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Figure 1: Our 3DFaceController results on two distinct examples. We use frequently-used GAN inversion to invert the given
images and recover global and local 3D shapes. 3DFaceController can achieve face generation under region-controllable
ability.

Abstract

Advancements in neural radiance fields (NeRFs)
have enhanced 3D face synthesis quality. While some
methods use semantic maps to guide synthesis, region-
controllable synthesis remains challenging. We pro-
pose 3DFaceController, a framework for decomposi-
tional and recompositional generative radiance fields en-
abling region-controllable face synthesis. 3DFaceCon-
troller decomposes the global face field into local fields
via signed distance functions (SDF), allowing indepen-
dent rendering of local components and explicit genera-
tion of physically valid 3D structures. A style-based gen-
erator with a Spatial-Semantic-Recomposition (SSR)
module then synthesizes high-resolution images by com-
bining global and local features without additional opti-
mization. Experiments show 3DFaceController achieves
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state-of-the-art performance in photorealism and disen-
tanglement.

Keywords: Facial Region Control Face Synthesis Neu-
ral Radiance Field Decomposition Recomposition.

1. Introduction

Nowadays, generation of facial images in 2D space has
achieved great success. With the generation quality of pre-
trained StyleGAN series [9, 10, 8] and BigGAN [2], se-
mantic manipulating methods [13, 6, 14, 22, 19, 18, 17]
can tackle many attributes, such as expression, age and hair.
While 3D pose controlling is still hard to tackle since 2D
methods lack 3D understanding, which makes the synthe-
sized image lose 3D consistency.

Recently, neural radiance fields (NeRF) have made new
advances in multi-view image synthesis. [4, 5, 23, 12, 20]
synthesize 3D-aware images without multi-view supervi-
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Figure 2: Framework of our proposed 3DFaceController. (a) Training phase: the decompositional renderer decomposes
the global face into local components (e.g., the hair and hollow out face) and their corresponding features are fed into
recompositional generator to synthesize high-resolution image. (b) Inference phase: we can conduct region-wise editing by
recomposing features from different individuals.

sion but have face editability ignored. Existing NeRF-
based generation methods explore editability in implicit
fields which often learn semantic map field along with con-
ventional density field and color field. FENeRF [16] en-
ables face editing via manipulating semantic map using
optimization-based inversion. MaTe3D [21] achieves mask-
guided and text-based portrait generation with diffusion
prior. However, existing methods still struggle with region-
controllable synthesis, leading to incorrect results.

To address this challenge, we propose 3DFaceCon-
troller, enabling region-controllable face synthesis by de-
composing the neural radiance field into semantic parts
and recomposing them. We learn a global face represen-
tation and independent local representations (e.g., nose,
eyes, mouth) using signed distance functions (SDF). By
incorporating SDF consistency, density consistency (from
MaTe3D [21]), and color consistency losses, we ensure
physically plausible 3D surfaces and 3D-consistent thumb-
nails. For high-resolution synthesis, a multi-style-based 2D
upsampler with a Spatial-Semantic-Recomposition (SSR)
module is developed to recompose global and local features
at different layers, enabling diverse and precise face ma-
nipulations. During inference, region-controllable synthesis
is achieved by swapping specific decompositional features
(see Fig. 1). The framework of our proposed 3DFaceCon-

troller is shown in Fig. 2.
The main contributions of 3DFaceController are summa-

rized as follows:

• We develop a 3DFaceController, a compositional gen-
erative framework enabling region-controllable syn-
thesis, producing photorealistic images and accurate
radiance fields.

• We propose a SSR Module to recompose local features
into the global network, supporting common editing
and synthesis methods.

2. Methodology

2.1. Decompositional Volume Renderer

With the 3D point coordinates x = (x, y, z), viewing di-
rection v = (θ, ϕ) and conditional latent code w, volume
renderer produces feature vector f(x,v), view-dependent
color value c(x,v) and a series of SDF values d =
{dg, dl1, dl2, ..., dln}. The SDF values are not just about
whole face dg(x), but about corresponding local facial com-
ponents (ie., nose, eye, mouth){dl1(x), dl2(x), ..., dln(x)}.
n represents the number of semantic part, see Fig. 2. Our
volume renderer is a multi-head network and represents
each facial component individually. The formulation of the
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Figure 3: Diagram of our Spatial-Semantic-Recomposition
(SSR). SSR generates spatially varying parameters from se-
mantic regions and separates the local components for syn-
thesis, enabling 3DFaceController to produce highly decou-
pled photorealistic images.

volume renderer is:

(x,v,w) 7→ (d, f , c) 7→ (Ithumb
g , Ithumb

li ). (1)

Once the decompositional volume renderer is trained,
thumbnails of the global face Ithumb

g , local facial compo-
nents Ithumb

li can be rendered via volume rendering. Specif-
ically, with ray r(t) = o + tv emanated from camera po-
sition o in direction d, we query N sample points along
each ray and yield density values of global face σg and
local components {σl1, σl2, ..., σln} (converted by signed
distance values), color c(x,v) and feature vector f(x,v).
Then we obtain the the pixels C(r) and feature maps F (r)
of global face and local components via volume rendering.

2.2. Recompositional Image Generator

Similar to mainstream upsampler-based baselines [3, 20,
12], we adopt a style-based generator to lift the outputs of
volume renderer to high-resolution images Ig . Instead of
the feature map of global face used in traditional lift mod-
ule, we have extra branches for processing the feature maps
of each facial component. This allows us to recompose the
global feature and local features as flexible as possible. Fig.
2 shows the details of our recompositional generator. The
generator has a global branch and several local branches.
The global branch (blue blocks in Fig. 2) is designed to
learn the main representation of the whole identity and to
project the feature to image space via ToRGB layer. The
local branch (coral blocks in Fig. 2) receives a series of lo-
cal representations individually. Also, these representations
should be disentangling from each other while synthesizing
region-controllable results. The entangling representations
would loss editability and make the former decomposition
meaningless.

To effectively integrate the information from the global
and local branches, we design a feature recomposition mod-
ule Spatial-Semantic-Recomposition (SSR) to recompose
the local and global features at each backbone layer, as

shown in Fig. 3. The SSR captures the spatial and se-
mantic constraints and makes the synthesized images more
disentangling. The SSR block has two inputs: a global rep-
resentation produced by the previous global branch and a
concatenation of decompositional representations of local
branches. The semantic relationships within the local fea-
tures are learned by spatially-adaptive parameters. Hence
the semantic relationships lead to controllable and disen-
tangled face editing.

2.3. Optimization

2.3.1 Decompositional Renderer Training

For the global face and its associated local facial com-
ponents, we leverage the classic non-saturating adversar-
ial loss [11] with R1 regularization Ladv , along with three
additional regularization losses [12]: pose alignment loss
Lview, Eikonal loss Leik, and minimal surface loss Lsurf .
These losses are utilized for both the global face and the
local components. Furthermore, in addition to the SDF-
consistent loss Lsdf and density-consistent loss Lsigma pro-
posed in [21], we introduce an additional color-consistent
loss to establish connections among multiple geometrical
structures at the image level:

Limg = ||Ithumb
g ,

n∑
i=1

Ithumb
li ||2. (2)

In summary, the loss function of our decompositional ren-
derer is:

Ldr = λadvLadv + λviewLview + λeikLeik+

λsurfLsurf + λimgLimg+

λsdfLsdf + λsigmaLsigma,

(3)

where, λadv = 1 , λview = 15, λeik = 0.1 , λsurf = 0.05,
λimg = 1 , λsdf = 5, λsigma = 10.

2.3.2 Recompositional Generator Training

Similar to mainstream upsampler-based models, we train
the recompositional generator via non-saturating GAN loss
Ladv [11] and path regularization Lpath [12]:

Lrg = λadvLadv + λpathLpath, (4)

where, λadv = 1 and λpath = 2.

3. Experimental Results

3.1. Qualitative Analysis

In this section, we provide a qualitative analysis of our
method’s performance in terms of generator capabilities and
disentangled editing.
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Figure 4: Qualitative comparison among upsampler-based baselines including MVCGAN [20], EG3D [3], StyleSDF [12],
and our approach, conducted at 5122 resolution on FFHQ dataset. Our method excels in learning precise geometry while
maintaining comparable image quality, exhibiting minimal drawbacks such as staircasing artifacts (MVCGAN), oversmooth-
ing tendencies (StyleSDF), and background density inconsistencies (EG3D). The symbol ⊠ denotes the model’s limitation
in generating local geometries.

Generator Performance Fig. 4 provides a qualitative
comparison of our method with upsampler-based 3D-aware
GANs. The 3DFaceController exhibits accurate geometry
learning and achieves comparable image quality, showcas-
ing its robustness across diverse branches and optimization
objectives. Furthermore, the figure illustrates the model’s
ability to generate physically plausible decompositional 3D
surfaces.

Disentangled Editing In face editing tasks, our objec-
tive is to edit a specific local region in a manner that is
disentangled from others. Specifically, we aim to modify
one region while preserving the rest unchanged. As de-
picted in Fig. 5, we present two identities labeled in red
and blue. These faces have been broken down into six com-
ponents: one global feature and 5 local features. During
the recomposition process, we replace the red features with
the blue ones, resulting in disentangled and realistic region-
wise editing. Notably, in instances where hair features are

replaced, our method effectively captures styles from both
identities, blending textures and shapes appropriately.

3.2. Quantitative Analysis

In this section, we summarize the insights gained from
both the metrics evaluation and user study, shedding light
on the quality and visual appeal of our generated images.

Metrics Evaluation We utilize two quantitative metrics
to comprehensively evaluate the synthesis quality of the
generated images: the Frechet Inception Distance (FID)
[7] and Kernel Inception Distance (KID) [1]. These met-
rics offer insights into the fidelity and diversity of the pro-
duced images. A lower FID and KID value signifies higher
image quality, indicating better alignment with real image
distributions. As depicted in Table 1, our model, 3DFace-
Controller, demonstrates competitive and promising perfor-
mance in terms of both FID and KID, emphasizing its ef-
fectiveness in generating high-quality synthetic images.
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Figure 5: The editing results of 3DFaceController. Our approach supports region-wise editing on single class or multi classes.
The figure shows editing results on hair and background (the 3rd volume), eyes (the 4th volume), mouth (the 5th volume),
the union of hair, background and eyes (the 6th volume) and the union of eyes, nose and mouth (the 7th volume).

Method FID ↓ KID ↓ User Study ↑
FENeRF [16] 39.5 5.889 5.7
IDE-3D [15] 13.4 0.130 19.7

3DFaceController 15.6 0.225 74.6

Table 1: Quantitative comparisons with the state-of-the-art methods. Note that our 3DFaceController excels in both FID
and KID metrics, showcasing its effectiveness in generating high-quality synthetic images that are visually convincing and
realistic, surpassing alternative methods.

User Study Additionally, we conduct a user study us-
ing the synthesized images to evaluate the photorealism of
our results. During this study, we invite 100 participants,
each of whom is randomly assigned 20 sets of images se-
lected from 1, 000 groups. Participants will compare our
method against several baselines through pairwise compar-
isons. The percentages obtained indicate the frequency with
which participants preferred our approach over each base-

line. Notably, our method consistently outperformed all
baselines, even in scenarios where the baselines exhibited
superior FID or KID scores. This underscores the capabil-
ity of our approach to produce visually compelling and re-
alistic images, surpassing technical metrics that may favor
alternative methods.



4. Conclusion

This study demonstrates the feasibility of decomposing
the global neural radiance field into distinct local gener-
ative radiance fields and subsequently recombining them
to generate high-resolution images with physically plausi-
ble geometry. By employing explicit decomposition and
composition strategies, 3DFaceController showcases supe-
rior performance compared to existing models in terms of
producing realistic radiance fields, thereby exhibiting ro-
bust 3D-consistent properties. We consider this approach
a promising direction for integrating 2D GANs with 3D
awareness. Extensive experimentation validates the viabil-
ity of decompositional radiance fields at both image and ge-
ometry levels, while the compositional generator excels in
achieving realistic face editing on a region-wise basis. The
results underscore the potential for advancing image synthe-
sis and manipulation tasks in the realm of 3D-aware gener-
ative models.
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