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Abstract

Image-text retrieval (ITR) has made significant
progress in recent years. However, it still faces two ma-
jor challenges. The first challenge is the problem of
intra-modal semantic loss issue, which is related to the
lack of semantic associations between single-modal data.
The second challenge is that different modal data cannot
be effectively mapped to the same shared space, result-
ing in inconsistent representations between multimodal
data, making it difficult to perform effective alignment
and fusion. These challenges lead to limitations in the
generality and retrieval accuracy of existing ITR re-
trieval models and challenges in the validity and reliabil-
ity of these methods in practical applications. We pro-
pose two new methods to address these challenges: the
Unimodal Momentum Soft Label Alignment (UMSA)
method and the Multimodal Data Potential Projection
(MMLP) method. Our methods aim to establish seman-
tic links between unimodal data and overcome the un-
derfitting problem of linearly mapping multimodal data
into the same shared space. Our method has been ex-
tensively experimentally validated on various ITR mod-
els and datasets, all showing significant improvements in
retrieval performance, including zero-sample retrieval
performance. In addition, this approach is compatible
with a wide range of ITR retrieval models, thereby im-
proving model generality and accuracy.

Keywords: Cross-modal retrieval, Visual language
model, Multimodal alignment, Zero-shot retrieval.

1. Introduction

With the rapid development of intelligent information
technology, multimodal data, including text, audio, video,
and images, are ubiquitous in our daily lives. These di-
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verse content forms not only enrich our life experience but
also help us perceive and understand the world around us
more comprehensively and accurately. Humans can eas-

Figure 1: As shown in the figure, among the three existing
classifications of visual language models, most models only
consider cross-modal interaction and ignore single-modal
interaction, while our model considers both.

ily align and complement different forms of information,
allowing us to better learn and absorb knowledge. In the
cross-modal field of artificial intelligence, the research goal
is to achieve semantic alignment and complementary func-
tions for different forms of information similar to the hu-
man brain. With the in-depth study of multi-modal technol-
ogy, multimedia data can be interconnected. Through cross-
modal alignment and fusion technology, one or more media
data can complement each other and enhance their semantic
information, thereby enabling computers to understand data
information in multiple modalities more comprehensively.

Image-text retrieval (ITR) is a basic task among many
multi-modal tasks. It uses computer vision and natural lan-
guage processing technology to achieve bidirectional re-
trieval between images and text. The main goal is to ex-
tract information from massive images. Quickly and accu-
rately retrieve related image and text information based on
user queries in text data. It is mainly divided into image
retrieval through text (IR), which means finding the image
that is closest to the text description in the image pool, and
the other is text retrieval through image (TR), which means
finding the text that best describes the image in the text pool.
In recent years, image text retrieval methods have achieved
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near state-of-the-art (SOTA) performance [16, 15, 36]. Al-
though these methods have achieved good retrieval results,
the key challenge is to align data in different modalities
and make up for semantic matching in different modal data
channels. Good semantic correspondence directly affects
the measurement of similarity between images and texts.
However, current methods in the literature [1, 13, 16, 35]
tend to focus on optimizing the alignment problem between
multi-modal data. In contrast, the problem of aligning sim-
ilar data within a single channel is often ignored. Although
cross-modal data alignment is crucial in multimodal learn-
ing, small but significant differences can exist within a sin-
gle channel, even for similar data. These differences may
affect the model during data processing and feature extrac-
tion, thereby affecting its performance and generalization
ability. Therefore, in addition to cross-modal data align-
ment, the alignment of similar data within a single channel
also deserves in-depth study. By solving this problem, we
can more effectively mine relevant information within the
data, thereby improving the model’s generalization.

In addition, the features extracted by image and text en-
coders are usually embedded in separate semantic spaces.
This difference originates from factors such as different
semantic structures between modalities and the perceptual
characteristics of the data. Because feature representations
between different modalities are often semantically differ-
ent and heterogeneous, direct interaction and modeling may
increase the similarity between positive samples and reduce
the model’s generalization ability. Therefore, effectively es-
tablishing cross-modal interaction and fusion mechanisms
in different semantic spaces has become essential in design-
ing multi-modal encoders. As shown in a) and b) in Figure.
1, in previous works, whether a single-stream structure or
a dual-stream structure, they focused on the interaction be-
tween cross-modalities and used the similarity score as the
criterion for alignment. However, the alignment problem
between single modalities must be addressed, leading to the
model’s poor generalization ability and, thus, our work’s
primary motivation. This paper proposes a new dual-stream
structure method (UMSA), as shown in c) in Figure. 1,
based on single-modal alignment, which uses momentum
soft labels to guide the ITR model to perform single-modal
data alignment. This method achieves data alignment be-
tween cross-modalities, effectively identifies similar sam-
ples in single modalities, and distinguishes similar sam-
ples so that positive sample pairs with higher similarity
scores can be compared with images and images. Sam-
ples with higher similarity between texts are aligned in the
same shared space. In addition, among the methods of map-
ping modalities into the same space, we propose the cross-
modal data latent mapping method (MMLP) to represent
different modal data in the same shared space. It can learn
the nonlinear interaction and combination of different in-

put features through multiple hidden layers, generate high-
order feature representations, have high data adaptability,
and better generalize to unseen data. We conducted many
experiments on different ITR models and data sets, proving
that our method can effectively improve image and text re-
trieval performance. Our method can improve performance
by 1.2% to 3.9% on the RSUM metric on different bench-
mark models. Our main contributions are summarized as
follows:

• We designed a retrieval method UMSA that takes into
account single-modal alignment, using the momentum
soft labels generated by the teacher model to guide the
alignment of single-modal data;

• We propose the MMLP method to map different modal
data into the same space, which improves the general
generalization ability of the model and the interaction
performance between modalities;

• We have conducted a large number of experiments
on different ITR models and data sets, and the re-
sults show that our method can effectively improve the
performance of image and text retrieval models and
achieve overall performance better than the baseline
model.

2. Related Works

2.1. Image-Text Retrieval

Image-text retrieval combines image and text data to pro-
vide comprehensive and accurate information retrieval. It
enhances the quality of retrieval results by providing richer
semantic information and visual features. The challenge is
to achieve cross-modal semantic understanding and simi-
larity matching. Current methods rely on target detectors
[14, 31, 32] to extract entities and their regions in the im-
age. Then, they use multi-modal encoders to align and
fuse text and image features. However, these methods may
lead to information loss, the inability to handle modal im-
balance, ignoring correlation and semantic information be-
tween different modalities, and difficulty processing hetero-
geneous data. Due to different characteristics, data distri-
bution, and feature spaces, some modal features may be
over-emphasized or ignored, making it challenging to cap-
ture the correlation and semantic information between dif-
ferent modalities, thus reducing the accuracy and effective-
ness of retrieval. Some methods use a dual-stream encoder
structure, where an image encoder and a text encoder ex-
tract features of images and texts, respectively. Then, they
use a method similar to contrastive learning [34] for align-
ment and fusion. This method efficiently calculates sim-
ilarity scores, making retrieval speed and efficiency effi-
cient. However, more effective information interaction and



fusion between modalities during the entire retrieval pro-
cess is needed, which may result in the information comple-
mentarity between modalities not being fully utilized, and it
is challenging to handle the heterogeneity between modali-
ties. Other methods use a dual-stream encoder + a multi-
modal fusion encoder to extract text and image features
from different encoders. They then use the transformer’s
self-attention mechanism fusion encoder to perform modal
alignment and fusion. These models use complex labels as
supervision signals to guide the model’s training process.
However, they only align the annotated images and texts in
the dataset, ignoring the potential semantic correlation be-
tween different images and texts.
Our method uses the external soft labels provided by the
teacher model of momentum self-distillation (that is, the
student model gradually evolves into the teacher model
as the training progresses, and the parameter ratio of the
teacher to the student model is 0.995), that is, the model
learns from the data through the algorithm, and as a result,
it can represent richer semantics. It can capture the implicit
information between labels. It can make the feature repre-
sentation between different modalities more transparent, in-
terpretable, and numerically consistent, reducing the differ-
ences between modalities. Imbalance, which is conducive
to cross-modal alignment to improve the model’s general-
ization ability, understand the model’s working mechanism
and decision-making process in different modalities, and
achieve better retrieval performance.

2.2. Multimodal Data Mapping and Alignment

Multi-modal learning transforms data from different
sources into a unified representation, facilitating more ef-
ficient processing and analysis. This shared representa-
tion helps uncover correlations and common features be-
tween various modalities, making cross-modal information
comparable and analyzable within a unified representation
space. The primary goal is to map data from different
modalities into a consistent representation, simplifying sub-
sequent tasks and reducing complexity. However, most ex-
isting Image-Text Retrieval (ITR) models [23, 11] rely on
linear mapping techniques, which are limited in their abil-
ity to capture the rich, complex information embedded in
image and text data. These data often contain multi-scale,
multi-directional features and semantic and contextual in-
formation, which linear mappings fail to exploit fully.

To address this limitation, we propose MMLP as a key
enhancement to the network architecture. MMLP lever-
ages multiple nonlinear layers and activation functions, en-
abling the model to perform nonlinear transformations that
can better capture the inherent complexity of the data. This
allows for more flexible and adaptive feature extraction, ad-
justing model complexity based on the data’s characteris-
tics.In contrast to linear mapping, which can only model

simple, linear relationships, MMLP captures both linear and
nonlinear dependencies, resulting in significantly improved
model expressiveness and generalization ability. Our ex-
periments consistently show that MMLP outperforms tra-
ditional linear methods by effectively modeling the intri-
cate patterns within multi-modal data, leading to superior
retrieval performance in cross-modal tasks.

3. Proposed Method

3.1. Image-text Contrastive Learning

Image-text contrastive learning is a method for multi-
modal learning that aims to exploit the correlation be-
tween images and text to improve model performance. This
method uses a contrastive loss function to learn the seman-
tic correlation between images and texts by bringing the
same sample’s different modal representations closer and
pushing different samples apart. Specifically, image-text
comparison learning maps image and text representations
into a shared feature space so that similar images and texts
are closer in the feature space while dissimilar photos and
texts are further apart. The data in the data set exists in the
form of image-text pairs {(Ii, Ti)}Ni=1, where (Ii, Ti) rep-
resents the relationship between image and text as a sample
pair. Contrastive learning-based methods [9, 34] align these
image-text pairs. Specifically, multiple image-text pairs
are sampled from the dataset to form a batch according to
batch size. During training, the distance between correctly
matched images and text pairs in the feature space is con-
tinuously drawn closer. In contrast, the distance between
unpaired images and text pairs in the feature space is con-
stantly drawn away. We maintain two queues to store the
most recent M image-text representations from the momen-
tum unimodal encoders. First, we define similarity in the
following way:

s (I, T ) = gv (vcls)
T
gw (wcls) (1)

where gv and gw are linear transformations that map the
[CLS] embeddings to normalized lower-dimensional (256-
d) representations, vcls and wcls are the output [CLS] em-
beddings of the visual encoder and text encoder respec-
tively. And are transformations that map [CLS] embeddings
to normalized low-dimensional representations. Based on
this, we calculate the similarity between softmax normal-
ized images and texts within batches with the following for-
mula:

pi2tm (I) =
exp (s (I, Tm) /τ)∑M

m=1 exp (s (I, Tm) /τ)
(2)

pt2im (T ) =
exp (s (T, Im) /τ)∑M

m=1 exp (s (T, Im) /τ)
(3)



where τ is a learnable temperature parameter. Assume that
yi2t (I) and yt2i (T ) represent the one-hot similarity of the
real label, in which only the probability of positive sam-
ple pairs is 1, and the probability of other samples is 0.
Finally, the contrastive loss is defined as p and y, and the
cross-entropy loss between is H:

Litc =
1
2E(I,T )∼D

[
H(yi2t(I), pt2i(I)) +H(yt2i(T ), pt2i(T ))

]
(4)

where E(I,T )∼D represents the average loss of the model on
a given data distribution D, that is, the average performance
of the model on different image-text pairs.

3.2. Image-Text Matching

Image-text matching is a multimodal learning method
that aims to achieve semantic matching between images and
text and predict whether the image and text are a matching
or unpaired pair. We use the [CLS] token embedding of the
multimodal encoder as the joint representation of image and
text input it into the itmhead binary classifier, and finally
predict the two categories by splicing a fully connected (FC)
layer and softmax activation function. The probability of its
ITM loss is expressed as:

Litm = E(I,T )∼DH(yitm, pitm(I, T )) (5)

where yitm is the two-dimensional one-hot representation
representing the true label. We use the loss function of the
original ITR model, which is

Loriginal = Litc + Litm (6)

3.3. Single-modal Momentum Soft Label Alignment

Although good results have been achieved in image and
text retrieval tasks, unimodal alignment is ignored in these
models, which may affect the model’s generalization perfor-
mance to unknown data. As shown in the Figure. 2, we use
t-distributed stochastic neighbor embedding (t-SNE)[29] to
map images and text in high-dimensional space to three-

Figure 2: Ignore the data aligned within the modality and
the feature distribution in the reduced dimension space after
adding UMSA;

dimensional space while maximizing the At this time, the
similarity between the image and the text can be intuitively
displayed as the distance relationship between points in the

three-dimensional space in the t-SNE diagram. Among
them, Image 1, Text 1, Image 3, and Text 3 are samples
in the training set, and Image 2 and Text 2 are data that we
have yet to see during training. Most existing ITR retrieval
models can well align the three image-text pairs in Figure.
2. However, (a) due to the lack of information interaction
between image and image, text and text, the two image-
text pairs are mapped in the same space in different areas.
When we use the same image and text encoder to extract
features from image and text pairs, image 2 is closer to 1 at
the pixel feature level, so it is mapped to an area adjacent to
Text 2, which is closer to Text 3 regarding text features, so
Text 2 is mapped to the adjacent area of Text 3. Therefore,
a single-modal momentum soft label alignment method is
introduced in our work, aiming to utilize the complemen-
tary information between images and text to improve the
semantic correlation between them through momentum up-
date. The method first utilizes a single-modal image en-
coder and a text encoder to convert images and texts into
feature representations. Then, iteratively updates these fea-
ture representations through momentum updates to capture
the semantic associations between them. In each update
process, known image-text pairs are converted into label
vectors by generating soft labels containing the probability
that the image or text belongs to each category. Then, the
generated soft labels are used as supervision signals to max-
imize the similarity between the image and text by align-
ing their representations, and the model parameters are up-
dated through the backpropagation algorithm to improve the
model’s performance. As shown in Figure. 3, we first ob-
tain the image feature I ′ and text feature T ′ from the teacher
model of momentum distillation, then get i′ and t′ through
the MMLP mapping and calculate the cosine similarity be-
tween I ′i and I ′j as si2iij , S and the similarity between T ′

i and
T ′
j as st2tij . After that, the softmax normalized image-to-

image Qi2i
ij and text-to-text Qt2t

ij similarities are obtained:

Qi2i
ij =

exp(Si2i
ij )/τ∑N

j=1 exp(S
i2i
ij )/τ

(7)

Qt2t
ij =

exp(St2t
ij )/τ∑N

j=1 exp(S
t2t
ij )/τ

(8)

Secondly, we obtained the student models, namely ITR re-
trieval models P i2i

i and P t2t
i in the above way. We de-

note the probability distribution(Qi2i
i1 ,...,Qi2i

iN ) as Qi2i
i and

use the similar step to obtain Qt2t
i . During the training

process, we used KL divergence to use Qi2i
i and Qt2t

i re-
spectively to guide the alignment loss of single-modal data.
This alignment loss can effectively promote Alignment be-
tween uni-modal data. Taking Qi2i

i as the target distribu-
tion, KL divergence is used to guide the learnable distribu-
tion P i2i

i for image-text alignment. Meanwhile, taking Qt2t
i

as the target distribution, considering that the distributions



Figure 3: Illustration of our approach. It consists of an image encoder, text encoder, and multi-modal encoder, as well
as a momentum teacher model. We propose a single-channel data alignment loss that uses soft labels generated by the
momentum teacher model as additional supervision during training to adjust the unimodal representation of image-text pairs
before fusion. To improve the shortcomings of linear mapping of multi-modal data, we use the MMLP data latent mapping
method to make the model have better data adaptability during the training process.

P and Q may have the case that the probability of the sam-
ple points is zero, which will lead to the instability of the
calculation of the KL divergence, and make his value be-
come infinite. Therefore, we adopt a symmetric form of KL
divergence, Jensen-Shannon divergence (JSD) [7], to boot-
strap the learnable distribution P t2t

i for text-image align-
ment, which ensures that the computed values are more sta-
ble and finite. For the image modality, we define its JSD
divergence as:

JSD(Qi2i
i ∥ P i2i

i ) = 1
2

(
DKL(Q

i2i
i ||M i2i

i ) +DKL(P
i2i
i |M i2i

i )
)

(9)

Among them, M i2i
i = 1

2
(Qi2i

i +P i2i
i ) is a mixed distribution

of Qi2i
i and P i2i

i .
Similarly, for textual modalities, the JSD divergence is

set to be:

JSD(Qt2t
i ∥ P t2t

i ) = 1
2

(
DKL(Q

t2t
i ||M t2t

i ) +DKL(P
t2t
i |M t2t

i )
)

(10)

Among them, M t2t
i = 1

2
(Qt2t

i + P t2t
i ) is a mixed distribu-

tion of Qt2t
i and P t2t

i . The final loss function of UMSA is
represented as follows:

LUMSA = (JSD(Qi2i
i ||P i2i

i ) + JSD(Qt2t
i ||P t2t

i ))/2 (11)

3.4. Multimodal Data Mapping and Alignment

Multimodal data representation is the process of integrat-
ing data from various sources into a unified data represen-

tation space. This shared space enables data from different
modalities to be analyzed and processed uniformly, leading
to cross-modal information fusion, alignment, and analysis.
However, the model can only learn linear combinations of
input features for linear mapping, depicted in Figure. 4. It
tends to be inflexible and adaptable to data, resulting in un-
derfitting problems, especially when dealing with complex
data. As a result, the model’s generalization ability could
be much improved, ultimately leading to poor performance.

Figure 4: After the image and text data undergo linear and
MMLP mapping, respectively, the t-SNE dimensionality re-
duction method is used to draw a scatter plot.

ZX = WX + bX , ZY = WY + bY . (12)



Among them, W is a linear weight matrix bX and bY are
bias vectors. ZX and ZY are the linear representations of X
and Y in Z space respectively. Therefore, the shape of the
image and text data distributed in the joint space after linear
mapping is similar to a straight line or a plane in Figure. 4.
The method we proposed, MMLP, can dynamically adjust
the network structure and parameters according to the com-
plexity and pattern of the data and can learn non-linear rela-
tionships and feature representations in image and text data,
thereby making the distribution of data points in the shared
space more accurate. And rich, able to better capture the
complex structures and relationships between image data
and the semantic structures and correlations between text
data. After using the MMLP method to project different
modal data into the same public space, the data formula is
expressed as follows and distributed as follows:

ZX = ReLU(f(W3 ·ReLU(f(W2 ·ReLU(f(WX
1 ·X)) + bX2)) + bX1))

(13)
ZY = ReLU(f(W3 ·ReLU(f(W2 ·ReLU(f(WY

1 · Y )) + bY 2)) + bY 1))

(14)
Among them, f is the activation function, WX

1 and WY
1

is the weight matrix of each modality W3, W2are the
weight matrices of the hidden layer and output layer of the
MMLP method respectively, bX1 and bX2 are the bias of
text data mapping bY 1 and bY 2 are the bias of image data
mapping.ZX and ZY are the nonlinear mappings[26] of X
and Y in Z-space, and are also the feature representations of
image and text data. As shown in Figure. 4, we use part of
the experimental data to use the MMLP nonlinear mapping
method to map the data in the shared space with a similar
shape to the clustering, which shows that the method can
better preserve the high-dimensional nonlinear features of
images and text.

Our approach, MMLP, introduces nonlinear properties
using activation functions that can compress the input fea-
ture vectors layer by layer, enabling the model to capture
complex intra- and inter-modal relationships. Nonlinear
mapping can handle complex intra-modal feature transfor-
mations layer by layer, ultimately mapping features from
different modalities into a high-dimensional shared space.
This mapping aims to align image and text feature repre-
sentations as much as possible so that their similarity in a
unified space can reflect semantic correlations. Secondly,
images and text often contain different semantic informa-
tion in multimodal tasks. Images primarily convey visual
content, while text provides semantic details and contex-
tual information. The information of these two modalities
is complementary and can provide richer content for the re-
trieval task through a reasonable alignment strategy. The
nonlinear mapping of MMLP helps to integrate this com-
plementary information effectively, making the representa-
tion of image and text in the public space more compatible,
thus enhancing retrieval performance.

In this paper, we analyze the key role of the MMLP
method in improving the performance of multimodal re-
trieval using information entropy and mutual information
from the theory of information complementarity. We can
define a generic formula for information entropy in Eq. 15
and mutual information [22] in Eq. 16 as:

H(X) = −
∑
x∈X

p(x) log p(x) (15)

Info(himg, htext) = I(himg;htext), (16)

I(himg;htext) = H(himg) +H(htext)−H(himg, htext).
(17)

H(X,Y ) = H(x) +H(Y |X) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x, y)

(18)
Among them, I(himg;htext) in Eq. 17 represents the
amount of mutual dependence or shared information be-
tween image modality and text modality, which measures
the degree of dependence between image modality and text
modality. The larger the mutual information is, the stronger
the relevance of image and text modalities in the public
space, and the more fully complementary the information
is. H(himg) and H(htext) in Eq. 17 and Eq. 16 repre-
sents the entropy of each of the image modality and text
modality, which indicates the amount of information they
each contain, and measures the dispersion or uncertainty of
the representations within the modality; higher entropy val-
ues imply that the feature representations are too dispersed
to extract the key information efficiently. H(himg, htext)
represents joint entropy, which represents the amount of
joint information of image and text modalities, measures
the common uncertainty between the two modalities, and
the joint entropy between the two modalities can be reduced
by decreasing the entropies H(X) and H(Y ) within the
modalities. H(Y |X) in Eq. 18 is the conditional entropy,
which represents the uncertainty of the modality Y given
the modality X . This measures the amount of unexplained
information remaining for modality Y after the information
about X is known.

Firstly, MMLP compresses the feature representation
layer by layer through the nonlinear activation function
(ReLU) to remove unnecessary, redundant information,
which makes the features within the modality more concen-
trated and the entropy value within the modality reduced.
The entropy values of H(X) and H(Y ) are reduced. The
lower entropy value means that the model better extracts
the key information in the modality, which is more effec-
tive in cross-modal alignment. Compared to linear map-
ping, MMLP captures linear relationships and extracts and
expresses key nonlinear features in different modes more
efficiently, significantly improving model performance in
cross-modal tasks.



Secondly, the information complementarity between im-
age and text modalities is enhanced by the mapping of the
MMLP, which means that the MMLP can better remove re-
dundant features and reduce irrelevant information, result-
ing in a reduction of the joint uncertainty (i.e., joint entropy)
between X and Y . The MMLP can also remove the re-
dundant features and reduce the irrelevant information. By
mapping the image modality himg and the textual modality
htext into the same shared space, the MMLP can capture
correlated features between the modalities. This mapping
can be achieved by maximizing mutual information, and
MMLP mapping makes the common information (depen-
dencies) between modalities much stronger, which leads to
a faster reduction of joint uncertainty. That is, the mutual
information in Eq. 17 is enhanced by reducing the joint
entropy between modalities H(himg, htext). At the same
time, the representations of the image and text modalities
are compressed and simplified through nonlinear mapping,
preserving the most relevant features.

The role of MMLP is to reduce the joint entropy
H(X,Y ) by simultaneously decreasing the intra-modal and
conditional entropy, maximizing the mutual information be-
tween the image and text modalities I(himg;htext); and
ensuring that the inter-modal semantic information is ad-
equately complemented and fused. This complementarity
enables the model to align and retrieve relevant content
more accurately based on the shared representation space
when performing image and text retrieval. We maximize
the mutual information between image and text modalities
as part of the loss of our model with the following equation:

LMI = −I(himg;htext) = H(himg, htext)−H(himg)−H(htext)

(19)

3.5. Training Objective

We adjust the original loss of the ITR model using the
UMSA loss, so the total loss function is expressed as:

Lloss = Loriginal + α · LUMSA + β · LMI (20)

Among them, α is the proportional coefficient. At first, we
used meta-learning [8] to determine the coefficient α and β,
but since meta-learning is suitable for scenarios with high
task diversity and high requirements for fast adaptation to
new tasks, and the multi-task division in our graphic re-
trieval is relatively single, we divide it into pairs of graphic
with different categories and difficulties, which leads to the
meta-learning algorithm not being able to take full advan-
tage of its strengths. Eventually, we also proved in the
experimental results that the parameters obtained by meta-
learning are unsuitable for the task, so we used grid search
instead of meta-learning to adjust the parameter α. In our
many experiments, it has been proved that when α is 0.6,
and β is 0.4, the model can achieve the best performance

index. The approximate running flow of the whole model,
as in Alg. 1.

Algorithm 1 Momentum-based unimodal alignment and
MMLP mapping of one-round cycles
Data: Student model’s image and text features, momentum

coefficient α = 0.995, queue size Q size = 57600
1. Map to common space via MMLP:
Q img ← mmlp(Q img) Q txt← mmlp(Q txt)
img feat← mmlp(img feat)
txt feat← mmlp(txt feat)

2. Momentum update for image and text features:
h img ← α ·Q img + (1− α) · img feat
h txt← α ·Q txt+ (1− α) · txt feat

3. Compute intra-modality (i2i, t2t) similarities:
sim i2i← cos sim(hi img, hj img)
sim t2t← cos sim(hi txt, hj txt)

4. Jensen-Shannon divergence for unimodal alignment:
jsd i2i← JSD(softmax(simi i2i), softmax(simj i2i))
jsd t2t← JSD(softmax(simi t2t), softmax(simj t2t))

5. Mutual information loss:
mi loss← I(h img, h txt)

6. Final loss:
final loss ← lossoriginal + α ∗ (jsd i2t + jsd t2i) +
β ∗mi loss

7. Update model parameters:
opt.step(final loss)

8. Momentum queue update:
Q img ← α ·Q img + (1− α) · img feat
Q txt← α ·Q txt+ (1− α) · txt feat

9. Ensure constant queue size:
if len(Q img) > Q size then

Remove oldest image feature Q img.pop(0)

if len(Q txt) > Q size then
Remove oldest text feature Q txt.pop(0)

4. Experiments

4.1. Experimental Setup

4.1.1 Datasets

We use the public datasets Flicker30k[33] and
MSCOCO[19]. Flickr30k is an image uploaded by
users of the Flickr image-sharing platform. Each image
has 5 manual annotations. Image description covers the
objects, scenes, and relationships between them that appear
in the image. It contains a total of 30 thousand images and
provides a total of 150 thousand images description anno-
tations. MSCOCO is a large-scale image dataset released
by Microsoft. The images in this dataset cover various
scenes, and the text descriptions related to the images are
more detailed and diverse. Each image contains at least 5
different text descriptions. Containing 10 thousand images,



approximately 50 thousand image text descriptions are
provided. These datasets provide rich training data for
image understanding and language-related tasks.

4.1.2 Baselines

To evaluate the performance of our proposed method, we
compare it with other ITR retrieval models. Most existing
ITR retrieval models prioritize the information complemen-
tarity between cross-modalities and ignore data alignment
within single-modal channels, achieving the best perfor-
mance currently. We follow the baseline model’s setup and
optimization methods to ensure fair performance compar-
isons between models. Below, we introduce three typical
models of existing ITR retrieval model architectures men-
tioned in related work, and these models are also used in
our comparative experiments.

(1) Fusion encoder ITR model UNITER[4] and
OSCAR[18] are single-stream pre-trained models for
cross-modal representation learning; image and text data
are processed simultaneously in one model and learned
to encode them into a shared embedding space in the
pre-training stage. This structure enables better capture
of the semantic consistency between images and text,
achieving good performance in various cross-modal tasks.

(2) Dual-encoder ITR model CLIP[26], FLIP[12], and
LTBN [31] are three common two-stream models that use
natural language supervision to facilitate transferable visual
model learning. These models pre-train visual models using
large-scale text data, allowing them to acquire rich visual
knowledge. The models employ a separate image encoder
and text encoder. They directly calculate the similarity be-
tween the image and text outputs to determine whether they
match based on a given similarity threshold. This approach
results in faster model response times but can lead to simple
image and text alignment modeling. Among them, CLIP is
a control experiment for our zero-shot retrieval experiment.

(3) Dual encoder + Fusion encoder ITR model
ALBEF[17] and BLIP[15] are innovative pre-training meth-
ods that have been designed to improve visual-language un-
derstanding and generation. These methods use a unique
approach that involves aligning visual and language mod-
els trained separately into a shared semantic space using the
momentum distillation mechanism. The models are trained
iteratively, with various loss functions, such as adversar-
ial and similarity loss, used to guide the learning process.
These methods aim to help the models achieve semantic
consistency and alignment in cross-modal tasks, enabling
them to learn more consistent and stable representations.
This process can significantly improve the performance of

the models on various tasks related to image and text un-
derstanding. During training, the models are guided by an
adversarial loss function that helps them generate more real-
istic images. In contrast, the similarity loss function encour-
ages the models to learn more meaningful semantic repre-
sentations. Additionally, the momentum distillation mech-
anism is used to align the visual and language models to al-
low both models to improve their accuracy and consistency
over time.

4.2. Implementation Details

For all retrieval experiments, we use the AdamW [21]
optimizer with a base learning rate of 5e-6, weight decay of
5e-2, and cosine decay [20] to zero for the rest of train-
ing. Considering the trade-off between performance and
model size and the model’s similarity calculation score for
images and texts depends on whether the features we extract
are rich and diverse. We use an improved Vision Trans-
former(vit) [6] network on the image encoder side. Al-
though the vit network performs well on image classifica-
tion and other visual tasks, since the self-attention mecha-
nism is not explicitly designed to capture local information
but processes the entire image through a global attention
mechanism, it has problems processing local information.
There is a lack of explicit modeling of spatial structure and
difficulty in capturing the spatial relationships between pix-
els. Inspired by the article[28], we slightly modified the
patch layer of the vit[6] network. We used convolution
channels and pooling operations to replace the native patch
layer so that it can process local information while process-
ing global information and retaining the image. Spatial in-
formation helps the model better understand the spatial re-
lationships between pixels in the image. After that, we pre-
trained the modified vit network on Imagenet-1k[27]. We
performed 25 thousand pre-training steps on the modified
vit network on 8 A800 machines. The batch size was 128,
and the final top1 accuracy Reached 86.4%. For the text en-
coder, we use the first six layers of the bert-base-uncased[5]
tokenizer network fine-tuned from the pre-trained BERT to
encode the text input. Regarding the multi-modal fusion
encoder, we use the last six layers of bert-base-uncased as
an encoder for the correlation and information complemen-
tation of image and text features. It is mainly used for the
binary classification task of image and text matching (ITM).

4.3. Main Results

As shown in Table. 1, we compared different model
methods for information-theoretic retrieval (ITR) models
and evaluated their effectiveness in terms of R@K, a pop-
ular valuation index. We experimented with three archi-
tecture types of ITR models and found that our proposed
method outperformed all the baseline models. Our pro-
posed method effectively addresses the challenges of se-



Table 1: Comparison with state-of-the-art image-text retrieval methods, experimental results of image-text retrieval on
MSCOCO and Flickr30K. Bold indicates best overall performance, for all other models, the paper’s best results are re-
ported regardless of model size/variables.

MSCOCO(5K test set) Flickr30k(1K test set)
TR IR TR IR

Method R@1 R@5 R@10 R@1 R@5 R@10 RSUM R@1 R@5 R@10 R@1 R@5 R@10 RSUM
Single-stream ITR retrieval model

UNITER 65.7 88.6 93.8 52.9 79.9 88.0 410.9 87.3 98.0 99.2 75.6 94.1 96.8 551.0
VILT-B/32[13] 61.5 86.3 92.7 42.7 72.9 83.1 439.2 83.5 96.7 98.6 64.4 88.7 93.8 525.7

OSCAR 70.0 91.1 95.5 54.0 80.8 88.5 479.9 - - - - - - -
ALIGN[12] 77.0 93.5 96.9 59.9 83.3 89.8 500.4 95.3 99.8 100.0 84.9 97.4 98.6 576.0

+Our method 77.8 94.0 97.3 61.1 83.9 90.1 504.2 95.9 99.9 100.0 85.4 97.9 99.0 578.1

Dual-encoder ITR model
SCAN [14] 50.4 82.2 90.0 38.6 69.3 80.4 410.9 67.4 90.3 95.8 48.6 77.7 85.2 465

VSRN 53.0 81.1 89.4 40.5 70.6 81.8 416.4 71.3 90.6 96.0 54.7 81.8 88.2 482.6
FLIP 60.2 82.6 89.9 44.2 69.2 78.4 424.5 89.1 98.5 99.6 75.4 92.5 95.9 551

CPRD [3] 70.8 91.7 96.2 53.4 80.6 88.5 481.2 90.7 99.0 99.7 78.6 94.9 97.4 560.3
V LMObase [1] 74.8 93.1 96.9 57.2 82.6 89.8 494.4 92.3 99.4 99.9 79.3 95.7 97.8 564.4
+Our method 75.2 93.5 97.3 57.8 82.9 89.8 496.5 92.9 99.6 99.9 80.5 96.1 98.2 567.2

Dual encoder + Fusion encoder ITR model
MVSEN [25] 58.7 84.0 91.7 42.5 72.0 82.7 431.6 81.7 95.6 98.2 63.1 88.0 92.9 519.5
HGFN [24] 76.4 95.2 98.2 62.8 90.3 95.6 518.5 75.3 94.2 97.2 57.4 83.1 89.6 496.8

ALBEF 77.6 94.3 97.2 60.7 84.3 90.5 504.6 95.9 99.8 100.0 85.6 97.5 98.9 577.7
VL-BEIT [2] 79.5 - - 61.5 - - - 95.8 - - 83.9 - - -
BLIPbase 80.6 95.2 97.6 63.1 85.3 91.1 512.9 96.6 99.8 100.0 87.2 97.5 98.8 579.9

+Our method 81.4 95.7 98.1 63.6 85.9 91.8 516.5 97.3 100.0 100.0 87.9 97.9 99.1 582.2
OmniV Lbase [30] 82.1 95.9 98.1 64.8 86.1 91.6 518.6 97.3 99.9 100.0 87.9 97.8 99.1 582.0

+Our method 82.8 96.3 98.6 65.2 86.6 92.0 521.5 97.7 99.9 100.0 88.1 98.2 99.3 583.2
BLIPlarge 82.4 95.4 97.9 65.1 86.3 91.8 518.9 97.4 99.8 99.9 87.6 97.7 99.0 581.4

+Our method 83.2 95.9 98.4 65.6 87.0 92.7 522.8 98.0 99.9 100.0 88.7 98.0 99.2 583.8

mantic matching of intra-modal data and the inability of
single-modal data to map to the same public space, limiting
ITR model performance. We demonstrated that our method
can be applied to any ITR retrieval model for universal re-
trieval. We applied our method to the datasets MSCOCO
and flickr30k and combined it with the BLIPbase+ours

model, significantly improving their RSUM index. Specif-
ically, on the MSCOCO dataset, our method improved the
RSUM index of the BLIPlarge+ours model by 3.6%, while
on the flickr30k dataset, the improvement was 2.4%. These
results indicate that our proposed method can effectively en-
hance the performance of ITR models and has the potential
for widespread applications in universal retrieval.

4.4. Zero Shot Retrieval

Zero-shot [10] retrieval is a method that utilizes infor-
mation from unseen categories or samples in a search or
retrieval task. In zero-shot retrieval, the model needs to rea-
son on unseen categories or samples without being trained
on them. Zero-shot retrieval can prompt the model to learn
more generalized feature representations, thereby improv-

ing the model’s generalization ability in unknown fields or
categories. This helps improve the adaptability and gener-
alization ability of the model, allowing it to be used in a
wider range of application scenarios. We use the network
fine-tuned on the MSCOCO data set to test the performance
of zero-shot retrieval on Flickr30K, as shown in Table. 2,
our method can learn the similarities and correlations be-
tween data in different fields and can effectively improve
the model’s generalization.

4.5. Effect of Different Parameters

In this subsection, we select representative hyperparam-
eters m, α, β to explore the effect of different parameter
combinations on the model performance. Where m is the
number of layers of the MMLP, and denote the weight
coefficients of the two loss functions we optimise, respec-
tively. We have also demonstrated through extensive exper-
iments that the 3-layer MMLP structure can improve the re-
trieval results to the best. Figure. 6 shows the distribution of
recall values obtained by MMLP with different number of
layers for MSCOCO and Flickr30k datasets. With the Fig-



Table 2: Zero-shot image-text retrieval results on
Flickr30K.

Flickr30k(1K test set)
TR IR

Method R@1 R@5 R@10 R@1 R@5 R@10

CLIP 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 94.1 99.5 99.7 82.8 96.3 98.1

BLIPbase 94.8 99.7 100.0 84.9 96.7 98.3
+our method 95.3 99.8 100.0 85.5 97.2 98.4
BLIPlarge 96.7 100.0 100.0 86.7 97.3 98.7

+our method 97.0 99.0 100.0 87.1 97.8 98.9

ure. 6, we can conclude that the performance of the model
is optimal when the number of MMLP layers increases to
3. However, as the number of layers continues to increase
to 4 and above, the performance starts to drop slightly, es-
pecially on the image retrieval task, with a tendency to fall
back. In other words, increasing model complexity does not
always lead to performance improvement, and overfitting or
information redundancy occurs beyond a certain number of
layers, resulting in a worse model. We use heat maps to
show the effect of parameters (α and β) on the sum of R@K
values for cross-modal retrieval RSUM. In the experiments
for the dataset Flickr30K in Figure. 5a, the model achieves
the highest RSUM 538.8 when the parameter combinations
are α = 0.6 and β = 0.4, which is clearly reflected in the heat
map. It is observed that the RSUM shows a clear downward
trend as the parameter combination is changed. For exam-
ple, when α = 0.4 and β = 0.8, the RSUM is only 534,
which illustrates the importance of proper parameter con-
figurations in terms of modal alignment and cross-modal
alignment. This data suggests that adjacent parameter com-
binations (e.g., α = 0.6 and β = 0.6) are equally capable
of achieving relatively high performance, but fail to achieve
optimality. Overall, the colour changes in the heatmap vi-
sually present the differences in model performance, fur-
ther highlighting the impact of optimal parameter selection
on RSUM. Through the Figure. 5b, we observe a signif-
icant effect of the modal alignment parameters ( and ) on
the RSUM. When the parameters are set to α = 0.6 and
β = 0.4, the RSUM reaches a maximum value of 522.8,
which clearly demonstrates the importance of the optimal
parameters on the model performance. As the parameters
are adjusted, the RSUM gradually decreases, especially for
the combination of α = 1 and β = 1, which has a RSUM of
516.9, showing a lower performance. The change of colours
in the heatmap effectively reflects this phenomenon, with
parameter combinations closer to the central value show-
ing higher RSUM. This trend further confirms the necessity
of proper parameter configuration in model training, and
suggests that future research could explore more parameter
ranges on this basis to seek further optimisation.

5. Ablation Study

We conducted an in-depth ablation study; the results
are shown in the Table. 3. First, we study the role of
the proposed method in the visual language model frame-
work and perform ablation experiments on the single-modal
momentum soft label alignment loss and the multi-modal
data latent mapping method. The results show that regard-
less of removing the UMSA or MMLP method, the per-
formance of the ITR retrieval model will be reduced. We
use the BlIP model as the baseline model for our abla-
tion experiments. BLIP is a pre-trained model that utilizes
self-supervised and weakly supervised learning methods to
unify visual and language understanding using large-scale
image and text data. We used its BLIPbase model as the
benchmark and experimented with our proposed method.
As shown in Table. 1, adding the method MMLP model
to the benchmark model has a slight increase in perfor-
mance compared to the benchmark model. This indicates
that compared with the method of linearly mapping multi-
modal data into a shared space, MMLP can more effectively
improve the adaptability and generalization of the model.
Afterward, the UMSA method was added to the baseline

Table 3: Ablation study on fine-tuned image-text retrieval.
The average recall on the test set is reported.

Flickr30k(1K test set)
TR IR

Method R@1 R@5 R@10 R@1 R@5 R@10

BLIPbase 96.6 99.8 100.0 87.2 97.5 98.8
+MMLP 96.9 99.9 100.0 87.6 97.8 99.0
BLIPbase 96.6 99.8 100.0 87.2 97.5 98.8
+UMSA 97.1 99.9 100.0 87.8 98.2 99.3
BLIPbase 96.6 99.8 100.0 87.2 97.5 98.8

+UMSA+MMLP 97.3 100.0 100.0 87.9 97.9 99.1

model for experiments. The results showed that UMSA im-
proved model performance better than the baseline model.
Both methods contributed to model performance improve-
ment, but UMSA made a more significant contribution. We
then added UMSA and MMLP to the benchmark model for
experiments. We found that the experimental results were
higher than those of adding the two methods separately to
the model for training. Therefore, the proposed method can
effectively improve the model’s adaptability and generaliza-
tion to unknown data through this experiment.

6. Case Study

The method proposed in this article and the BLIPbase

model were used to search for pictures and text in the same
case, and the results were compared and analyzed. We com-
pared the top three search results for images and text on the
Flickr30K dataset. The green text and boxes represent con-
tent similar to the text and images, while the red text and



(a) (b)

Figure 5: Heatmap showing the RSUM for different combinations of and parameters. The central region represents the
highest RSUM rate, with surrounding areas showing a gradual decrease as the parameters vary.

(a) Results on Flickr30K. (b) Results on MSCOCO.

Figure 6: Effect of the number of MMLP layers on the
datasets of Flickr30k and MSCOCO, where I2T and T2I
indicate text retrieval and image retrieval, respectively.

boxes indicate that they are not similar. From the retrieval
results of Query a) on the benchmark model in Figure. 7,
we can analyze that part of the data is lost (the ’grass’ in
the text is lost) due to the non-linear characteristics of the
data not being considered, resulting in an incomplete match
between the image and the text. From the retrieval results
in Query b) in the Figure. 7, we can analyze that due to
the lack of information interaction between text data, the fi-
nal retrieval results are biased. In Figure. 8, we tested the
model on the MSCOCO dataset, and we can observe that
one of the benchmark models succeeds in retrieving the rel-
evant image given the text in Query a), while the other two
retrieve the content missing the objects ‘horse’ and ‘car-
riages’ respectively, and accordingly, when retrieving the
relevant text given the image in Query b), the content re-
trieved by the benchmark model is partially contained in

the image, although it is not the same as the text retrieved
from the image. The result of the baseline model retrieved
from the given image contains some of the content in the
image, but some of the content does not exist in the im-
age, so it is considered as a failed match. Our method takes
both points into account and retrieves the content that best
matches the input. The above analysis leads us to conclude
that cross-modal alignment is certainly important, but intra-
modal alignment and multi-modal data mapping distribu-
tion are also key to cross-modal retrieval.

Figure 7: Comparison with the benchmark model BLIP re-
trieved on Flickr30K.



Figure 8: Comparison with the benchmark model BLIP re-
trieved on MSCOCO.

7. Conclusion

Our study is focused on the critical challenges of achiev-
ing alignment between vision and language in visual lan-
guage training. To tackle these challenges, we propose a
novel approach that simultaneously addresses the issues of
single-modal data alignment and efficient mapping of dif-
ferent modal data into a unified common space. Our method
is designed to provide soft-label supervision signals for
the ITR (Image-Text Retrieval) model, relying on the uni-
modal pre-training model. Additionally, it uses the UMSA
(Unimodal Momentum Soft Label Alignment) method to
handle the multi-modal semantic alignment problem and
strengthen the unimodal samples’ similarity recognition.

Moreover, our MMLP (Multi-modal Data Latent Projec-
tion Method) method automatically adjusts the complexity
of the model through non-linear modeling of complex data
to better capture the data’s characteristics and improve the
model’s expressive ability. To validate the effectiveness of
our approach, we conducted extensive experimental verifi-
cation covering various ITR models and datasets. The re-
sults show that our method significantly improves the per-
formance of image-text retrieval.

It is worth highlighting that our method also enhances
the generalization performance of the ITR model, improv-
ing its zero-shot performance on unseen data. These find-
ings promote theoretical visual language research progress
and provide innovative and effective solutions to visual-
language tasks in practical applications. In summary, our
proposed approach offers a promising way to achieve align-
ment between vision and language in visual language train-
ing. It has the potential to enhance the performance of ITR
models significantly.
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