. Benaim and L. Wolf. One-sided unsupervised domain
mapping. Advances in neural information processing sys-
tems, 30, 2017. 2

[5] J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee. Few-
shot compositional font generation with dual memory. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX
16, pages 735–751. Springer, 2020. 1, 2

[6] X. Chen, C. Xu, X. Yang, L. Song, and D. Tao. Gated-gan:
Adversarial gated networks for multi-collection style trans-
fer. IEEE Transactions on Image Processing, 28(2):546–
560, 2018. 2

[7] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo.
Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, pages 8789–8797, 2018. 2

[8] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. Stargan v2: Diverse
image synthesis for multiple domains. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8188–8197, 2020. 2

[9] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In Proceedings of the
IEEE international conference on computer vision, pages
764–773, 2017. 2

[10] P. Esser, R. Rombach, and B. Ommer. Taming transform-
ers for high-resolution image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021. 3, 7

[11] Y. Gao and J. Wu. Gan-based unpaired chinese character
image translation via skeleton transformation and stroke ren-
dering. In proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 646–653, 2020. 2

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. Advances in neural information pro-
cessing systems, 27, 2014. 1, 6

[13] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017. 7

[14] X. Huang and S. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. In Proceedings of
the IEEE international conference on computer vision, pages
1501–1510, 2017. 2, 4

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-
image translation with conditional adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1125–1134, 2017. 2

[16] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao. Dcfont: an end-
to-end deep chinese font generation system. In SIGGRAPH
Asia 2017 Technical Briefs, pages 1–4. 2017. 2

[17] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao. Scfont: Structure-
guided chinese font generation via deep stacked networks.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, pages 4015–4022, 2019. 2

[18] H. Kazemi, S. M. Iranmanesh, and N. Nasrabadi. Style and
content disentanglement in generative adversarial networks.
In 2019 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 848–856. IEEE, 2019. 2

[19] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to
discover cross-domain relations with generative adversarial
networks. In International conference on machine learning,
pages 1857–1865. PMLR, 2017. 2

[20] D. P. Kingma. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 8

[21] Y. Kong, C. Luo, W. Ma, Q. Zhu, S. Zhu, N. Yuan, and
L. Jin. Look closer to supervise better: One-shot font gen-
eration via component-based discriminator. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13482–13491, 2022. 1, 3

https://github.com/kaonashi-tyc/Rewrite
https://github.com/kaonashi-tyc/Rewrite
https://github.com/kaonashi-tyc/zi2zi
https://github.com/kaonashi-tyc/zi2zi

[22] G. Kwon and J. C. Ye. Diagonal attention and style-based
gan for content-style disentanglement in image generation
and translation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 13980–13989,
2021. 2

[23] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehti-
nen, and J. Kautz. Few-shot unsupervised image-to-image
translation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 10551–10560, 2019.
2

[24] W. Liu, F. Liu, F. Ding, Q. He, and Z. Yi. Xmp-font: Self-
supervised cross-modality pre-training for few-shot font gen-
eration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7905–7914,
2022. 1, 3

[25] K. Lunde. CJKV information processing. ” O’Reilly Media,
Inc.”, 2008. 7

[26] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu.
Auto-encoder guided gan for chinese calligraphy synthesis.
In 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 1, pages 1095–
1100. IEEE, 2017. 1, 2

[27] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. Few-shot font
generation with localized style representations and factoriza-
tion. In Proceedings of the AAAI conference on artificial in-
telligence, volume 35, pages 2393–2402, 2021. 1, 3, 7, 8,
12

[28] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. Multiple
heads are better than one: Few-shot font generation with
multiple localized experts. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 13900–
13909, 2021. 1, 3, 7, 8, 12

[29] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Ger-
many, October 5-9, 2015, proceedings, part III 18, pages
234–241. Springer, 2015. 4

[30] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsupervised
images through adversarial training. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2107–2116, 2017. 2

[31] D. Sun, T. Ren, C. Li, H. Su, and J. Zhu. Learning to write
stylized chinese characters by reading a handful of examples.
arXiv preprint arXiv:1712.06424, 2017. 1, 2

[32] D. Sun, Q. Zhang, and J. Yang. Pyramid embedded gener-
ative adversarial network for automated font generation. In
2018 24th International Conference on Pattern Recognition
(ICPR), pages 976–981. IEEE, 2018. 1, 2

[33] L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han,
J. Liu, E. Ding, and J. Wang. Few-shot font generation
by learning fine-grained local styles. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7895–7904, 2022. 1, 3, 7

[34] A. Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 3

[35] C. Wang, M. Zhou, T. Ge, Y. Jiang, H. Bao, and W. Xu. Cf-
font: Content fusion for few-shot font generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1858–1867, 2023. 2, 3, 6, 7,
8

[36] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and
B. Catanzaro. High-resolution image synthesis and seman-
tic manipulation with conditional gans. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 8798–8807, 2018. 2

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image process-
ing, 13(4):600–612, 2004. 7

[38] S.-J. Wu, C.-Y. Yang, and J. Y.-j. Hsu. Calligan: Style
and structure-aware chinese calligraphy character generator.
arXiv preprint arXiv:2005.12500, 2020. 1, 2

[39] Y. Xie, X. Chen, L. Sun, and Y. Lu. Dg-font: Deformable
generative networks for unsupervised font generation. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 5130–5140, 2021. 2, 4,
6, 7, 8, 12

[40] L. Xu, A. Krzyzak, and E. Oja. Rival penalized competitive
learning for clustering analysis, rbf net, and curve detection.
IEEE Transactions on Neural networks, 4(4):636–649, 1993.
2

[41] M. Yao, Y. Zhang, X. Lin, X. Li, and W. Zuo. Vq-font:
Few-shot font generation with structure-aware enhancement
and quantization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 16407–16415,
2024. 3, 7, 8

[42] S. Zang, S. Tu, and L. Xu. Controllable stroke-based sketch
synthesis from a self-organized latent space. Neural Net-
works, 137:138–150, 2021. 2, 4

[43] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 586–595, 2018.
7

[44] Y. Zhang, Y. Zhang, and W. Cai. Separating style and con-
tent for generalized style transfer. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 8447–8455, 2018. 1, 2

[45] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. In Proceedings of the IEEE international conference
on computer vision, pages 2223–2232, 2017. 2

[46] X. Zhu, H. Hu, S. Lin, and J. Dai. Deformable convnets
v2: More deformable, better results. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9308–9316, 2019. 2

