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Abstract

Inverse rendering is a challenging problem due to the
inherent ambiguity in recovering 3D geometry, mate-
rials, and lighting from multi-view RGB images. Re-
cent methods represent geometry and materials as neu-
ral networks, recovering them through an analysis-
by-synthesis approach. However, accurately modeling
shadows and inter-reflections remains a significant ob-
stacle. In this paper, we propose a two-stage inverse
rendering pipeline that effectively reconstructs geome-
try, materials, and illumination. First, we decompose
the neural radiance field into diffuse and specular com-
ponents and introduce an occlusion network to jointly
improve surface reconstruction quality. We then use
Monte Carlo-based path tracing to model shadows and
inter-reflections. To enhance efficiency and quality, we
employ separate hash-encoded MLPs for geometry and
material representation. Experiments demonstrate that
our method outperforms previous work on synthetic and
real datasets, accurately recovering geometry, rough-
ness, and high-quality albedo, while supporting realistic
re-rendering and relighting.

Keywords: Inverse Rendering, Neural Radiance De-
composition, Monte Carlo Path Tracing, Hash-Encoded
MLPs.

1. Introduction

Inverse rendering, which involves recovering geometry,
materials, and illumination from images, has been a long-
standing issue in computer vision and graphics. This task
has widespread applications in VR, AR, and visual effects
production. Inverse rendering technology is crucial for gen-
erating high-quality visual content, enhancing the realism of

environmental simulations, and improving the performance
of machine vision systems.

Recent methods[1, 23, 32, 34, 35] represent geometry
and the Spatially Varying Bidirectional Reflectance Distri-
bution Function (SVBRDF) as neural networks, and recover
them through an analysis-by-synthesis approach. Model-
ing shadows and inter-reflections presents a significant chal-
lenge. Previous methods have either neglected occlusion
and indirect light[1, 2, 20, 32] or merely modeled visibil-
ity [34]. The absence of accurate occlusion and indirect
lighting modeling results in shadows and indirect light be-
ing erroneously baked into the materials. MII [35] models
both occlusion and indirect lighting using Spherical Gaus-
sians (SGs), but it struggles to capture high-frequency de-
tails, resulting in blurry re-rendering results.

In this paper, we present a two-stage inverse render-
ing pipeline that effectively reconstructs geometry, material,
and illumination. In the first stage, we employ a Signed
Distance Function(SDF) to represent surface geometry and
learn the object’s geometry and neural radiance field from
multi-view images. In the self-occluded regions of glossy
objects, recovering geometry often results in errors such as
depressions and unevenness. To address this, we decom-
pose the neural radiance into diffuse and specular compo-
nents and introduce an occlusion network to compute oc-
clusion probabilities. In the second stage, we apply Monte
Carlo-based path tracing to simulate shadows and inter-
reflections. An MLP represents direct illumination, and the
learned neural radiance field represents indirect illumina-
tion. We optimize the SVBRDF and direct illumination and
refine geometry with the rendering equation. To stream-
line computational complexity, we employ a hash-encoded
MLP to represent the SDF. Additionally, we utilize a sepa-
rate hash-encoded MLP to capture high-frequency local de-
tails in the SVBRDF.
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We evaluated our method on both synthetic and real
datasets. The experiments demonstrate that our results sur-
pass others in both quantitative and qualitative metrics. Our
method efficiently recovers accurate geometry, roughness,
and high-quality albedo within a shorter timeframe.

2. Background

2.1. Implicit Neural Representation

Implicit neural representations have greatly enhanced the
performance of inverse rendering. IGR [6] can compute
high-fidelity implicit neural surfaces from point cloud data,
and the recovered zero-level set surface is smooth and nat-
ural. NeRF [18] encodes scenes into radiance and density
fields using a multilayer perceptron, enabling realistic syn-
thesis of new viewpoints and reconstructing scenes with dif-
ferentiable volume rendering from a limited set of images.
TensoRF [3] represents the radiance field as tensors, utiliz-
ing tensor decomposition techniques to compactly encode
the scene. 3D-GS [11] further models the scene with 3D
Gaussian splats, enabling real-time radiance field render-
ing. Additionally, surface-based methods such as IDR [30]
and NeuS [27] utilize Signed Distance Functions (SDFs) to
represent geometry, enhancing the quality of viewpoint gen-
eration precisely. NeuS2 [28] utilizes multi-resolution hash
encoding to parameterize neural surface representation, sig-
nificantly improving the training speed of NeuS [27]. How-
ever, these approaches primarily simulate surface emission
and do not adequately address the decomposition of incom-
ing radiance and material properties, thus limiting their ef-
fectiveness in scene editing.

2.2. Inverse Rendering with Implicit Neural Representa-
tion

Recent developments harness the fully differentiable ca-
pabilities of implicit neural representations, increasing the
flexibility of capture settings and advancing the precision
in modeling and optimizing geometry and materials. Ref-
NeRF [25] decomposes a scene into separate geometry and
appearance representations, boosting reconstruction perfor-
mance for smooth objects but failing to accurately separate
material properties. PhySG [32] decomposes scenes under
arbitrary, unknown illumination, and NeRD [1] and Neural-
PIL [2] process images under varying illumination, none
of these methods account for occlusion and indirect light-
ing. NeRFactor [34] considers occlusion and direct lighting
but lacks modeling for indirect lighting. MII [35] further
models both occlusion and indirect light, encodes this data
within MLPs, and uses Spherical Gaussians (SGs) [26] to
approximate the rendering equation. However, it falls short
of capturing high-frequency scene details. NeILF++ [31]
represents the lighting of a static scene using a neural in-
cident light field and an output neural radiance field, effec-

tively disentangling geometry, material, and lighting. How-
ever, its training time remains lengthy. Some methods ap-
ply Monte Carlo sampling to model occlusion and indirect
lighting. NeRV [23] limits its consideration to a single indi-
rect bounce and depends on known environmental lighting.
TensoIR [9] delivers superior re-rendering quality by em-
ploying light-intensity importance sampling for simulating
incident light, albeit at the expense of compromising other
components’ reconstruction fidelity. TensoSDF [14], inte-
grating a roughness-aware radiance and reflectance field,
successfully reconstructs both diffuse and specular scenes,
though its performance degrades for intermediate cases.

3. Method

3.1. Overview

Given a collection of posed images of an object under
static illumination, our goal is to decompose the geometry,
SVBRDF, and illumination. We tackle the inverse rendering
problem through an analysis-by-synthesis approach, taking
into account indirect illumination and shadows. Figure 1
shows the forward rendering process of our method.

The geometry is represented by a zero-level set of a
Signed Distance Function(SDF) as NeuS[27], parameter-
ized by a hash-encoded MLP that maps a 3D location x to
an SDF value s and a geometric feature vector f (Sec. 3.3).
We decompose the neural radiance Lo(x, ωo) at a 3D point
x along the direct ωo into diffuse radiance Ld(x) and spec-
ular radiance Ls(x, ωo) and utilize an occlusion component
O to predict the occlusion probability of specular radiance
(Sec. 3.4). The neural radiance results are compared with
the captured images to optimize the geometry.

The SVBRDF is modeled by a hash-encoded MLP that
predicts albedo a and roughness r (Sec. 3.5). To render a
pixel, we apply sphere tracing on the hash-encoded SDF to
locate the intersection point x where the camera ray meets
the geometric surface. We sample incoming light rays us-
ing importance sampling and identify the secondary inter-
section x′ through sphere tracing. We then compute the
pixel color c using Monte Carlo estimation (Sec. 3.6). The
rendering results are compared with the observed images to
optimize SVBRDF and direct illumination.

3.2. Preliminaries

Multiresolution Hash Encoding. To address the slow
training and evaluation speeds associated with MLPs,
Instant-NGP[19] introduces a multiresolution hash encod-
ing that reduces neural network complexity without com-
promising quality. Specifically, it employs a hierarchical
set of hash tables that store trainable feature vectors, each
layer corresponding to a different resolution. For a 3D
point, it computes the multiresolution hash encoding by lin-
early interpolating and concatenating the learnable feature



Figure 1. Forward rendering. For each pixel, we first compute the intersection x between the camera ray and the surface using sphere
tracing and generate incoming light directions (x, ωi) through importance sampling. We then evaluate the type V (x, ωi) of the incoming
light and determine the second intersection x′ between the incoming ray and the surface. The indirect illumination Lo(x

′, ωi) is derived
from the neural radiance field, combining diffuse radiance Ld, specular radiance Ls, and occlusion probability O as defined in Equation
4. We obtain the direct illumination E(ωi) and the SVBRDF from the direct illumination and material network. Finally, we compute the
incident radiance Li(x, ωi) using Equation 11 and calculate the pixel color via Monte Carlo estimation.

vectors from neighboring voxels across layers. This ap-
proach significantly enhances training speed and captures
high-frequency local details through a compact neural net-
work augmented with multiresolution hash encoding.

The Rendering Equation. For a surface point x, we
compute its color c using the rendering equation[10]:

c(x, ωo) =

∫
Ω

Li(x, ωi)fr(x, ωi, ωo)(ωi,n) dωi, (1)

where Li(x, ωi) denotes the incoming radiance at point x
from direction ωi and fr is the BRDF function. The output
color c(x, ωo) represents the integral of reflected light over
the hemisphere around the surface normal n in direction ωo.

3.3. Hash-encoded SDF

Modeling geometric surfaces using neural network en-
coded Signed Distance Functions(SDF)[27, 30] has become
a prevalent approach. The task requires a complex net-
work architecture with significant depth and breadth to cap-
ture subtle local geometric variations. However, in our
work, employing NeuS[27] for geometry reconstruction and
sphere tracing[7, 15] for localizing surface points necessi-
tates frequent access to the SDF network, exacerbating the
computational complexity and training duration.

Instant-NGP[19] can reduce the computational complex-
ity of its neural network by integrating a multiresolution
hash table of trainable feature vectors, which enhances effi-
ciency and maintains the capacity to capture high-frequency
local details. Inspired by this, we parameterize a shal-
low SDF multilayer perceptron (MLP) with multiresolution
hash encoding to accelerate the training process.

SDF Network. Each 3D coordinate x is encoded via
multiresolution hash encoding hg(x), facilitated by a train-
able hash table. Subsequently, the SDF network accepts x
and hg(x) as inputs and outputs the SDF value s ∈ R and
the geometric feature vector f ∈ R15:

(s, f) = G(hg(x),x). (2)

The normal at point x is computed as

n =
∂s

∂x
, (3)

where ∂s
∂x denotes the gradient of the SDF value with re-

spect to x. We approximate the gradient using the finite
difference method, similar to [36].

3.4. Geometry Reconstruction

We follow the NeuS[27] strategy to represent object
surfaces using Signed Distance Functions (SDF), but di-



verge by employing a hash-encoded SDF instead of an
MLP-encoded version. In rendering glossy objects, self-
occlusion creates pronounced brightness contrast across
shadow edges in 2D images. During surface reconstruction,
geometric inaccuracies such as depressions and unevenness
often occur within occlusion boundary regions. To address
this, we decompose the neural radiance into diffuse and
specular components and introduce an occlusion network
to predict occlusion probabilities.

Diffuse Network. Given a 3D coordinate x, the diffuse
radiance remains constant regardless of the viewing direc-
tion, ensuring uniqueness at each location. We map 3D
points x, 3D normals n, and feature vectors f to determine
the diffuse radiance Ld. The diffuse radiance is computed
as Ld(x) = D(x,n, f).

Specular Network. The viewing direction strongly in-
fluences specular radiance. The specular network predicts
the specular radiance for a 3D coordinate x and incoming
viewing direction ωo, assuming no occlusion is present. The
predicted specular radiance maintains improved continuity
across different viewing directions and typically does not
exhibit discontinuities due to occlusion. Incoming view di-
rections ωo is encoded via spherical harmonics encoding
y(ωo). Subsequently, The model takes 3D points x, y(ωo),
3D normals n and feature vectors f as inputs to output spec-
ular radiance Ls. The specular radiance is computed as
Ls(x, ωo) = S(x, y(ωo),n, f).

Occlusion Network. We find that geometric reconstruc-
tion errors in glossy objects due to occlusion are primar-
ily caused by obstructions of specular radiance. We de-
fine a neural network to predict the occlusion probability
of specular radiance, mapping 3D points x and reflective
directions ωr to occlusion probabilities O. The occlusion
probabilities is computed as O(x, ωr), where ωr is defined
by ωr = −2(ωo · n)n + ωo, with ωo representing the in-
coming view direction and n being 3D normals.

We observe that unconstrained occlusion probabilities,
learned solely from rendering losses, lead to inconsistencies
between predicted occlusion probabilities and reconstructed
geometry. This results in incorrect decomposition of diffuse
and specular radiance and subsequent geometric prediction
errors, as illustrated in Figure 2. To address this, we follow
the occlusion loss proposed in [16] to regulate the predicted
occlusion probability.

Specifically, given a ray emitted from the sample point
in the reflective direction, we determine the occlusion prob-
ability Omarch by ray matching within the hash-encoded
SDF. The occlusion loss is then computed as ℓocc =
||Omarch−O||1. Since reflection occurs on object surfaces,
we compute occlusion loss using sample points from rays
emitted from the camera center where the SDF values are
below the threshold th = 0.001.

To synthesize appearances, we render images from the

Figure 2. Effects of occlusion constraint. Without occlusion con-
straint, the predicted occlusion probabilities are inconsistent with
the reconstructed geometry, leading to random decomposition of
diffuse and specular radiance and subsequent errors in geometric
reconstruction. With occlusion constraint, the reconstruction of all
components is correct.

hash-encoded SDF using volume rendering[18]. For a
camera ray o + tωo emitted from the camera center o
along the direction ωo, we sample n points along the ray.
The color rendered for the camera ray is computed as∑n

i wiLo(xi, ωo), where wi represents the weight for the
i-th point xi, determined based on the SDF values, fol-
lowing the opaque density technique described in [27], and
Lo(xi, ωo) is the color of this point xi, computed as fol-
lows:

Lo(xi, ωo) = Ld(xi) +Ls(xi, ωo) · (1−O(xi, ωr)). (4)

3.5. BRDF

We adopt the Cook-Torrance BRDF[4], parameterizing
the BRDF of a surface point x with its diffuse albedo
a(x) ∈ [0, 1]3, roughness r(x) ∈ [0, 1], and incorporat-
ing a basic reflection ratio F0 = 0.04 suitable for common
dielectric surfaces.

Employing a material autoencoder to predict roughness
and albedo at a surface point[5, 35] represents a viable
option. However, this method struggles to capture high-
frequency, local details due to excessive smoothing from its
sparse latent space and insufficient network capacity.

Our solution represents the spatially varying bidirec-
tional reflectance distribution function (SVBRDF) using a
small multilayer perceptron (MLP) augmented by a mul-
tiresolution hash table of trainable feature vectors. For each
3D position x, we map it to its multiresolution hash encod-
ing hm(x). Our material MLP then takes the 3D position
x along with its hash encoding hm(x) as input and outputs
the diffuse albedo a and roughness r:

(a, r) = M(hm(x),x). (5)

Due to the insufficient supervision of some surface
points, directly applying this model leads to noisy predic-
tions. To solve it, we introduce a prior smoothness based



on the assumption that spatially adjacent points have simi-
lar albedo and roughness. The loss function reflecting this
smoothness prior is given by:

ℓa = ||a(x)− a(x+ ϵ)||1 (6)

for albedo, and

ℓr = ||r(x)− r(x+ ϵ)||1. (7)

for roughness, where ϵ denotes a random variable taken
from a normal distribution characterized by a mean of zero
and a variance of 0.01.

3.6. Rendering

We decompose the BRDF function fr into a diffuse term
fd and a specular term fs, represented by fr = fd+fs. The
diffuse term is computed as fd = a

π , and the specular term
is computed as

fs(ωi, ωo) =
D(n,h; r)F (ωo,h)G(n, ωo, ωi; r)

4(n · ωo)(n · ωi)
, (8)

where h is half-way vector, ωo is the outgoing viewing di-
rection, D is the normal distribution function, G is the ge-
ometry function and F is the Fresnel term.

We use Monte Carlo sampling to calculate diffuse and
specular colors. To enhance the efficiency of Monte Carlo
estimation, we adopt importance sampling techniques, in-
cluding cosine sampling and GGX importance sampling[8].

Importance Sampling. Given a surface point, we use
cosine sampling with Nd rays to compute diffuse color:

cdiffuse =
1

Nd

Nd∑
i

aLi(x, ωi). (9)

We observed that using only GGX-sampled rays to cal-
culate specular color introduces erroneous noise in the
albedo. Given a surface point, we sample Nd rays using
cosine sampling and Ns rays using GGX importance sam-
pling. For the specular color, we integrate these methods
using multiple importance sampling[22, 24], summing over
a total of Nd +Ns rays. The specular color is computed as

cspecular =
1

Ns +Nd

Ns+Nd∑
i

Li(x, ωi)fs(ωi, ωo)(n · ωi)

P (ωi)
,

(10)
where i is the i-th sample ray, ωi is the direction of the ray,
and P (ωi) is the combined sampling probability for i-th ray.

The incoming radiance includes direct illumination from
light sources and indirect illumination, reflecting multiple
times off object surfaces before reaching a shading point.
We use sphere tracing[7, 15] to identify incoming radiance
types and determine the second intersection x′ that reflects

indirect illumination. For a surface point x, the incoming
radiance is computed by

Li(x, ωi) = (1− V (x, ωi))E(ωi) + V (x, ωi)Lo(x
′, ωi),

(11)
where E(ωi) is the direct radiance along direction ωi,
Lo(x

′, ωi) represents the indirect radiance along the direc-
tion ωi, and V (x, ωi) indicates the type of illumination in
direction ωi.

Traditional lighting representation methods, such as
Spherical Harmonics (SH) and Spherical Gaussians (SG),
typically rely on predefined basis functions and fixed model
structures, which limit their adaptability to different scenes.
In contrast, Multi-Layer Perceptrons (MLPs) leverage data-
driven learning to adaptively optimize their structure and
parameters, effectively capturing the diversity and complex-
ity of lighting. Therefore, we use MLPs to model direct
illumination. For indirect illumination, theoretically, we
should recursively compute the outgoing radiance at posi-
tion x′ along direction ωi using path tracing. However, due
to the computational complexity, we cache the indirect illu-
mination using the neural radiance derived from geometry
reconstruction, similar to [35], as described in Equation 4.

We find that directly using random variables in im-
portance sampling can lead to errors in BRDF calcula-
tions. To solve this problem, we employ Fibonacci sphere
sampling[17] on the hemisphere to obtain all samples. Ad-
ditionally, for each surface point, we introduce a random
offset to the azimuthal angle during the sampling process,
enhancing the relighting quality.

3.7. Training

We employ a two-stage training process to optimize ge-
ometry, SVBRDF, and direct illumination. In the first stage,
we optimize the hash-encoded SDF G, diffuse radiance D,
specular radiance S and occlusion probability O. The loss
in the first stage is:

ℓgeo = ℓcolor + λregℓreg + λmaskℓmask + λoccℓocc, (12)

where ℓcolor is a color loss, ℓreg is an Eikonal term and
ℓmask is a mask loss, each similar to that used in [27]. In
the second stage, we optimize albedo a, roughness r and
direct illumination E while fine-tuning the geometry. The
loss in the second stage is:

ℓrender = ℓrecon + ℓgeo + λaℓa + λrℓr, (13)

where ℓrecon is the reconstruction loss between the render-
ings and the captured images. In our experiments, we adjust
the weights as follows: λreg from 0.4 to 0.1 and λmask from
1.0 to 0.1 over 300 epochs, λocc from 0.1 to 0.005 over 200
epochs. We set the constants λa and λr at 0.01 and 0.04
respectively.



Figure 3. Comparisons with previous work. We show the predicted normal, aligned albedo, roughness, and the environment map of
MII [35], TensoIR [9], TensoSDF [14], and our method on two scenes. Additionally, we compare renderings from a novel view under the
original lighting and renderings with both novel views and novel lighting.

We configure the experiments with 128 rays for both Nd

and Ns. The MLP architectures for SDF, material, and oc-
clusion each include 2 layers with 64 hidden units. The
direct illumination MLP contains 4 layers with 256 hidden
units. The diffuse and specular MLP contains 3 layers with
64 hidden units. We apply hash encoding with a multires-
olution hash grid, featuring 16 levels of resolution ranging
from 16 to 2048, to 3D locations and use spherical harmon-
ics encoding of degree 5 for 3D directions. Our model is im-
plemented in PyTorch[21] and optimized with Adam[12] at
a learning rate of 5e−4. The first stage runs for 1000 epochs
and the second for 200 epochs on a single V100 GPU, each
epoch processing 1024 pixels, taking about 2 and 1 hours
respectively. To ensure stability, the geometry is fixed for
the first 50 epochs of the second stage.

4. Experiments

4.1. Synthetic Data

We evaluate our method on the synthetic scenes in [35].
Each scene contains 100 training images rendered under the
natural environment map with corresponding foreground
masks, and 200 test images with albedo and roughness maps
to evaluate the inverse rendering ability. For relighting per-
formance, each scene contains additional 200 images ren-
dered under two different environment maps respectively.
The image resolution is set to 800× 800.

4.2. Baseline Comparisons

We take MII[35], TensoIR[9] and TensoSDF[14] as
baselines for quantitative comparison on the synthetic
datasets. Both methods decompose scenes into ge-



Method
Normal Roughness Light Albedo Aligned Albedo View Synthsis Relighting Runtime

MAE◦ ↓ MSE ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ hrs ↓

MII[35] 3.52 0.0408 0.0149 26.3102 0.9362 0.0599 28.1918 0.9389 0.0605 31.7689 0.9547 0.0667 32.0602 0.9561 0.0664 12
TensoIR*[9] 4.19 0.0661 0.0899 23.9417 0.9369 0.0680 28.5685 0.9421 0.0555 35.8839 0.9777 0.0369 26.3639 0.9434 0.0660 4

TensoSDF*[14] 3.64 0.2384 - 19.8022 0.9035 0.0987 23.4351 0.9236 0.0894 32.7417 0.9661 0.0522 20.2758 0.9266 0.0733 15

Ours 2.83 0.0200 0.0117 27.9586 0.9566 0.0421 30.4865 0.9570 0.0419 34.0569 0.9760 0.0346 33.3362 0.9655 0.0484 3
w/o occ. & ind. illum. - 0.0434 0.0198 24.3919 0.9435 0.0541 27.2887 0.9454 0.0517 32.7657 0.9727 0.0382 31.3157 0.9628 0.0512 -

w/o ind. illum. - 0.0172 0.0178 26.6950 0.9512 0.0550 28.9566 0.9525 0.0516 33.4462 0.9748 0.0360 32.3108 0.9643 0.0512 -

Table 1. Quantitative evaluations. We report the mean performance across test images from all four synthetic scenes. We modified
TensoIR[9] and TensoSDF[14] to utilize albedo instead of aligned albedo during relighting, consistent with MII[35], to ensure identical
experimental conditions. The findings indicate that our approach outperforms others in normal, albedo estimation, light estimation, and
relighting. Some metrics in view synthesis perform less effectively compared to TensoIR[9], and the roughness estimation of our full model
is slightly inferior to the baseline models.

Figure 4. Ablations on geometry reconstruction. Please refer to Section 4.3 for detailed descriptions.

ometry, materials, and illumination. We adopt Peak
Signal-to-Noise Ratio(PSNR), Structural Similarity Index
Measure(SSIM)[29], and Learned Perceptual Image Patch
Similarity(LPIPS)[33] to evaluate four key aspects: novel
view synthesis, albedo, aligned albedo, and relighting per-
formance. Additionally, we adopt the Mean Squared Er-
ror(MSE) to evaluate roughness and illumination.

MII[35] trains geometry, SVBRDF, and envi-
ronmental lighting in three stages, using Spherical
Gaussians(SGs)[26] to represent direct and indirect light.
In the second stage, it samples visibility and indirect light
at the surface point from the radiance field pre-trained
in the first stage, catching each into a separate neural
network. Table 1 and Figure 3 demonstrate that our method
is quantitatively and qualitatively superior to MII. One
limitation of MII is its use of Spherical Gaussians (SGs) to
represent the visibility and indirect illumination of surface
points, which are ineffective at capturing high-frequency
variations. Additionally, MII caches visibility and indirect
illumination for only a subset of surface points in the
radiance field. This strategy fails to account for the
significant differences in visibility and indirect illumination
between adjacent surface points. As a result, indirect light
is incorrectly baked into the albedo, and occluded areas
exhibit exaggerated roughness.

TensoIR[9] jointly recovers geometry, SVBRDF, envi-
ronmental lighting, and the radiance field, modeling both
shadows and indirect illumination. Table 1 shows that our

results are superior to TensoIR’s except for view synthesis.
A potential explanation is that TensoIR employs lighting-
intensity importance sampling to simulate incoming light
rays, simplifying the interaction between light and objects
in the scene. This reduces the problem’s ambiguity, achiev-
ing a local optimum for view synthesis, but compromises
the reconstruction quality of other components. Figure 3
illustrates that TensoIR’s albedo estimation introduces erro-
neous brightness, and the lighting estimation significantly
deviates from the ground truth. Moreover, the roughness
is inaccurately recovered, with some regions predicted in
stack contrast to the ground truth.

TensoSDF [14] integrates a roughness-aware radiance
and reflectance field with a tensor-based SDF representa-
tion, enabling the reconstruction of scenes with arbitrary
smoothness. As shown in Table 1 and Figure 3, our method
surpasses TensoSDF both quantitatively and qualitatively.
We identify the core strength of TensoSDF in its roughness-
aware fusion of radiance and reflectance fields. However,
for materials with moderate roughness, the surface charac-
teristics often exhibit a blend of smooth and rough prop-
erties, introducing complexity that challenges the model’s
ability to capture fine details accurately. Figure 3 fur-
ther highlights that TensoSDF produces significant errors in
albedo prediction, deviating substantially from the ground
truth. While its predicted roughness is relatively high, it is
more reasonable compared to TensoIR. However, the inac-
curate albedo reconstruction leads to excessive brightness



Figure 5. Ablations on BRDF representation. Please refer to
Section 4.3 for detailed descriptions.

Figure 6. Ablations on light sampling. Please refer to Section 4.3
for detailed descriptions.

in the relighting results.

4.3. Ablation Studies

Ablations on geometry reconstruction. We conduct
ablation studies excluding radiance decomposition and oc-
clusion loss and compare the results in Figure 4. Without
radiance decomposition, the recovered surface in occluded
areas exhibits inaccuracies, including depressions and un-
evenness. Without occlusion loss, the reconstructed geom-
etry introduces significant noise due to erroneous estimates
of occlusion probabilities. In contrast, our method recov-
ers accurate geometric shapes, precisely reconstructing sur-
faces in occluded regions.

Ablations on BRDF representation. We ablate the
BRDF model using an autoencoder and compare our
method in Figure 5. Representing albedo with a hash-
encoded MLP enables the network to capture high-
frequency and accurate details. In contrast, using an autoen-
coder for albedo representation leads the network to predict
a smoother albedo, resulting in renderings with blurred lo-
cal details and slightly inferior quality.

Ablations on light sampling. We conduct an ablation
study on the effectiveness of the light sampling for albedo
reconstruction in Figure 6. ”w/o MIS” indicates that multi-
ple importance sampling is not used. When using uniform
sampling, the reconstructed albedo appears darker and devi-
ates significantly from the ground truth. Without MIS, more
noise is introduced at the texture boundaries of the albedo,
whereas our method achieves better albedo reconstruction
results.

Ablations on indirect illumination. We ablate the ef-

Figure 7. Ablations on indirect illumination. Please refer to Sec-
tion 4.3 for detailed descriptions.

Figure 8. Results on real captures. Our method reasonably esti-
mates the geometry and material of real-world objects.

fects of indirect light and visibility in Figure 7 and Table 1.
Without modeling visibility, shadows are incorrectly baked
into the predicted albedo, and the roughness in occluded ar-
eas is significantly exaggerated. Without modeling indirect
light, the effects of indirect light are baked into the albedo,
leading to erroneous brightness. Table 1 shows that the ”w/o
ind.” scenario is slightly superior in the roughness metric,
which we attribute to noise from sampled incoming light
rays.

4.4. Results on Real Captures.

We evaluated our method on three real-world datasets
from Stanford-ORB[13], each containing 60 training and
10 test images. The images were captured in indoor en-
vironments or outdoor scenes with occlusions, resulting in
non-ideal ambient lighting conditions. In Figure 8, we show
each scene’s re-rendering, geometry, and material results.
Our method successfully predicts plausible geometry and
material properties.

5. Conclusion

Our paper presents a two-stage inverse rendering
pipeline that effectively reconstructs geometry, material,
and illumination. Our method separates neural radiance
into diffuse, specular, and occlusion components, improv-
ing surface reconstruction quality. We use Monte Carlo-
based path tracing to model shadows and inter-reflections.
To enhance efficiency and quality, we employ two hash-



encoded MLPs to represent geometry and material, respec-
tively. Experimental results demonstrate that our approach
accurately recovers geometry, roughness, and high-quality
albedo, while supporting realistic re-rendering and relight-
ing.

Our method has the following limitations. First, when
using sphere tracing to locate surface points, the surface ge-
ometry cannot be jointly optimized with material and illu-
mination. Second, to reduce ambiguity in the inverse ren-
dering problem, we assume F0 = 0.04 in the Fresnel term,
which is suitable for common dielectric surfaces. We aim
to address these issues in future work.
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