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Abstract

Sketch-based image editing allows for intuitive and
flexible modification of image details, effectively improv-
ing editing efficiency and diversity. When performing
the scene-level image editing task where sketches are
employed to control multiple objects within the edit-
ing region, existing approaches using GAN or diffusion
models face limitations in handling complex editing in-
tentions, such as editing scene content with various ob-
ject attributes including spatial layout, semantics, struc-
ture, and number of objects. The challenge lies in ef-
fectively utilizing the attributes of multi-objects in the
sketch and mapping these sketch attributes to the image
editing region. In this work, we propose a Sketch-guided
Diffusion Model called SDM, which integrates a global-
to-local conditioning strategy to maximize the utiliza-
tion of each object instance’s attributes in the sketch.
Specifically, this strategy incorporates a multi-instance
guided cross-attention module and modifies attention
maps with sketch masks, to help the model capture ob-
ject semantics, structure, and quantity jointly. Addition-
ally, we optimize the generation of the shared boundary
region for overlapped objects to tackle the issue of am-
biguous contours and semantics around the boundary.
Then we introduce the multi-instance semantic loss to
compensate for the diffusion model’s limitation of po-

tential semantics comprehension in sketches. Extensive
experiments with high-quality editing results show that
the proposed method outperforms state-of-the-art meth-
ods in the sketch-guided scene-level image editing task.

Keywords: Sketch, Scene-level Image Editing, Diffu-
sion Model.

1. Introduction

Interactive image editing is crucial in reducing man-
ual repetitive operations and streamlining the image cre-
ation process, which improves the efficiency and diversity
of image content generation. With the popularity of touch
screens, free-hand sketching has become an intuitive way
to express users’ design intent and flexibly modify design
details in the process of creation. In recent years, the
sketch-based image editing task has been extensively stud-
ied, where users input an arbitrary mask to optionally indi-
cate the image editing region, draw the sketch to depict the
editing content, and complete the image.

Current research for sketch-based image editing mainly
adopts Generative Adversarial Networks (GANs) [5] and
uses a few sketch lines to simply edit the partial structure
details of the image [20, 11, 36, 35, 15, 37]. Typically, the
editing results make subtle refinements to the object’s shape
based on its unedited structural components and preserve
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Figure 1. Illustration of the scene-level sketch-guided image edit-
ing task and challenges of the diffusion-based methods [23, 38] for
this task. The task inputs the enlarged mask to label the foreground
regions to be edited and utilizes a multi-instance sketch as key vi-
sual clues to guide the structure, semantics, quantity, and spatial
layout of objects in the editing region. The major challenge is to
fully utilize multi-instance attributes and realize attribute mapping
from sketch to the image editing region, which contains three key
issues: (1) Semantics overlook: the semantics of objects are un-
clear. (2) Object missing: one or more objects are missing. (3)
Content overlay: the sketch-guided content is overlaid on the orig-
inal content. We aim to address all three problems and realize
high-quality image editing.

the original semantic category. In the real-world application
scenario where the editing region often expands to encom-
pass entire objects, existing editing methods lack the key
structural and semantic guidance to assist the sketch input
to modify the current content, and struggle to achieve sat-
isfactory editing results. We define this challenging task as
the sketch-guided scene-level image editing task, where an
arbitrary mask to cover objects in the image is used to in-
dicate the editing region, and a sketch containing multiple
object instances is drawn to control scene content, includ-
ing object number, and the attributes of each object (spatial
layout, semantics, and structure).

Recently, diffusion-based models have been proposed to
produce high-quality generation results [9, 25, 23, 18, 38,
24, 12, 27, 13], and several works [23, 18, 38] are effective
for the sketch-guided scene-level editing. For example, by
jointly utilizing ControlNet [38] and the Stable Diffusion
Inpainting model [23], it can enable the highly challenging
image editing task with large-scale occlusion [1]. The edit-
ing region is controlled by an input sketch, disregarding the
text input in this case. However, these methods only use
the structural information of the sketch for editing, which
cannot effectively leverage all the object attributes and map
them from the sketch to the image editing region. As illus-
trated in Fig. 1, these methods mainly focus on the shape
of the object while overlooking other attributes, especially
object categories in the sketch, leading to insufficient sketch
comprehension and unrealistic generation. Moreover, they
struggle to establish attribute correspondence between mul-

tiple objects in the sketch and those in the image and may
overlook certain object attribute details or even the entire
object omission. Furthermore, the sketch’s control capabil-
ity over the editing region is inadequate. The editing results
are redundant where the model attempts to restore the im-
age’s original content and then superimpose additional con-
tent guided by the sketch.

In this paper, we introduce a Sketch-guided Diffusion
Model called SDM to efficiently handle the complex sketch-
guided scene-level editing task. To utilize the attributes of
each object in the sketch and enable precise control over
the editing region, we propose a global-to-local condition-
ing strategy, which includes a multi-instance guided cross-
attention module to integrate the sketch’s semantic features
with the image and the synchronized semantic and structure
control module that utilizes a corresponding sketch mask to
adapt the attention map. Moreover, we especially address
the generation of well-defined textures and contours in the
overlapped boundaries of multiple objects. We focus on op-
timizing the attention distribution within the boundary re-
gion and feature distance between overlapped objects. To
further mitigate the diffusion model’s limitation in under-
standing potential sketch semantics, we propose the multi-
instance semantic loss during training, which captures and
minimizes the semantic features of each instance within
the image editing region and the sketch. SDM can effec-
tively utilize the sketch to generate user-desired scene con-
tent which integrates well with the remaining content of the
original image, enabling efficient editing of scene content
in images.

In summary, we make the following contributions:

1. We present a diffusion-based editing framework to re-
alize the sketch-guided scene-level image editing task,
which allows for effective scene content editing of im-
ages with large occlusions, enabling sketches to flex-
ibly control multi-instance synthesis in the editing re-
gion.

2. We incorporate a global-to-local conditioning strategy,
empowering sketches to achieve simultaneous object
attribute determination including the instance number,
structure, spatial layout, semantics, etc. via the cross-
attention module.

3. We optimize textures and contours in overlapped
boundaries of multiple objects by modifying the atten-
tion distribution and feature distance within the bound-
ary regions, and propose the multi-instance semantic
loss to further address the diffusion model’s incapabil-
ity of utilizing the sketch’s potential semantics.

4. Our method outperforms the state-of-the-art sketch-
based image editing methods with diffusion mod-



els and GAN-based methods through quantitative and
qualitative evaluations.

2. Related Work

2.1. Sketch-based Image Editing

Recent sketch-based image generation and editing
works [10, 32, 3] mainly adopt GAN as the basic frame-
work. Specifically, the editing works [20, 11, 35, 36, 15, 37]
focus on modifying the local structure of the editing re-
gion while ensuring semantic and style consistency with
the remaining original image region. The majority of rel-
evant works [20, 11, 35] primarily concentrate on human
face editing. These approaches input face images, arbitrary
masks to indicate regions to be edited, and partial strokes to
control specific facial components, and then realize targeted
edits. Specifically, FaceShop [20] introduces a conditional
image completion method for face image manipulation. It
enables users to modify local shape and color by utilizing
masks, sketches, and a few color strokes. SC-FEGAN [11]
enhances image completion capabilities by supporting free-
form masks through discriminator optimization to handle
large-scale occlusions. Additionally, it incorporates a style
loss during training to further improve the quality of the
edited results. Deep plastic surgery [35] employs sketches
with different levels of abstraction for face image edit-
ing, which enables versatile editing of facial attributes.
DeepFill-v2 [36], DeflocNet [15], and SketchEdit [37] are
methods designed for editing human faces and general
scenery. Notably, SketchEdit directly inputs sketches with-
out additional masks to simplify the user input, which lever-
ages sketches to predict the mask for the editing region and
generate the final image.

In contrast to these approaches that utilize sketches to
edit the original image content’s partial structure, we em-
ploy a large mask to overlay the image’s foreground ob-
jects, which completely occlude the semantic and structural
information of the current region, leading to an obvious de-
ficiency of image context. Then we incorporate sketches
to depict diverse multi-object instances within the editing
region and manipulate the scene content, ensuring compre-
hensive and coherent editing in more complex editing sce-
narios such as multi-object replacement and scene content
composition.

2.2. Diffusion Models

Compared to GAN-based methods using adversarial
learning with generators and discriminators for image gen-
eration, diffusion models progressively add noise to the data
via a Markov Chain and then denoise from the noisy data to
generate images, which is more stable for training and sig-
nificantly improves the generation quality [9, 25, 23, 18, 38,
24, 12, 27, 13].

Sketches can be used as conditional input to determine
the structure and spatial layout of the generated image.
DiffSketching [31] applies diffusion models to generate
object-level images with sketches. DiSS [4] inputs sketches
and color strokes to manipulate the structure, color, and
realism of generated images via diffusion models. With
the development of Stable Diffusion [23], text-based image
generation and editing achieve high performance. Current
methods leverage text to describe the semantic content, ob-
ject attributes, and style of generated images. Moreover,
they incorporate additional guidance, such as sketches, lay-
outs, keypoints, etc. into the pre-trained text-to-image dif-
fusion model to achieve fine-grained structure control [18,
38, 33, 21, 30, 16, 19, 17]. Specifically, T2I-Adapter [18]
and ControlNet [38] modify the text-guided generation re-
sults through multiple structural controls mentioned above.
Freestyle [33] uses semantic masks as layouts to control ob-
jects’ shapes and positions through the cross-attention mod-
ule of the pre-trained text-to-image diffusion model. It uti-
lizes the semantic mask to rectify the attention map calcu-
lated with the image and text tokens, which decides the spa-
tial layout of each text token. Several works directly feed
sketches into the pre-trained text-to-image diffusion model
and utilize sketches to control the generated image struc-
ture [30, 16, 19].

The above methods based on Stable Diffusion often rely
on two conditional inputs and primarily focus on the task
of image generation. However, multiple inputs can impose
a burden on novice users and non-native speakers, and the
quality of generated results tends to decline when the source
image is masked. To address these challenges and achieve a
more generalized and user-friendly approach to fine-grained
image editing, Paint by Example [34] proposes a novel so-
lution that replaces text with example images as conditional
semantic inputs to effectively manipulate the edited image.
Motivated by it, we further extend this idea by replacing text
with sketches. By capturing attributes such as semantic and
structural content, object number, and layout of sketches,
we realize precise control over the image editing region and
simplify the process of image editing, making it more ac-
cessible and intuitive for users.

3. Method

To effectively utilize the sketch to guide the editing of
scene content in images, we propose the Sketch-guided Dif-
fusion Model, SDM (shown in Fig. 2). We adopt a global-
to-local sketch conditioning strategy to map each object’s
attributes from the sketch into the image editing region.
In this strategy, we first encode semantic features of both
the global sketch context and each local object instance,
and then adopt the multi-instance guided cross-attention
module to utilize the encoded semantic features to gener-
ate each instance’s attention map, respectively. Then we



Figure 2. The framework of Sketch-guided Diffusion Model (SDM) for sketch-guided scene-level image editing. The model proposes
a global-to-local sketch conditioning strategy that leverages the multi-instance guided cross-attention module to generate attention maps
with the sketch’s global and local instance semantic features and then uses the instance sketch mask to modify attention maps to realize
synchronized semantics and structure guidance. Additionally, the model incorporates an optimization module for overlapped-boundary
generation through maximizing attention distribution and feature distance in the boundary region, and then utilizes the multi-instance
semantic loss to enhance its understanding of the sketch’s potential semantics.

synchronously incorporate the corresponding sketch mask
into the cross-attention to manipulate the attention map and
modify the spatial layout and structure of each instance.
To achieve distinct textures and precise contours in the
overlapped boundaries of multiple objects, we optimize the
model’s attention mechanism in these regions and maximize
the feature distance between overlapped objects. To remedy
the diffusion model’s deficiencies in potential semantic un-
derstanding of sketches and promote better coherence in the
final output, we propose the multi-instance semantic loss to
minimize each object’s semantic features of the sketch and
image editing region.

The primary processing of the model is formulated as
follows. Given the image x ∈ RH×W×3 with height H
and width W , and the masked region x ⊙ m with m ∈
{0, 1}H×W , the objective of this task is to learn a map-
ping function between x and {x⊙m,xs} to manipulate the
edited region with the sketch and synthesize desired real-
istic image automatically, where m represents complemen-
tary matrix of mask m, and xs represents the input sketch.
We consider Stable Diffusion [23] as the basic framework
and progressively add the Gaussian noise to obtain noisy
latent code zt of image x in the forward process. Then we
train the network ϵθ(zt, x ⊙m, t,ms, ϕs(xs)), apply ϵθ to
predict the noise, and gradually denoise zt to z0, where ms

is the sketch mask and ϕs is the sketch encoder. After de-
coding z0, the final image x0 is generated.

3.1. Global-to-Local Sketch Conditioning

Due to the sparsity and abstraction of sketches, directly
utilizing the global sketch may overlook the fine-grained
features of each object instance. Therefore, we train the
instance segmentation model [7] to segment the multi-
instance sketch S, obtaining a set of sketch instances Si and
corresponding sketch mask mi

s(i = 0, 1, ..., n), where S0

represents the global sketch input and {Si}(i = 1, ..., n)
represents each sketch object instance. Then we encode
the sketch and manipulate the cross-attention module with
a global-to-local strategy, which effectively determines the
instance number, semantics, layout, and structure of the im-
age editing region through the multi-instance guided cross-
attention module and synchronized control of semantics and
structure module.

Multi-Instance Guided Cross-Attention Motivated by
recent advancements in image-to-sketch and sketch-to-
image generation [29, 2] that leverage CLIP [22] to opti-
mize feature mapping between sketch and image, we adopt
the pre-trained CLIP image encoder to extract features of
each sketch instance Si ∈ R224×224×3 and retain only the



class token (denoted as CLIPcls(·)) to represent the sketch
semantic features. In the resulting sketch token sequence,
we have a class token representing global information and
256 patch tokens representing local features. Unlike text
where each token carries specific semantics, the patch to-
kens in a sketch primarily represent abstract local lines
which may increase the model’s difficulty in understand-
ing the sketch and potentially decrease its performance. In-
stead, the class token summarizes the content of the sketch
from a global perspective and provides a better represen-
tation of the semantic information conveyed by the sketch.
Then we adopt an MLP layer to match the conditional input
dimensions and feed the sketch semantic features cisketch
into the diffusion process through cross-attention:

cisketch = MLP (CLIPcls(Si)), i = 0, 1.., n (1)

where the dimension of cisketch is B×1×768, B represents
the batch size.

The sketch features are compressed with the CLIP im-
age encoder and control the semantics of editing results
through the cross-attention module. To fully utilize each
sketch instance on the image, we propose a multi-instance
guided cross-attention mechanism that generates multiple
Keys K0,K1, ...,Kn and Values V0, V1, ..., Vn correspond-
ing to cisketch and obtain the attention map Mi for each
sketch instance:

K = [fK(c0sketch), fK(c1sketch), ..., fK(cnsketch)], (2)

V = [fV (c
0
sketch), fV (c

1
sketch), ..., fV (c

n
sketch)], (3)

Mi =
QKT

i√
d
∈ RC×H×W , (4)

where the dimension of Ki is B × 1 × C (C =
40, 80, 160...), C varies with different channel size. The
image feature zt is converted to Q by Q = fQ(zt), fQ(·),
fK(·) and fV (·) are the learnable linear transformations.

As the length of Ki is 1, the length of attention map Mi

also becomes 1 with Eq. 4. Since directly using the softmax
function makes all the values of the attention map become 1,
we adopt the simplified softmax function for valid attention
embedding to make sure all values of the attention map are
non-negative. Finally, we average the different outputs Oi

to obtain O and feed it into downstream layers to generate
the final image x:

Oi = softmaxsimplified(Mi)Vi = eMiVi (5)

O =

∑n
i=0 Oi

n
(6)

Synchronized Control of Semantics and Structure
Given that the attention map plays a crucial role in deter-
mining the spatial layout of the current token [28, 33], we

modify the weight distribution of the attention map by in-
corporating the mask mi

s of each sketch object instance to
achieve structural control over the current instance. As the
denoising network is designed based on the U-Net archi-
tecture, the size of the attention map varies across differ-
ent attention layers. To address this, we resize the mask to
align with the size of the attention map. Since the chan-
nel of attention map Mi is 1, we modify its distribution
with the 1-channel rearranged mask tensor mi

s. Specifi-
cally, the value of Mi at position (k, j) remains unchanged
when mi

s(k, j) = 1, and it is set to negative infinity when
mi

s(k, j) = 0. We insert this operation to update Mi be-
fore its calculation with Vi in Eq. 5. This ensures the
attention map is guided by the sketch mask by assigning
weights to the regions of interest, effectively incorporating
synchronous structure and semantic control through cross-
attention during the denoising process.

3.2. Optimization Module for Overlapped-boundary Gen-
eration

To tackle the issue of overlapped objects in the im-
age editing region which often results in blurred textures
and ambiguous contours along the shared boundaries, we
present an optimization module for overlapped boundary
generation. The module first selects k pairs of neighbor-
ing object instances with overlapped boundaries according
to the distribution of the sketch mask ms = {mi

s}(i =
1, . . . , n). The overlapped boundary between adjacent ob-
ject instances a and b is denoted as Ba,b. We first en-
hance the attention distribution of the boundary to ensure
the model places greater emphasis on learning its genera-
tion. After obtaining the attention maps Ma and Mb of the
object instance a and b according to the Eq. 4, the attention
value of the overlapped boundary is set to the maximum
value identified within the attention map of the current ob-
ject instance:

Ma(i, j) = max(Ma), Mb(i, j) = max(Mb), if (i, j) ∈ Ba,b

(7)
Furthermore, we propose the boundary loss to maximize

the feature distance between overlapped objects. We utilize
the coordinate of the boundary Ba,b to obtain the rectan-
gular region R occupied by the boundary. The region is
divided into region Ra and region Rb, which belong to the
object instance a and the object instance b respectively. Af-
ter obtaining the output feature Oa and Ob in Eq. 5, the
boundary loss is adopted to maximize the feature distance
within region Ra and Rb:

Lboundary = −1

k

k∑
i=1

d(Oi
a ⊙Ri

a, O
i
b ⊙Ri

b) (8)

where d denotes the Euclidean distance of the computed



Figure 3. The visualization of image xt in the denosing process of
SDM.

features. This module can effectively enhance the vi-
sual difference between object instances in the overlapped
region, and improve their generation quality around the
boundary.

3.3. Enhanced Sketch Semantics Comprehension

In the process of image editing with sketches, the dif-
fusion model’s capability for learning the semantics of the
sketch affects whether the editing results will be consistent
with the sketch. Otherwise, the model will rely on vague
and inaccurate semantic guidance to complete the editing
region and overlay the structural control of the sketch on
it, resulting in unrealistic editing results. Therefore, in or-
der to address existing diffusion models’ insufficient ex-
ploration of sketch’s potential semantics, we propose the
multi-instance semantic loss function. We first decode the
latent code zt to generate the image xt and then utilize the
sketch mask mi

s to segment object instances in the image
editing region. As depicted in Fig. 3, the intermediate im-
age xt during the denoising process retains certain semantic
features. This allows for the measure of semantic similar-
ity between sketch and image at each step of the denois-
ing process. Using a semantic encoder similar to the sketch
encoder (see Sec. 3.1), we encode the semantic representa-
tion ciimage of each instance within the image editing region
where i = 1, ...n. Finally, we optimize the model by min-
imizing the distance between the semantic features ciimage

and cisketch of multiple instances. The semantic loss func-
tion is formulated as follows:

Lsemantic =
1

n

n∑
i

∥ciimage − cisketch∥22 (9)

ciimage = MLP (CLIPcls(xt ⊙mi
s)), i = 0, 1, .., n (10)

In the model training stage, the objective of scene-level
sketch-based image editing is to minimize the combination
of denoising loss, semantic loss, and boundary loss as fol-

lows:

L = Ez,ms,xs,ϵ∼N(0,1),t

[
∥ϵ− ϵθ(zt, x⊙m, t,ms, ϕs(xs)∥22

]
(11)

Ltotal = L+ λ1Lsemantic + λ2Lboundary (12)

where L is the denoising loss, λ1 and λ2 control the relative
weights of semantic loss and boundary loss and are fixed
throughout our experiment.

Algorithm 1 The training process of SDM
Input: Image x, mask m, instance-segmented sketch
xs = {xi

s}(i = 1, ..., n), sketch masks ms = {mi
s}(i =

1, ..., n), learning rate r etc.;
Output: Model parameters θ̂
Initialize model parameters θ using a pre-trained SD
model
repeat
z = E(x), zinpaint = E(x ⊙ m), z0 =
concatenate(z0, zinpaint,m)
t ∼ U(1, ..., T )
ϵ ∼ N(0, I)
zt = αtz0 +

√
1− αtϵt

Calculate the semantic features {cisketch(i = 1, ..., n)}
of multiple object instances in the sketch
for each cross-attention layer in ϵθ do

for each instance in {cisketch} do
Obtain the latent feature output zt from the pre-
ceding layer
Q ← fQ(zt),Ki ← fK(cisketch), Vi ←
fV (c

i
sketch)

Obtain the attention map Mi using Q and Ki

Modify the weight distribution of attention map
Mi with sketch mask mi

s

if instance is overlapped with others then
Update the weights of overlapped boundaries
in the attention map

end if
Obtain the result Oi through Mi and Vi

end for
Obtain the final output O and feed it into the subse-
quent attention layer

end for
Update model parameters using gradient descent θ ←
θ − η∇θLtotal(θ)

until meets the convergence condition of the algorithm

return the parameters θ as the trained parameters θ̂

The specific training process of the SDM model is shown
in Algorithm 1. This model first processes the original im-
age x and the image region without mask x⊙m through the
Autoencoder E to obtain the latent features z and zinpaint.



Figure 4. Visualization of comparison with SOTA sketch-based image editing methods with GAN and diffusion models on SFSD 512×512.
For both inpainting the image with the corresponding sketch (see Rows 1-3) or editing the image region with a new sketch (see Rows 4-6),
SDM demonstrates superior controllability over the editing region and produces higher-quality results compared to the other methods.

By concatenating z, zinpaint, and the mask m, the dimen-
sion of the image is expanded from 4-d to 9-d. Then we
augment the U-Net architecture of the noise prediction net-
work ϵθ by incorporating 5 additional channels into the first
convolutional layer. Specifically, 4 channels are allocated
for zinpaint, and 1 channel is dedicated to m. Subsequently,
Gaussian noise ϵ is gradually added to the latent features z,
with noise ϵt being added at step t to obtain the latent fea-
ture zt. Then, zt is input into the network ϵθ during the
denoising process. Afterward, a global-to-local strategy is
utilized to control the structure and semantics of the image
editing region through a cross-attention mechanism, and the
generation of overlapped boundaries is improved by opti-
mizing the attention map distribution of multiple objects’
overlapping boundaries. Finally, the model parameters are

updated by minimizing the loss function through gradient
descent.

4. Experiment

4.1. Datasets and Evaluation Metrics

Since the available sketch-image datasets for training
diffusion models are limited in size, we use MSCOCO [14]
containing 164K images as the training dataset. We em-
ploy the edge detector [26] to generate sketches. Specif-
ically, we utilize each object’s mask to extract them from
the original image and generate the corresponding sketch
for each extracted object. Then we apply Gaussian Blur-
ring to reduce noise in the generated sketches, making them
more suitable for subsequent use in our model. As for the



testing benchmark, we utilize the free-hand sketch-image
dataset SFSD [39], which is created by leveraging the im-
ages of the MSCOCO dataset and consists of over 12K
scene-level hand-drawn sketch-image pairs. We exclude
images appearing in the SFSD dataset during the train-
ing phase, which ensures that our model is tested on un-
seen data, and we can evaluate the effectiveness and robust-
ness of our model in handling image editing with free-hand
sketches.

To evaluate the performance of our model, we em-
ploy four widely-used evaluation metrics, including FID
(Fréchet Inception Distance) [8], QS (Quality Score) [6],
SSIM (Structural Similarity Metric) and PSNR (Peak
Signal-to-Noise Ratio). FID evaluates the similarity of
deep feature distributions between generated images and
real images. The lower FID score means the similarity be-
tween the generated images and real images is higher, in-
dicating higher quality of image generation. Meanwhile,
QS assesses the realism and quality of individual images
while a higher QS score signifies better generation perfor-
mance. SSIM evaluates the structural similarity between
generated images and real images, with higher scores in-
dicating greater structural similarity. PSNR measures the
degree of image distortion, with higher scores suggesting
higher quality of the generated image.

4.2. Implementation Details

Our method for sketch-guided scene-level image editing
is built upon the text-driven image generation model Sta-
ble Diffusion [23]. To initialize our Sketch-guided Diffu-
sion Model (SDM), we leverage the publicly released v1-4
model of Stable Diffusion, which sets a solid foundation for
our model’s training and contributes to high-quality gener-
ation. We resize the input images to 512× 512 and train 40
epochs with a batch size of 8, taking 4 days on 4 NVIDIA
A100 GPUs. The loss weight λ1 and λ2 in Eq. 12 are set
to 0.1. To generate the mask m that indicates the region
for image editing, we randomly select n bounding boxes of
objects (n = 2 in the experiment) in the image and com-
bine them as the mask input. The number of objects in the
sketch is also set to 2. We train the sketch instance seg-
mentation model proposed in [7] using large-scale gener-
ated sketches derived from the MS COCO dataset [14]. The
model achieves an accuracy of 81.4% in segmenting ob-
ject instances within free-hand scene sketches of the SFSD
dataset [39].

4.3. Comparisons

For GAN-based methods, we choose SketchEdit [37]
and DeepFill-v2 [36] to compare sketch-based image edit-
ing with our method. Notably, SketchEdit eliminates the
need for an additional mask input, allowing us to directly
use the sketch to edit the target region. For diffusion-

based methods, we have selected three baseline methods:
(1) We utilize the pre-trained Stable Diffusion (SD) inpaint-
ing model [23] and employ the text prompt to represent
the sketch, enabling us to inpaint the masked region. (2)
We augment the SD inpainting model [23] with the pre-
trained ControlNet [38] to realize sketch-guided image in-
painting [1], which only inputs the sketch to maintain con-
sistency with our approach. (3) We integrate both sketch
and text prompts as conditioning inputs into the combined
ControlNet and SD inpainting model.

Fig. 4 and Tab. 1 show the qualitative and quantitative
comparison of editing images on the SFSD dataset of these
methods. We can observe that the quality of the edited
images and their fidelity decrease significantly when using
GAN-based editing methods. The SD inpainting method
exhibits higher plausibility according to the metrics. How-
ever, it solely relies on semantic guidance from text input,
which may result in discrepancies with actual expectations
regarding other attributes (e.g. structure, number, layout)
of the generated objects. Given the SD inpainting model
with ControlNet, when only providing sketch guidance, the
model is restricted to utilizing the structural information of
the sketch which often leads to confusing editing results.
In the case of inputting both sketch and text guidance, the
model encounters challenges due to the instance-level fea-
ture misalignment between sketch and text, and the model
is incapable of precisely manipulating attribute details for
each object instance. In contrast, SDM presents a robust ca-
pability to effectively determine attributes of objects within
the editing region and exhibits a significant increase in eval-
uation scores, which enables SDM to generate more accu-
rate scene content that aligns closely with their correspond-
ing sketch depictions.

Table 1. Quantitative comparison of editing images on SFSD [39]
with state-of-the-art (SOTA) GAN-based and diffusion-based
sketch-guided image editing methods.

Method FID (↓) QS (↑) SSIM (↑) PSNR (↑)
DeepFill-v2 [36] 14.05 47.39 0.9065 31

Deep Plastic Surgery [35] 13.73 57.27 0.91 33.72
SketchEdit [37] 12.84 63.68 0.9124 35.71

SD Inpainting [23] 4.85 80.28 0.919 40.66
SD Inpainting w ControlNet (Sketch Input) [23, 38] 12.13 61.28 0.92 41.22

SD Inpainting w ControlNet (Sketch & Text Input) [23, 38] 5.5 75.66 0.9187 40.79
Ours (SDM) 4.64 81.57 0.93 43.99

4.4. Ablation Study

To validate the effectiveness of the major components in
SDM, we progressively incorporate key components from
SDM onto the baseline to investigate their effectiveness:
(1) we construct the baseline based on the Stable Diffu-
sion [23] by replacing text with sketch as the condition and
using the sketch’s class token via the CLIP image encoder to
guide the image editing through the cross-attention module.
Based on the global-to-local strategy, we (2) incorporate the
multi-instance guided cross-attentions (GSC w MCA), and



Figure 5. Visualization of ablation study about components of SDM. We incrementally add each component to the baseline for validation.

then (3) achieve multi-instance synchronized control over
semantics and structure (GSC w SC) via modifying the at-
tention map of each instance. (4) We introduce the opti-
mization module to improve the generation performance of
multiple objects’ overlapped boundaries (OOBG) and then
(5) add multi-instance semantic loss to enhance the model’s
comprehension capability over potential semantics (ESSC).

As shown in Fig. 5 and Tab. 2, the baseline model ini-
tially determines the object semantics but fails to gener-
ate the correct number and structure of objects. Then we
introduce the global-to-local strategy into the model, en-
suring the generated output aligns with the input sketch in
terms of quantity, semantics and structure. We addition-
ally adopt the OOBG module due to the synthesized texture
and contour are blurry at the overlapped boundary between
objects. The ESSC module further improves the model’s
awareness of the texture, semantics, and even structure of
each object and eliminates artifacts, resulting in a more re-
alistic representation. In the more challenging editing sce-
nario, we replace the original image scene content with the
sketch from a new category (Row 2 in Fig. 5). The base-
line model yields confusing editing results that make it dif-
ficult to discern the influence of the sketch conditioning and
the original context. After employing a complete global-to-
local strategy (GSC w MCA and GSC w SC), the sketch
exerts complete control over the editing region but the re-
sult is only coarsely aligned with the sketch. The OOBG
and ESSC module gradually improve the texture distribu-
tion of specific instances and explore more control around
object boundaries, leading to realistic editing results.

Table 2. Quantitative comparison on the configuration of SDM.
By employing all of these techniques, we can achieve the optimal
performance.

GSC w MCA GSC w SC OOBG ESSC FID (↓) QS (↑) SSIM (↑) PSNR (↑)
6.44 78.56 0.9163 40.79

✓ 5.79 81.10 0.9168 40.99
✓ ✓ 4.91 80.82 0.921 41.45
✓ ✓ ✓ 4.83 81.22 0.9273 41.82
✓ ✓ ✓ ✓ 4.64 81.57 0.93 43.99

4.5. Application and Limitation

Our method facilitates precise and flexible control of
multi-instance sketches over scene content within the edit-
ing region, extending the sketch-based image editing task
into new application scenarios. As illustrated in Fig. 6 (a),
SDM provides the capability to modify the number of ob-
jects n in the sketch (e.g. n = 1, 3), or gradually add the ob-
ject number to flexibly edit the image. Furthermore, SDM
enables us to specify the desired scene by replacing multiple
instances within the editing region with sketches from var-
ious categories (see Fig. 6 (b)), or compositing the sketch
input with diverse scene backgrounds to generate new real-
istic composited images (see Fig. 6 (c)). SDM also allows
users to input simple sketches with sparse lines and vague
contours. It effectively captures the essential information
within these sketches and generates the desired editing re-
sults (see Fig. 6 (d)). However, our method still has several
limitations shown in Fig. 6 (e). Specifically, the model ex-
cels at controlling human poses but faces challenges in ma-
nipulating human faces, and struggles to generate the cor-
responding instance with a partial sketch input. Therefore,
future work should enhance the model’s capacity for more
detailed feature mapping between sketch and image, and
comprehend partial sketches for efficient editing.

5. Conclusion

We investigate the complex sketch-guided scene-level
image editing task, which inputs multi-instance sketches to
modify the image scene content, encompassing the num-
ber, structure, semantics, and spatial layout of objects. To
achieve efficient and high-quality editing, we propose the
Sketch-guided Diffusion Model (SDM) as our framework.
SDM builds upon the Stable Diffusion model and incorpo-
rates a global-to-local sketch conditioning scheme to ef-
fectively leverage the overall attributes conveyed by the
sketch and enhance the influence of the sketch over the edit-
ing region. We additionally incorporate the optimization
module for overlapped-boundary generation to retain each



Figure 6. Typical applications and limitations of sketch-guided scene-level image editing. (a) Image editing with various numbers of objects
in the sketch; (b) Multi-object replacement within a fixed scene; (c) Scene content composition through combining the sketch with diverse
scene backgrounds; (d) Image editing with simple hand-drawn sketches; (e) Limitation of the method.

object’s distinct characteristics in the overlapped bound-
ary, and multi-instance semantic loss to further capture the
sketch’s potential semantics. Our method achieves state-
of-the-art performance in sketch-based image editing and
demonstrates promising potential for real-world applica-
tions.
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