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Abstract

We propose a new method for computing smooth and
integrable cross fields on 2D and 3D surfaces. We first
compute smooth cross fields by minimizing the Dirich-
let energy. Unlike the existing optimization based ap-
proaches, our method determines the singularity config-
uration, i.e., the number of singularities, their locations
and indices, via iteratively adjusting singularities. The
singularities can move, merge and split, as like charges
repel and unlike charges attract. Once all singularities
stop moving, we obtain a cross field with (locally) low-
est Dirichlet energy. In simply connected domains, such
a cross field is guaranteed to be integrable. However,
this property does not hold in multiply connected do-
mains. To make a smooth cross field integrable, we con-
struct a vector field c, which characterizes how far the
cross field is away from a curl-free field. Then we opti-
mize the locations of singularities by moving them along
the field lines of c. Our method is fundamentally dif-
ferent from the existing integer programming-based ap-
proaches, since it does not require any special numeri-
cal solver. It is fully automatic and also has a parame-
ter to control the number of singularities. Our method
is well suited for smooth models in which exact bound-
ary alignment and sparse hard directional constraints
are desired, and can guide seamless conformal parame-
terization and T-junction-free quadrangulation. We will
make the source code publicly available.

Keywords: Cross field, integrability, singularity place-
ment, iterative singularity adjustment

1. Introduction

A cross field, also known as 4-RoSy field [22, 25], is
a directional field that exhibits rotational symmetry and is
invariant under rotations of π

2 radians. Originally intro-
duced by Hertzmann and Zorin as a computational tool for

nonphotorealistic cross-hatching rendering [14], cross fields
have gained significant prominence in the construction of
high-quality quadrilateral meshes [3, 15]. These meshes
are highly desired in various engineering fields, including
simulation [19] and finite element analysis [33].

Constrained by the topology of the surface on which
it is defined, a cross field cannot possess an arbitrary ar-
rangement of singularities. If the singularities of the cross
field are predetermined, including their number, placement,
and indices, smooth cross fields can be generated directly
by solving a sparse linear system [9]. The computation
of smooth cross fields with unknown singularities is com-
monly formulated as an optimization problem, and numer-
ous methods exist for solving it [3, 17, 2, 18, 12].

Cross fields are commonly utilized as a guidance in the
computation of global conformal parameterization, from
which quadrilateral meshes can be extracted. A cross field
is integrable if it aligns well with the gradient of some scalar
field on the surface. When the computed cross fields are in-
tegrable, the parameterization can be obtained directly by
tracing the integral curves of the cross fields. However,
for non-integrable cross fields, it is necessary to compute
a pair of parameters (u, v) by minimizing the difference be-
tween the gradients of the parameters and the directions of
the cross fields. In cases where the integrability of the cross
fields is poor, the resulting parameterization may be mis-
aligned with the desired cross field and can even exhibit in-
versions [11].

It is well known that in simply connected domains, a
smooth cross field, which is the one the minimal Dirich-
let energy, is guaranteed to be integrable [6]. Unfortu-
nately, this desirable property does not extend to multiply
connected domains, where the non-trivial topology imposes
significant constrains on the solution space for achieving
both smoothness and integrability in cross fields.

Existing research efforts in the field have primarily con-
centrated on computing smooth cross fields with optimal
singularities, with relatively less attention given to the is-
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sue of integrability. Only a few attempts have been made
to explicitly address the integrability problem by relaxing
either the orthogonality [11, 26] or the equal length con-
straints [24] of the cross fields, thereby expanding the solu-
tion space. To the best of our knowledge, there is currently
no research that addresses both the smoothness and integra-
bility of cross fields on surfaces with arbitrary topology.

This paper aims at investigating the relationship between
the smoothness and integrability of cross fields defined on
smooth surfaces of arbitrary topology. Let Ω be a smooth
surface and θ a cross field with the lowest Dirichlet en-
ergy defined on Ω. By utilizing the singularities of θ and
the boundary (if present) of Ω as boundary conditions, we
compute a conformal factor φ : Ω → R by solving a Pois-
son’s equation. Subsequently, we define a vector field c,
referred to as the discrepancy field, for all regular points,
which quantifies the difference between the gradient of the
conformal factor ∇φ and the rotation vector of cross field
θ.

In simply connected domains where θ is free of direc-
tional constraints, the discrepancy is always a zero vector.
In multiply connected domains, c is globally divergence
free and locally curl free. We then prove that a smooth cross
field θ is integrable if and only if the discrepancy field van-
ishes everywhere except at the singularities.

The established necessary and sufficient condition in the
continuous setting serves a foundation for a novel algorithm
for computing cross fields on triangle meshes with non-
trivial topology. Our method is fully automatic and sup-
ports boundary alignment and sparse hard directional con-
straints. It also allows the user to balance the number of
singularities and the Dirichlet energy by tuning the disk
size r0, which in turns controls the area distortion of the
induced global conformal parameterization. Through ex-
tensive evaluations, we show that the algorithm enables the
generation of high-quality global conformal parameteriza-
tions that are well aligned with the cross fields. See Figure 1
for an example of our method.

2. Related Works

For the sake of brevity, we restrict our survey to the most
relevant works on cross fields, non-orthogonal fields and
cone optimization in surface parameterization. We refer the
readers to [31] for a comprehensive survey of orthogonal
and non-orthogonal directional fields.

Cross fields were first introduced by Hertzmann and
Zorin as a computational tool for nonphotorealistic cross-
hatching rendering [14]. They were then generalized
to N -rotational symmetric directional field (N -RoSy) in
[22][25]. After that, smooth cross and N -RoSy fields have
been extensively studied [31]. If singularities are given
(i.e., their number, placement and indices are fixed), smooth
cross fields can be created efficiently by solving a sparse

linear system [9]. The design of cross fields with unknown
singularities (number, placement and indices) are often for-
mulated as a non-linear optimization problem with or with-
out integer variables [3, 2, 18, 12, 4, 34].

Cross fields are inherently isometric, meaning that they
do not encode scale information. Frame fields, representing
a more generalized form of cross fields, are characterized by
their non-orthogonality and non-unit-lengths. This unique
aspect of frame fields make them suitable for anisotropic
quadrangulation with varying element size [23]. Viewing
frame fields as cross fields in a specific Riemannian met-
ric, Jiang et al. [16] first computed a discrete metric on the
input surface that is compatible with input constraints and
then optimized the cross field in this customized metric to
obtain final frame field. Furthermore, 2D singularity-free
frame fields have found applications in line drawing vector-
ization [13].

PolyVectors are sets of vectors that are unordered and
represented as the roots of a complex polynomial. A smooth
PolyVector field can be computed by solving a sparse lin-
ear system without integer variables [10]. By eliminating
discrete curls, one can obtain integrable PolyVector fields.
These integrable fields are particularly useful for computing
global parameterization that adheres to specific alignment
constraints [11]. Sageman-Furnas et al. [27] formulated
the global parameterization problem in terms of commut-
ing PolyVector fields, and designed an efficient optimiza-
tion method to solve it. Based on the modification of holo-
nomic signature loops, Shen et al. [28] developed a method
aimed at generating parameterizations that are locally injec-
tive and globally holonomic.

Cone singularities play a critical role in controlling the
area distortion of surface parameterization. Various heuris-
tics and optimization frameworks are proposed to automat-
ically determine the singularity configuration[1, 30, 20, 21,
5, 8, 29]. Campen et al. [7] showed that for arbitrary given
sets of topologically admissible parametric cones with pre-
scribed curvature, a global seamless parametrization always
exists.

Our paper has close contact to the seminal paper of
Bunin [6], who developed an elegant algorithm for com-
puting conformal parameterization of simply connected do-
mains. His method computes conformal factor φ by solving
Poisson’s equation with user-provided singularities. The
gradient of φ induces an integrable cross field, which yields
a conformal parameterization. Manual singularity selection
heavily relies on human geometric intuition and trial and er-
ror. We extend Bunin’s original idea to surfaces of arbitrary
topology by tackling the challenge of integrability. Our
method can automatically determine the singularity config-
uration and also allows the user to control the number of
singularities by tuning a parameter with intuitive meaning.



(a) Initial random cross field θ0 (b) Smooth cross field θ1 (c) Smooth & integrable field θ2 (d) Induced parameterization (u, v)

Figure 1. Based on the theoretical results, we develop an automatic method for computing smooth and integrable cross fields on 3D
surfaces of complex topology. The algorithm takes as input an random cross field with 4,341 positive (red) and 4,397 negative (blue)
singularities (a). It first smoothens the cross field by iteratively adjusting singularities. When two singularities of opposite indices meet,
they annihilate, resulting in a drop of the Dirichlet energy. When all singularities stop moving, the Dirichlet energy reaches a local
minimal. The corresponding cross field is smooth and has only 85 positive and 141 negative singularities (b). However, this cross field is
not integrable since the surface is multiply connected. We visualize the vector field c (see the insets) and show that moving singularities
along the field direction of c reduces c, hereby improving integrability. When c ≡ 0, the cross field is both smooth and integrable (c),
which naturally induces a global conformal parameterization (d) whose parameter lines are well aligned with the field. Each positive (resp.
negative) singularity has a cone angle π

4
(resp. −π

4
). The area and angle distortions are EAD = 1.015 and ESD = 1.076, respectively.

The closer the distortion metrics to 1, the lower the distortions. We show the discrepancy field c in the small insets in (b) and (c).

3. Smooth Cross Fields

A cross field on a surface is defined as a pair of per-
pendicular tangent directions. The degree of freedom for a
cross field is 1. Consider a cross field θ defined on a smooth
surface Ω. The cross field undergoes rotation as it moves
along a path on the surface. To quantify this rotation, we
associate a unique vector field ω with θ, where ω · dl rep-
resents the rotation angle along the line element dl, and ·
denotes the vector dot product. The magnitude of ω repre-
sents the rotation speed. In this paper, we refer to ω as the
rotation vector field of the cross field θ. It is important to
note that the rotation vector ω is undefined at singularities
due to its magnitude becoming infinity.

θ1 ω1 ∥ω1∥

θ2 ω2 ∥ω2∥
Figure 2. Cross field and its associated rotation vector field. Top:
A smooth cross field θ1 is generated using boundary constraints
only. Its induced rotation field ω1 has a vanishing divergence ev-
erywhere. Bottom: In the case of the cross field θ2 where a direc-
tional constraint is added at an interior point, it induces a rotation
vector field ω2 in which that point becomes a source of the rota-
tion field. We visualize the magnitude ∥ω∥ using the heat color
map, where cold colors indicate small magnitudes and warm col-
ors large magnitudes.

The rotation vector field ω can be seen as analogous to

the gradient field of a scalar function, as the cross experi-
ences the highest rotation speed while parallelly transported
along ω. However, we cannot express ω as ∇θ, since θ is
not a function, lacking a reference direction unless Ω has
zero Gauss curvature everywhere. In Figure 2, we provide
two examples of cross fields and their associated rotation
vector fields.

In cross fields, singularities are isolated points where the
direction field shows discontinuity, and they are inevitable
in all but the simplest shapes. Each singularity, denoted as
si, is associated with a non-zero index I(si). This index,
which is a multiple of 1

4 , characterizes the behavior of the
cross field in the vicinity of si. Figure 3 illustrates the typ-
ical types of singularities, with their indices ranging from
−1/2 to 1/2. According to the Poincaré-Hopf Theorem,
for a closed, orientable surface of genus g, the sum of all
the indices of singularities in a cross field equals the Euler
characteristic 2− 2g.

I(vi) =
1
2 I(vi) =

1
4 I(vi) = − 1

4 I(vi) = − 1
2

Figure 3. Illustration of singularities in cross fields. The red and
blue curves are the integral curves intersecting the singularity.

By applying the Gauss-Bonnet Theorem, it is easy to see
that for an arbitrary simply connected subset D ⊂ Ω, the
rotation vector field ω satisfies [6]∮

∂D

ω · dl = −
∫∫

D

Kdσ + 2π
∑
si∈D

I(si), (1)

where K is the Gaussian curvature, and dl and dσ are the



line and area elements, respectively.
Let S = {si|si ∈ Ω} denote the set of singularities of

the cross field θ. Equation (1), which represents a constraint
on ω in integral form, can also be expressed in a differential
form as follows:

(∇× ω) (x) · n = −K(x) + 2π
∑
si∈S

δ(x− si), (2)

where x is an interior point of Ω, n is the surface normal
and δ(x− si) denotes the Dirac delta function.

Since the rotation vector ω describes the rotational be-
havior of the cross field θ between points, excluding singu-
larities, it is natural to use ∥ω∥2 as a measure of the smooth-
ness of the cross field θ. The smoothness energy of cross
field θ is then defined as:

Esmooth =

∫∫
Ω

∥ω∥2 dσ. (3)

By applying the variational method to (3), it becomes ap-
parent that if the cross field θ has a locally minimal smooth-
ness energy, the corresponding rotation vector field ω must
be divergence-free, satisfying the condition

∇ · ω = 0. (4)

We define the smoothness of a cross field θ by the condition
that its associated rotation vector field ω satisfies (4) . All
subsequent discussions regarding cross field in this paper
assume their smoothness, as this is a prerequisite for the
application of Bunin’s theory.

4. Simply-Connected Domains

As our work builds upon the theoretical framework es-
tablished by Bunin, we provide a brief overview of his key
findings in this section. Throughout this section, we refer to
Ω as a simply connected domain.

4.1. Boundary-aligned Conformal Parameterization

Let r(u, v) : R2 → Ω be a conformal parametrization
of Ω, whose parameter lines are aligned with the domain
boundary. The tangent vectors ru and rv are perpendicular
to each other

ru ⊥ rv

and have equal length

∥ru∥ = ∥rv∥.

Thus, the normalized tangent vectors (ru/∥ru∥, rv/∥rv∥)
form a cross field1 on Ω.

1For notation purpose, we use a 2-tuple of orthogonal vectors to denote
a cross field, which allows us to match them to the gradients of the u and
v parameters.

Since the parameterization r is aligned with the surface
boundary ∂Ω, the cross field should rotate by an angle equal
to the geodesic curvature of the boundary when traversing
along ∂Ω. Consequently, the associated rotation vector ω
satisfies the equation

ω · t = κg

for all boundary points, where t represents the unit tangent
vector along ∂Ω and κg denotes the geodesic curvature.

Conformal factor e−φ, which is defined as

e−φ = ∥ru∥,

characterizes the local cell size. Intuitively speaking, the
gradient ∇φ (shown in orange in Figure 4) represents the
direction in which the change rate of cell size is highest.

Figure 4. Gradients of a boundary-aligned conformal parameteri-
zation.

Bunin proved that for simply connected domains, the
gradient of conformal factor φ at interior points is perpen-
dicular to the rotation vector, i.e.,

∇φ = n× ω, (5)

where n the outward normal of Ω. For any boundary point,
the following condition

∇φ · nb = κg

holds, where nb is the normal of the boundary ∂Ω.
Substituting (5) into (1) yields∮

∂Ω

∇φ · nbdl = −
∫∫

Ω

Kdσ + 2π
∑
si∈Ω

I(si), (6)

Since Ω is simply connected, applying the Gauss-Bonnet
Theorem yields∑

si∈Ω

I(si) =
1

2π

(∫∫
Ω

Kdσ +

∮
∂Ω

κgdl

)
= 1. (7)

Equation (7) is a necessary condition for the singularities
of a conformal parameterization on a simply connected do-
main. Bunin showed that this condition is also sufficient [6].



Therefore, given an arbitrary set of singularities that satisfy
(7), there exists a unique conformal parametrization with
parameter lines aligned with the domain boundary.

Since ∥∇φ∥ = ∥ω∥, the smoothness energy of the cross
field θ is equal to the Dirichlet energy of the conformal fac-
tor

Esmooth(ω) = EDirichlet(φ),

revealing the deep relationship between smooth cross fields
and boundary-aligned conformal parameterization.

Note that Equation (5) immediately implies

∇ · ω = ∇ · (∇φ× n)

= (∇×∇φ) · n−∇φ · (∇× n)

= 0,

which confirms the rotation vector field ω is divergence free
as in Equation (4). Bunin also proved that for simply con-
nected domains, the condition ∇ · ω = 0 is sufficient for
θ being smooth. Therefore, computing a boundary-aligned
conformal parameterization in simply connected domains
is equivalent to constructing a smooth cross field. In other
words, a smooth cross field in simply connected domains is
guaranteed to be integrable.

4.2. Bunin’s Algorithm

Given a set of singularities satisfying Equation (7) in
a simply-connected domain, Bunin’s algorithm first solves
the differential form of (6), which is Poisson’s equation

∇ · ∇φ(x) = 2π
∑
si∈S

δ(x− si)−K(x), (8)

for interior point x /∈ ∂Ω, with the Neumann condition to
boundary points x ∈ ∂Ω

∇φ(x) · nb = κg(x). (9)

After obtaining the conformal factor e−φ, Bunin con-
structed a cross field θ using the gradient ∇φ. Since the
cross field θ is integrable, the conformal parameterization
can be obtained by integrating the cross field θ.

5. Multiply-Connected Domains

In simply-connected domains, Bunin showed that φ sat-
isfying (8) and (9) can guarantee the existence of cross field
with rotation vector ω ⊥ ∇φ. Unfortunately, such a prop-
erty does not hold in multiply connected domains. The key
difference between simply- and multiply-connected domain
is that not every simple loop in a multiply-connected do-
main borders a region.

Let Ω be a multiply connected domain with or without
boundary. Let φ : Ω → R be a scalar function defined on
Ω satisfying (8). Let θ be an integrable cross field sharing

the same singularities of φ. Consider a simple loop C ⊂ Ω
that does not pass through any singularity. Parallel transport
a cross along C. When returning to the starting point, the
cross overlaps with its initial position. This means that the
angle change in the parallel transport of the cross along C
is a multiple of π

2 radians,∮
C

(ω · t− κg) dl =
kπ

2
,

for some integer k ∈ Z, where t is the unit tangent vector
and κg is the geodesic curvature of C. Assume the rotation
vector ω of cross field θ is perpendicular to the gradient ∇φ.
Then φ satisfies∮

C

(−∇φ · nb − κg) dl =
kπ

2
, k ∈ Z (10)

where nb is the normal vector of C. Equation (10) is the ad-
ditional condition that φ must obey to ensure the existence
of integrable cross field θ with ω ⊥ ∇φ.

Applying the Green’s theorem and the Gauss-Bonnet
theorem, it is easy to show that Equation (10) holds auto-
matically if C is the boundary of a simply connected do-
main and φ satisfies (8). Thus, this condition is redundant
for simply connected domains.

However, Equation (10) does not hold if C does not bor-
der a region. Figure 5 shows an example that φ, defined on
a two-holed annulus, satisfies (8) but its gradient ∇φ does
not satisfy (10). Therefore, Bunin’s algorithm works only
for simply connected domains.

Let S be a smooth surface. To obtain a conformal pa-
rameterization well aligned with a given cross field V =
(α, β), V must be integrable. Specifically, a cross field on
a smooth surface S is integrable if there exists scalar func-
tions u : S → R, v : S → R, λ : S → R+ and µ : S → R+

such that ∇u = λα and ∇v = µβ, where ∇ is the gradient
operator. Since the curl of a gradient is zero, the integrable
condition is equivalent to

∇× α = ∇× β = 0.

In other words, a cross field is integrable it satisfies the curl-
free condition.

If the cross field V has singularities and/or the surface
has a non-disk topology, one needs to cut S open into a sin-
gle, disk-topology patch with all singularities on its bound-
aries. Although the function values u (resp. v) are discon-
tinuous on the two sides of the seam, as long as their gradi-
ents ∇u (resp. ∇v) match, the parameterization is seamless.

We define the discrepancy field to measure the differ-
ence between the gradient of conformal factor and the cross
field’s rotation vector,

c ≜ ∇φ− n× ω. (11)



(a) θ1 (b) ω1 (c) φ1 (d) ∇φ1 (e) c1 (f) (u1, v1) (g) θ2 (h) ω2 (i) φ2 (j) ∇φ2 (k) c2 (l) (u2, v2)
Figure 5. Smoothness does not automatically imply integrability in multiply connected domains. (a) Consider a cross field θ1 = (α, β)
with locally minimal smoothness energy defined on a two-holed disc. There are four singularities of indices −1

4
. (b) The associated rotation

vector field ω1 is divergence-free. (c) Using the singularities of θ1, we compute the conformal factor e−φ1 by solving Poisson’s equation
(8). (d) The gradient ∇φ1 is not perpendicular to the rotation vector ω1. (e) Consequently, the discrepancy field c1 = ∇φ1 −n×ω1 does
not vanish, indicating that the cross field θ1 is not integrable. (f) As a result, the induced parameterization (u1, v1), which is the minimizer
of ∥∇u1 − α∥2 + ∥∇v1 − β∥2, is neither conformal nor aligned with θ1. (g-k) Optimizing the locations of singularities can significantly
reduce the discrepancy field, leading to an integrable cross field θ2. (l) shows the induced conformal parameterization (u2, v2) that is well
aligned with the cross field θ2.

We prove a smooth cross field is integrable if and only if the
discrepancy vanishes everywhere except at the singularities.

Theorem 1 Let S be a smooth surface of arbitrary topol-
ogy and θ = (α, β) a smooth and boundary-aligned cross
field defined on S. The cross field θ is integrable if and
only if its discrepancy vector c = 0 vanishes for all regular
points.

6. Continuous Setting

We present a new approach for automatically comput-
ing a smooth and integrable cross field that 1) aligns with
the surface’s boundaries and the user-specified directional
constraints (if any); 2) has an optimal set of singularities so
that the induced conformal parameterization has low area
distortion; and 3) works for surfaces of arbitrary topology.

We first construct a smooth cross field θ by minimizing
the Dirichlet energy (3). Though θ has locally minimal en-
ergy, it is not integrable in multiply connected domains. To
eliminate curls, we fix the singularities’ indices and number,
and then optimize their locations.

In computing smooth cross field and eliminating curls,
we treat singularities as moving geodesic disks and deter-
mine their number, indices and locations by iteratively ad-
justing singularities. This feature distinguishes our method
from the existing optimization based approaches.

6.1. Computing Smooth Cross Fields

6.1.1 Singularity Movement

Starting from a randomly initialized cross field θ(0), we first
compute conformal factor φ by solving Poisson’s equation
(8) with the singularities of θ. The gradient ∇φ and its iπ2
rotations, i = 1, 2, 3, form a new cross field θ(1), which is
obviously smoother than θ(0).

Let ω(1) be the rotation vector field of θ(1). Since
∥ω(1)∥ = ∥∇φ∥, the smoothness of cross field θ(1) is also
the Dirichlet energy of φ. As pointed out by Knöppel et
al. [18], ∥∇φ∥ → ∞ is infinite at singularities. So we must
remove singularities to obtain a finite energy. We model

each singularity si as a geodesic disk Dr0(si) and define
the smoothness energy for θ(1) as follows

Esmooth(θ
(1), r0) =

∫∫
Ω\

⋃
si∈S Dr0

(si)

∥∇φ∥2dA. (12)

The disk radius r0, which is a user-specified parameter,
plays an important role in controlling the number of sin-
gularities and the area distortion of conformal parameteri-
zation.

Notice that ∇φ is implicitly controlled by 1) the Gaus-
sian curvature K of the domain Ω and 2) the singularities.
Since we are not allowed to change K, a possible way for
reducing the Dirichlet energy of θ(1) is to modify the singu-
larities.

Consider an arbitrary interior, non-singular point x ∈
Ω\∂Ω with ∇·∇φ(x) = −K(x) ̸= 0. Note that the magni-
tude ∥∇φ(x)∥ increases in the direction ∇φ and decreases
in the opposite direction −∇φ. Moving the geodesic disk
Dr0(si) singularity along (∇ ·∇φ)∇φ reduces the area in-
tegral

∫∫
Ω\Dr0

(si)
∥∇φ∥2, hereby decreases the Dirichlet

energy. This intuition motivates us to move each singularity
along the field direction of the gradient field ∇φ.

If singularities were isolated points, moving a singularity
would be a piece of cake since the moving direction is read-
ily available. However, as mentioned above, we model sin-
gularities as geodesic disks to obtain finite Dirichlet ener-
gies. Therefore, we need to consider the individual “force”
for every point inside the geodesic disk and then compute a
combined “force” to move the disk. Specifically, we need
to compute the area integral

F(si) =

∫∫
Dr0 (si)

(∇ · ∇φ)∇φdA.

In Appendix A, we show that the above area integral is
equivalent to a loop integral on the disk boundary

F(si) =

∮
∂Dr0

(si)

T · ndl, (13)



where T is Maxwell tensor

T = ∇φ⊗∇φ− 1

2
∥∇φ∥2I. (14)

We can move all singularities with the forces F(si), i =
1, 2, · · · , |S|. When two singularities of opposite indices
meet, they cancel out each other, resulting a sharp decrease
of the smoothness energy. Furthermore, a singularity with
index ± 1

2 can also split into two singularities with index
± 1

4 . When all singularities stop moving, the smoothness
energy reaches a local minimum and the induced cross field
θ is smooth.

6.1.2 Global Singularity Pairing

We observe that for surfaces with simple geometry (i.e., the
Gaussian curvatures are of the same sign), electric forces
can drive singularities to globally optimal locations, as
shown in Figure 11. However, for general surfaces with
mixed positive and negative Gaussian curvatures, singulari-
ties often get stuck at locally optimal positions, since elec-
trostatic forces only drive them locally and cannot merge
two singularities that are far away to each other (see Fig-
ure 6).

(a) Unbalanced singularities (b) Local adjustment (c) Global pairing

Figure 6. Local adjustment vs global pairing. (a) Given a sym-
metric peanut-shaped surface, we design a smooth cross field with
unbalanced singularities: 4 positive and 2 negative singularities on
the left side, and 6 positive singularities on the right. (b) Using
only local adjustment, two negative singularities are merged with
two nearby positive ones, resulting in 4 singularities on the left.
However, since the extra singularities on the right cannot go to the
left side, the resulting cross field still has unbalanced singularities.
(c) Using the global pairing strategy, we can drive singularities in a
much large scale, producing a balanced result with 4 singularities
on each side.

To overcome this difficulty, we propose a simple yet ef-
fective heuristic that merges singularities at a large scale.
Specifically, we identify a pair of vertices, named vmax and
vmin, which have the largest and smallest conformal factors,
respectively. We call them the peak and the valley. Then we
compute a shortest path γ(vmax, vmin) between them. Next
we neutralize the value difference by moving vmax and vmin

towards each other along γ.
Since the peak vmax and the valley vmin are not neces-

sarily singularities, we consider four cases:

• Case 1: both vmax and vmin are regular vertices. A pair
of singularities with opposite signs are created, i.e., a
negative singularity at vmax and a positive singularity
at vmin. Therefore, the total number of singularities is
increased by 2.

• Case 2: vmax is a positive singularity and vmin is regu-
lar. The singularity is moved from vmax to vmin. After
that, vmax becomes regular and vmin is a positive sin-
gularity.

• Case 3: vmax is regular and vmin is a negative singu-
larity. The singularity is moved from vmin to vmax.

• Case 4: both vmax and vmin are singular. The two sin-
gularities annihilate, reducing the number of singular-
ities by 2.

The radius of geodesic disk r0 has a significant impact on
singularities. Recall that given two disks centered at the
same point but with different radii, the small disk has a
higher Dirichlet energy, since it has larger integration do-
main. The smaller the radius r0, the higher the Dirichlet
energy, the steeper the peak and the valley of the conformal
factor φ, therefore, the higher the chances of both vmax and
vmin being singular (case 4), and the fewer the number of
singularities. Conversely, the larger the radius r0, the lower
the Dirichlet energy, the shallower the peaks and the val-
leys of φ, therefore, the lower the chances of vmax and vmin

being singular (case 1) and the more the number of singu-
larities. In our algorithm, the user can tune r0 to control the
number of singularities.

Figure 7. Consider two sets of singularities with the same indices
but different radii. The singularities on the left have larger radii
than the ones on the right. The small singularity (right) produces
a stronger vector field ∇φ with steeper peaks and valleys of the
value φ. We visualize φ as a color-coded height function.

Remark 1. Our global pairing strategy shares some
spirit with Ben-Chen et al.’s method [1], which iteratively
adds singularities to the locations with the largest confor-
mal factor difference. The algorithm terminates when the
conformal factor difference is below a user-specified thresh-
old. Our global pairing strategy also deals with the vertex
pair with the largest conformal factor difference. However,
we allow them to move towards each other along a simple
path. After they meet, the conformal factor field will change
significantly. We keep the new field if it has lower energy
than the previous one. Then we perform the local singular-
ity adjustment to further reduce the Dirichlet energy. Our
method terminates when global pairing cannot yield a cross
field with lower energy.
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Figure 8. The disk radius r0 plays a critical role in computing smooth cross fields. This toy model has 1 positive singularity and 1 negative
singularity, drawn as orange and blue spheres respectively. Given the same conformal factor φ, we set a small radius in (a) and a large
radius in (d). Let A be the surface area. (a) With a small radius r0 =

√
A10−3.5, the smoothness energy is E(a) = 3.816. Since both

vmax and vmin are singular, applying the global pairing strategy annihilates the singularities (case 4) and produces a singularity-free cross
field (b) with energy E(b) = 3.009 < E(a). The resulting parameterization is shown in (c). (d) With a large radius r0 =

√
A10−2.0, the

smoothness energy is E(d) = 2.460. Since both vmax and vmin are regular, pairing them produces a pair of singularities with opposite
sign (case 1). Now the cross field has 4 singularities (e) and its Dirichlet energy is E(e) = 2.019 < E(b). Therefore, the induced
parameterization (f) has lower area distortion than (c).

6.2. Eliminating Curls

Minimizing the Dirichlet energy produces a smooth
cross field, which in general contains curls if the domain
is multiply connected. As discussed above, the key chal-
lenge is that in a multiply connected domain, the rotation
vector ω of a smooth cross field θ may not be perpendicular
to the gradient of φ that satisfies (8) and shares the same set
of singularities as θ (see Figure 5(a-d)). To characterize the
difference between ω and ∇φ, we define a vector field c

c = ∇φ− n× ω, (15)

where n is the unit outward normal of Ω. Clearly, if c ≡ 0,
the cross field θ is integrable. In the following, we first
examine the properties of c, and then present our method to
eliminate curls in θ.

6.2.1 Properties

Since ω and φ share the same set of singularities, subtract-
ing (2) from (8) yields (∇× ω) · n = ∇ · ∇φ. Computing
the divergence of c, we obtain

∇ · c = ∇ · (∇φ− n× ω)

= ∇ · ∇φ− (∇× n) · ω − n · (∇× ω)

= 0, (16)

which means c is divergence free.
Also note that θ is a local minimizer of Esmooth. Thus,

we have ∇ · ω = 0. Computing curl of c yields

∇× c = ∇× (∇φ− n× ω) ,

= ∇×∇φ−∇× (n× ω)

= 0. (17)

Therefore, vector field c is also locally curl-free. Since there
are no sources and sinks in c, each integral curve of c is a
cycle.

We show that moving the singularities along the field
lines decreases the energy

∫∫
∥c∥2. Therefore, a naı̈ve ap-

proach could proceed as follows: compute the forces for

all singularities and move them along the field line with a
small time step. Repeat the procedure until all singularities
stop moving. This approach is conceptually simple, how-
ever it is time consuming, since the forces are local and can
only update the singularities locally. To improve the perfor-
mance, we develop a two-step approach: in the first step, we
rotate the cross field θ while fixing the locations of singular-
ities, resulting in a sharp change of c; in the second step, we
move the singularities along the field lines, changing ∥c∥ in
a continuous manner.

6.2.2 Discrete Adjustment

Let C a non-contractible loop that passes no singularity and
has consistent sign of

∫
c · dl. Denote by C+ the side sat-

isfying c · dl > 0 and C− the opposite side. We solve
Laplace’s equation

△ψ = 0 (18)

with Dirichlet boundary condition

ψ|C+ − ψ|C− =
π

2
. (19)

Then we rotate θ by an angle ψ. The rotated cross field is
still smooth since ψ is the solution of Laplace’s equation. It
is also continuous across C due to the boundary condition
(19) and rotational symmetry of the cross field.

To see how the rotation changes c, let us compute the
loop integral J that measures the strength of c

J =

∮
C+

c·dl =
∮
C+

∇φ·dl−
∮
C+

ω·nbdl = −
∮
C+

ω·nbdl,

where nb is the outward normal of C. The last equality
comes from the fact that φ is a single-valued function and
its gradient is curl free. J is positive due to the chosen ori-
entation of C+. Therefore, J can be viewed as the inward
flux of vector field ω. Rotating θ by an angle ψ means ω
is also rotated by the same angle. As a result, J changes
sharply due to the rotation.



θ1 c1 θ2 c2
Figure 9. Discrete adjustment. The cross field θ0 is smooth but
non-integrable due to c1 ̸= 0. We compute a rotation angle ψ by
solving Laplace’s equation (18) with Dirichlet boundary condition
(19) on C (green curve). The rotated cross field θ2 is still smooth
and continuous along C, but its vector field c2 vanishes, hereby θ2
is integrable.

6.2.3 Continuous Adjustment

In continuous adjustment, we move singularities along field
lines. To see why this kind of singularity movement reduces
c, let us consider a non-contractible loop L passing through
no singularity and compute the flux

I =

∮
L

c · nbdl =

∮
L

∇φ · nbdl −
∮
L

ω · tdl,

where nb is the normal of L and t is the tangent of L. The
flux measures the net number of field lines through L, indi-
cating the strength of the field c. Note that

∮
L
ω · tdl is a

multiple of π
2 radians, which is a constant. Therefore, flux

I totally depends on the first loop integral.
Now we examine the movement of a singularity s near

L. Denote by Lin the side of L that c enters, and Lout the
side that c leaves. There are 4 cases to consider:

• I(s) < 0 and s lies on the same side of Lin. Moving
s along −c makes it away from L. As a result, ∇φ’s
contribution to the integral becomes smaller, so I is
reduced. See Figure 10(a).

• I(s) > 0 and s lies on the same side of Lin. Moving s
along c makes it closer to L. For points on L, ∇φ and
c are of opposite direction, so the contribution of ∇φ
to the integral decreases, so does I . See Figure 10(b).

• I(s) < 0 and s lies on the same side of Lout. Moving
s along −c makes it closer to L. Since ∇φ and c are of
opposite directions for points on L, I decreases. See
Figure 10(c).

• I(s) > 0 and s lies on the same side of Lout. Moving
s along c makes it away from L, so the contribution of
∇φ to I decreases. See Figure 10(d).

Putting it all together, we can reduce the flux I by mov-
ing a positive singularity in the direction c and a negative
singularity in the direction −c.

The divergence-free feature of c implies that two cycles
of the same homology class have equal flux. Thus, if we
reduce the flux for a cycle L, then the fluxes for all cycles
that are homologous to L are also reduced.

Algorithm 1: Computing Smooth Cross Fields
Data: A triangular mesh M = (V,E, F ), the disk

radius r0, and (optional) sparse hard
directional constraints defined on triangular
faces

Result: A smooth cross field θ
/* Initialization */
for each face f ∈ F do

if f is on the boundary then
generate a fixed cross using the boundary
direction on f ;

else if f has a directional constraint then
generate a fixed cross using the constraint on
f ;

else
generate a random cross on f ;

end
Factor the Laplacian matrix using Cholesky
decomposition;

/* Smoothing θ via iterative singularity adjustment
*/
k = 0; Emin = ∞; θ∗ = θ;
while k < kmax do

Compute conformal factor φ using the
singularities of θ;

Find vmax and vmin with the largest and smallest
φ;

Find a shortest path γ from vmax to vmin;
for every edge eij ∈ γ do

/* Assume vi (resp. vj) is close to vmax

(resp. vmin) */
Move singularity from vi to vj ;

end
Re-compute φ using the singularities of θ;
for each edge eij ∈ E do

/* Fij records the maximal force on edge eij
so far */ Fij = 0;

end
do

done = true
for each singularity si do

Compute Maxwell tensor
T = ∇φ⊗∇φ− 1

2∥∇φ∥
2I;

Compute force F(si) =
∮
∂Dr0

(si)
Tndl;

Find edge eij = (si, vj) with the largest
|F(si) · eij |;

if |F(si)| > Fij then
Move singularity from si to vj ;
Fij = |F(si)|

end
Compute φ using the singularities of θ;

while !done;
Compute Esmooth(θ);
if Esmooth(θ) < Emin then

k = 0; Emin = Esmooth(θ); θ∗ = θ;
else

k ++;
end
Output θ∗;



(a) (b) (c) (d)
Figure 10. Continuous adjustment. Moving singularity along the
field lines reduces c. A positive (orange) singularity corresponds
to locally maximal φ, i.e., ∇ · ∇φ < 0, so that the gradients
∇φ point towards the singularity. Conversely, a negative (blue)
singularity corresponds to locally minimal φ, ∇ · ∇φ > 0, so the
gradients ∇φ emanate from the point.

7. Discrete Algorithm

Our algorithm is a fairly straightforward implementation
of the physical model presented in Sections 6.1 and 6.2. We
show the pseudo code in Algorithm 1 and the implementa-
tion details in Appendix.

Step 1: Initializing θ. For each boundary face and face
with directional constraint, we create a fixed cross using the
given direction. Then we generate a random cross for all
other faces.

Step 2: Computing Smooth Cross Field. Taking the
singularities of the initial random cross field as input, we
solve Poisson’s equation (8) to compute the initial confor-
mal factor φ. Find the vertices vmax and vmin with the high-
est and lowest φ. Merge them via a simple path and update
the field ∇φ. Then move the singularities along the field
lines. When the singularities stop moving, we obtain an φ
with a locally minimal Dirichlet energy. If the current en-
ergy is lower than the previous energy, we call the merging
vmax and vmin successful. The algorithm then merges an-
other pair of vertices with the largest value difference and
repeats the above procedure. Step 2 stops if there are kmax

failed merges in a row. We set kmax = 3 in our implemen-
tation.

Step 3: Eliminating Curls. The electrostatic field com-
puted in Step 2 induces a smooth cross field θ, which may
not be integrable if the input surface is multiply connected.
The vector field c = ∇φ−n×ω measures the curls in cross
field θ. In Step 3, we aim at making c ≡ 0 (if possible) by
adjusting θ and the locations of singularities separately.

We perform the discrete adjustment (Step 3.1) in a trial-
and-error manner. We find a point p with the highest ∥c∥
and a non-contractible loop C that passes through p and has
consistent sign of

∫
c·dl. Then we solve Laplace’s equation

△ψ = 0 (18) using C as the boundary condition. We rotate
θ and ω by angle ψ. The rotated cross field θ yields a new
c. We compute the energy

Ec =

∫∫
M

∥c∥2dσ,

which is the potential energy of c. If the current energy is
less than the previous one, the adjustment is successful. We

Algorithm 2: Curl Elimination
Data: A triangular mesh M = (V,E, F ) and a

smooth cross field θ defined on triangular
faces

Result: A smooth and integrable cross field θ
Computer the rotation vector ω of θ;
Compute c = ∇φ− n× ω;
/* Reducing c via rotating θ */
Emin =

∫∫
M

∥c∥2dσ;
while true do

Find the point p with the highest ∥c∥;
Find a loop C containing p and having

consistent sign c · dl;
Solve Laplace’s equation (18) to compute ψ;
Rotate θ and ω by angle ψ;
Update c with the rotated ω;
Compute Ec =

∫∫
M

∥c2∥dσ
if Ec < Emin then

Save the current cross field θ; Emin = Ec;
else

Restore the previously saved θ; break;
end
/* Reducing c via moving singularities */
Compute φ using the singularities of θ;
Set fmax|eij = 0 for each edge eij ∈ E;
done = false;
while !done do

done = true;
for each singularity si do

Set fc(si) = 2πI(si)c(si) for each
singularity si;

Find the singularity vi with the largest force
∥fc∥;

Find the incident edge eij with the largest
|fc · fc|;

Compute fij =
fc(vi)·−−→vivj

∥−−→vivj∥
;

if |fij | > fmax|eij then
fmax|eij = fij ;
Move singularity from si to vj ;
Update θ and ω;
Compute φ with the same set of

singularities of θ;
Update c = ∇φ− n× ω;
done = false;

end
end

keep doing the coarse adjustment until the energy cannot be
decreased any longer.

The continuous adjustment (Step 3.2) optimizes the sin-
gularities’ locations to further reduce ∥c∥ and is also car-
ried out in an iterative manner. We define the electrostatic
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Figure 11. Electrostatic forces can drive singularities to globally optimal positions on surfaces with Gaussian curvatures of the same sign.
Random cross fields are generated on a 2D disk (K = 0), a hemiellipsoid (K > 0) and a monkey saddle surface (K < 0). After 30
iterations, . See also the accompanying video.
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Figure 12. Controlling area distortions by the disk radius r0. The larger the radius, the more singularities generated, which usually leads
to parameterization with less area distortion. The 3-tuple below each figure is − log10 r0, the number of singularities |S| and the area
distortion metric EAD . The right-most figure shows the r0-EAD-|S| plots.

force for singularity s as 2πI(s)c(s). In each iteration, we
find a singularity si with the largest force. Then we move
it along the field line. To avoid getting stuck in an end-
less loop, we track the force for each mesh edge. We only
continue the movement if the current force is greater than
the previously stored force. The algorithm terminates if no
singularity can move. If the final energy Ec is small, the
cross field is smooth and integrable; otherwise, the direc-
tional constraints are incompatible, and the user needs to
remove and/or modify some constraints.

0

0.3

(a) Ec = 0.266 (b) Ec = 0.257 (c) Ec = 1.182× 10−4

Figure 13. Discrete and continuous adjustments for curl elimina-
tion. (a) A smooth cross field with curls. (b) After discrete ad-
justment of θ, the curl is reduced, but not vanished yet. (c) Fine
tuning the locations of singularities makes c sufficiently small, and
the resulting θ becomes integrable.

Our algorithm has only one parameter, the disk radius
r0 which controls the number of singularities. It is fully
automatic and does not require any user interaction.
Remark 2. It is also worth noting that since ∥c∥ is finite at
singularities, we do not need to remove singularities when
computing Ec. Also, Ec is unitless since the unit of ∥c∥ is
the reciprocal of edge length.
Remark 3. Though the discrete setting (Section 5) shares
most of the spirit of the continuous setting (Section 4), there
are two major differences that require us to pay more atten-
tion in our algorithm design. First, in the continuous set-
ting, we treat singularities as moving geodesic disks with
radius r0. Since computing geodesic distances is expen-
sive, to simplify our implementation, we model singulari-
ties as vertices together with their 1-ring neighboring trian-
gles. To compute the smoothness energy Esmooth, we first
compute the area integral without the 1-ring triangles inci-
dent to singularities and then add a compensation term for
each singularity (see Section A.4 in Supplementary Mate-
rial). Such a term reduces the bias caused by the different
triangle sizes. Similarly, we have a compensation term in
computing conformal factor φ at singularities (see Section
A.9 in Supplementary Material). Second, in the continuous



setting, we simply move each singularity si following the
direction F(si). In the discrete setting, singularities are al-
ways centered at vertices, so we can only move them from
vertices to vertices. In other words, we move singularities
along mesh edges. To do this, we find the edge eij that is
incident to si and has the least angle with F(si), and then
move singularity from si to vj .

8. Experimental Results

We implemented our algorithm in C++ and tested it on a
PC with Inter(R) Xeon(R) E5-1650 CPU and 16 GB mem-
ory. Our algorithm requires only a standard sparse linear
solver for computing conformal factor φ. In our implemen-
tation, we used Eigen2 to pre-factor the Laplacian matrix.
After that, solving Poisson’s equation (8) takes only lin-
ear time. Since our method iteratively moves singularities
on triangle meshes in both energy minimization and curl-
elimination, we assume the input meshes are reasonably
dense so that they can provide sufficient degrees of free-
dom. For low resolution inputs, we apply subdivision to
increase the resolution. The model sizes in our paper range
from 5K to 50K triangles. Our method is fairly efficient to
compute the smooth and integrable cross fields, taking less
than 20 seconds for all test models.

Global conformal parameterization. To demonstrate
the efficacy of our method, we apply it to compute global
conformal parameterization. We first cut the input mesh
into a topological disk so that the singularities are on the
boundary. Then we adopt the classic MIQ solver [3] to com-
pute an integer-valued parameterization. Thanks to the inte-
grability of our cross fields, the resulting conformal param-
eterizations match our cross fields closely and are seamless.
We adopt two commonly used metrics, the shape distortion
ESD and the area distortion EAD, to measure the quality
of conformal parameterization. They are derived by ana-
lyzing the first fundamental form of a parametrized surface.
Specifically, ESD is calculated based on the aspect ratio of
an ellipse that is generated by the metric matrix, whileEAD

is determined from the scalar stretch of the local area. The
equality ESD = 1 holds when the parameterization is ex-
actly conformal. Since both metrics are no less than one,
the closer the value to 1, the better the quality.
Relation between disk radius r0 and singularity config-
uration. The disk radius r0 has an important impact on
the number of singularities and the smoothness energy of
the cross field. Note that we exclude the geodesic disks
when computing the area integral for the smoothness energy
Esmooth. When the radius increases, the size of the integral
domain decreases, resulting in a smaller integral value. This
implies that we can add more singularities, each of which
has small index, without increasing the total smoothness

2http://eigen.tuxfamily.org/

energy. To ensure that the parameter is independent of the
model size, we define the radius r0 = 10−s

√
A, where A

is the surface area. We recommend the exponent s ∈ [1, 4].
Figure 12 shows the parameterization results on Stanford
Bunny with varying disk radii. We observe that the number
of singularities is roughly positively correlated with r0. The
small fluctuation in Figure 12 (right) is due to the trial-and-
error strategy in global pairing (Section 6.1.2).
Local injectivity is a desired feature of parameterization
methods. Although our method has no theoretical guar-
antee of local injectivity, evaluation on the 8i Voxelized
Full Bodies (8iVFB) database3 shows that our method does
not violate the local injectivity property. Figure 14 (right-
most) shows a typical example of parameterized model in
the database.
Boundary alignment. Our method supports boundary
alignment, since it takes boundary curves as the Dirichlet
boundary condition in computing cross fields (3). As a re-
sult, the filed lines are well aligned with the boundaries. See
Figure 15. This boundary alignment feature is particularly
desired in free-form architecture design. See Figure 19 for
an example.
Directional constraints are highly desired in cross field de-
sign and conformal parameterization. In general, adding
constraints produces curls in the cross field, making it non-
integrable. Fortunately, curls can be eliminated if there are
a sufficient number of singularities (see Figure 17). Our
method allows the user to specify sparse hard directional
constraints in a trial-and-error manner (see Figure 24). We
observed that sparse constraints are fairly effective to pro-
duce geometry-aware cross fields for simple shapes. For
example, one constraint on the base of the Greek Sculpture
model (Figure 14, rightmost) yields a perfect result, i.e.,
there are 8 singularities on the corners of the base. Plac-
ing 2 constraints on each finger of the hand model, we also
obtained cross fields that are well aligned with the cylindri-
cal geometry.
Sharp features. Our method partially supports sharp fea-
tures via specifying sparse constraints on sharp edges. Fig-
ure 25 shows the Fandisk model with 102 constraints, and
the resulting cross fields and conformal parameterization
are well aligned with most of the sharp features.
Extension. Our electrostatic model can be extended for
computing N -RoSy fields for arbitrary N ∈ Z+, where
the field index I(si) is a multiple of 1

N . Equations (8)(2)
and (6) for computing φ and θ, and the algorithms for min-
imizing the potential energy and eliminating curls remain
unchanged, since they do not rely on a particular value of
N . Figure 18 shows the result of 6-Rosy field and the in-
duced isotropic triangle mesh.
Comparison with Ben-Chen et al. [1]’s method. Both our
method and Ben-Chen et al.’s method use heuristics by con-

3http://plenodb.jpeg.org/pc/8ilabs
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Figure 14. Seamless conformal parameterization induced from our cross fields. Our method works well for smooth surfaces with or without
boundaries. The 4-tuple below each figure is the number of constraints |C|, the number of singularities Ns, the angle distortion ESD and
the area distortion EAD . Image is rendered in high-resolution, allowing zoom-in examination.

Method Domain Orthogonal Efficiency
Boundary Directional Dirichlet

Integrability
Singularity Sharp

alignment constraints energy number features
MIQ [3] 3D Yes Fair Yes Dense, hard/soft Low No Fair Yes

GODF [18] 3D Yes Fast No Dense, hard/soft Low No Fair Yes
FF [23] 3D No Fair Yes Dense, hard Low No Fair Yes
IPF [11] 3D No Fair Yes Dense, hard/soft Fair Yes Fair Yes
IOQ [12] 3D Yes Fair No No Low No Small No

m-harmonic [4] 3D Yes Fast Yes Dense, hard/soft Low No Fair No
GL-functional [32] 2D Yes Fast Yes No Low No Fair No

OF [34] 3D Yes Fair Yes Dense, soft Fair No Fair Yes
Chebshev Net [27] 3D No Fair Yes No Low Yes Small Yes

Metric Customization [16] 3D No Fair Yes Dense hard/soft Fair No Fair Yes
Ours 3D Yes Fair Yes Sparse, hard Low Yes Fair Fair

Table 1. Qualitative comparison of representative cross and directional field methods.

sidering the pair of points which have the largest conformal
factor difference. However, the differences between the two
methods are fundamental. First, the strategies are totally
different. Starting from a singularity-free configuration,
their method iteratively adds new singularities at the pair
of points with the largest conformal factor difference. Their
method stops when the conformal factor difference is below
a threshold. Our method starts from a random cross field
(which usually contains a large number of singularities) and
then adjusts the singularities by moving them following the
gradient of conformal factor. To avoid getting stuck at local
optimal, we force the two points with the largest confor-
mal difference to move towards each other, hereby reducing
the number of singularities. Second, their strategy is based
on the intuition that the point with the maximal/minimal
conformal factor is a good singularity candidate. Our strat-

egy, in contrast, is to annihilate the pair of points with the
largest potential difference, which reduces the gap between
the peak and the valley of φ, hereby is likely to reduce the
Dirichlet energy of the field and make the field smoother
(see Figures 8 and 12). Third, our method allows the user
to tune the number of singularities via tuning the disk ra-
dius (see Figure 12), while Ben-Chen’s method controls the
number of singularities by specifying the threshold of con-
formal factor difference. Fourth, our method aims at com-
puting integrable cross fields, and their method uses con-
formal factor to scale the metric and then computes a 2D
embedding. Our method yields seamless parameterizations
and their parameterizations have seams. Fifth, our method
supports sparse hard directional constraints and boundary
alignment, while Ben-Chen et al.’s method cannot.

Comparison with the GL-functional [32]. Ginzburg-
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Figure 15. Models with boundaries. The parameter lines are well
aligned with the boundaries and the locations of the singularities
also roughly capture the global/local symmetry of the input sur-
faces. No directional constraints are added. The value below each
cross field is the smoothness energy and the 2-tuple for the quad
meshes indicate the angle and area distortions.
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Figure 16. Compatible directional constraints. (a-b) show two
examples of conformal parameterization with compatible con-
straints. (c) shows a pair of incompatible constraints, and the re-
sulting cross field is not curl-free. (d) shows the vector field c ̸= 0.

Landau theory is sound and elegant, and can compute
boundary-aligned cross fields. However, it does not support
directional constraints and cannot guarantee integrability.
Also, Viertel and Osting [32] presented only planar cases
in their paper. To our knowledge, there is no implementa-
tion of GL theory on curved surfaces in the literature. Our
method supports sparse directional constraints, allows the
user to control the number of singularities, and guarantees
integrability. Moreover, our method works for both planar
domains and curved surfaces of arbitrary topology, since the
singularity operations (e.g., movement, merging and split)
are local and our method does not require a global coordi-
nate system. Moreover, in [32], the GL-functional is com-
puted over the entire domain including singularities. In con-
trast, our method removes singularities and their vicinities
to obtain tessellation independent energy. As a by-product,
our method allows the user to tune the radius of the geodesic

|C| = 0 |C| = 3 |C| = 6

|C| = 18
Figure 17. Our method allows sparse hard directional constraints.
The first row shows the toy model with 0, 3 and 6 constraints, re-
spectively. We observe that 6 constraints are sufficient to yield
high-quality geometry-aware parameterization. The second row
shows a cross field with 18 constraints, which is still smooth but
not integrable any longer. The non-integrability can be visualized
by the vector field c, which does not vanish. As a result, we must
cut the model into a topological disk and then compute a confor-
mal parameterization with seam (green curves).

Figure 18. Our method can be extended to compute smooth N -
RoSy fields. For the 6-RoSy field on the two-holed torus, there are
16 valence-7 and 6 valence-5 vertices, and the other vertices are
regular, i.e., with valence 6.

disk to balance the smoothness energy and the number of
singularities, whereas their method cannot control the num-
ber of singularities.
Comparison with IOQ [12]. First, IOQ is theoretically
sound and has an elegant formulation based on the resis-
tance distance matrix. Our method is loosely based on a
physics model that drives singularities to optimal locations.
Second, their method can be easily parallelized on GPUs,
but is still computationally expensive. For example, their
approximate algorithm takes around 20 seconds for a mesh
with 50K faces on an Intel Core i7 CPU and an NVIDIA
GTX 1080 Ti GPU, while our method takes no more than
3 seconds on the CPU only. Third, IOQ does not guarantee
integrability and cannot support directional constraints or
boundary alignment, while our method can. Fourth, IOQ is
numerically stable and can tolerate geometric noise of cer-
tain degree, while our method requires the input meshes are
smooth and free of noise. Fifth, for most of the test models,
IOQ produces fewer singularities than ours. However, we
observed that on high-genus models, their results often have



Figure 19. Applying our method to architectural geometry can
yield high-quality quadrilateral meshes, which provide more aes-
thetic value than triangle meshes. This example has 4 singu-
larities and low angle and area distortions ESD = 1.009 and
EAD = 1.033. Thanks to our boundary alignment feature, the
parameter lines are well aligned with the surface boundary.

larger area and angle distortions than ours (see Figure 21).
Comparison with other field methods. Table 1 list the
major directional field methods with features. We quantita-
tively compare our method with 5 representative directional
field methods: mixed integer quadrangulation (MIQ) [3],
globally optimal direction field (GODF) [18], integer-only
cross field (IOQ) [12], frame field (FF) [23], and integrable
polyvector field (IPF) [11]. Note that MIQ, GODF and IOQ
are cross fields, and FF and IPF are non-orthogonal fields.

A major application of cross field is to guide a global
parameterization. Our results with and without curl elimi-
nation share the same number of singularities and indices.
Optimizing their locations can eliminate curls and make the
cross field integrable. Thanks to integrability, our parame-
terizations are well aligned with the cross fields for all test
models. To quantitatively measure the alignment, we define
the following metric

Ealign =

∫∫
(h∇u− eu)

2 + (h∇v − ev)
2dσ,

where (eu, ev) are the cross directions and h is the global
scale factor [3]. In Figure 21, we compare our method with
the other cross field methods in terms of integrability. We
observe that the alignment measures of our results are con-
sistently better than the other cross field methods.

IPF can also compute integrable fields, but their fields
are non-orthogonal. As a result, their induced parameteriza-
tions have larger angle distortions than ours. Since PolyVec-
tor fields have larger solution space than cross fields, IPF
allows the user to specify more soft constraints in an intu-
itive manner (e.g., by simple sketches on the model). Our
method, which is restricted to cross fields, can only take
sparse hard constraints in a trial-and-error manner. GODF
supports soft directional constraints, and MIQ supports both
hard and soft directional constraints. IOQ does not support
directional constraints nor boundary alignment.

We observe that IOQ produces the fewest singularities
for most of the testing models. For the simple toy model
(Fig. 24 Row 1), our method generates more singularities
than the other approaches. These singularities are well

placed that faithfully captures the global and local symme-
try. For models with non-trivial topology, our method yields
comparable number of singularities as with the other meth-
ods (see Fig. 24 rows 2 and 3, and Fig. 21).

We also compare our method with a recent approach [29]
that computes conformal parameterization with optimal
cone singularity and minimal area distortion (MAD). As a
convex optimization, MAD is numerically robust and effi-
cient, and yields results with a small number of singularities
and a small total cone angles. However, MAD does not sup-
port directional constraints and boundary alignment and its
produced parameterizations have seams. See Figure 22.

By specifying sparse hard constraints, our method can
partially support sharp features. The metric customization
method [16] is flexible to support both sparse and dense
constraints, and also works well for sharp features. How-
ever, the cost is lack of orthogonality. The octahedral frame
method [34] minimizes energies with soft normal alignment
constraints, therefore, it is able to fully support sharp fea-
tures and compute feature-aligned cross fields. The Cheby-
shev Net method [27] addresses integrability by adding
a soft constraint in the GL-functional, and it also allows
boundary alignment constraints and supports sharp features.
However, it produces polyvector fields, which in general are
not orthogonal.

EAD = 1.052, ESD = 1.111

EAD = 1.044, ESD = 1.009
Figure 20. Our method necessitates a triangle mesh of relatively
high resolution to adequately provide the necessary degrees of
freedom for singularity placement. Row 1: Given a triangle mesh
with a high degree of anisotropy and low resolution, the singulari-
ties are constrained to the mesh vertices, leading to large angle and
area distortions in the resulting parameterization. Row 2: Increas-
ing the mesh resolution can reduce these distortions.



EMIQ = 5.417e−4EMIQ = 3.943e−4EMIQ = 8.959e−5EMIQ = 3.385e−5

Ec = 9.939e−2 Ec = 2.683e−2 Ec = 2.378 Ec = 1.239e−3
Ealign = 2.020e−2Ealign = 5.870e−2Ealign = 1.228e−1Ealign = 1.177e−2

(1.013, 1.074, 8, 24)(1.034, 1.182, 6, 22)(1.056, 1.579, 0, 16)(1.018, 1.016, 8, 24)

MIQ GODF IOQ Ours
Figure 21. Thanks to integrability, our parameterization is well
aligned with the cross field. We observe misalignment in the re-
sults of MIQ, GODF and IOQ, which are not integrable. Ealign is
the alignment measure. The 4-tuple is EAD , ESD , the number of
position and negative singularities, respectively.

|S| = 14, EAD = 1.027, ESD = 1.003 |S| = 24, EAD = 1.056, ESD = 1.007

MAD [29] Ours
Figure 22. The optimal cone singularity method [29] can produce
very few singularities and low distortions. However, their param-
eterization is not seamless.

9. Conclusions

In the paper, we investigate the integrability problem of
cross fields on surfaces of arbitrary topology. A cross field
is smooth if it has a locally minimal Dirichlet energy. How-
ever, unless the surface is simply connected, a smooth cross
field is not necessarily integrable. We prove that a smooth
cross field is integrable if c ≡ 0 holds everywhere. Based
on the theoretical results, we develop a novel method for
computing smooth and integrable cross fields on 3D sur-
faces of complex topology. Our method is fully automatic
and also has a parameter that can balance the number of sin-
gularities and the smoothness energy. The proposed method
is well suited for smooth models in which exact boundary
alignment and sparse hard directional constraints are de-
sired, and can guide seamless conformal parameterization
and T-junction-free quadrangulation.
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on discrete surfaces. Comput. Graph. Forum, 29(5):1525–
1533, 2010. 1, 2

[10] O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-
Hornung. Designing n-PolyVector fields with complex poly-
nomials. Computer Graphics Forum, 33(5):1–11, 2014. 2

[11] O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-
Hornung. Integrable polyvector fields. ACM Trans. Graph.,
34(4):38, 2015. 1, 2, 13, 15

[12] N. Farchi and M. Ben-Chen. Integer-only cross field compu-
tation. ACM Transactions on Graphics (TOG), 37(4), 2018.
1, 2, 13, 14, 15, 17

[13] O. Gutan, S. Hegde, E. Berumen, M. Bessmeltsev, and
E. Chien. Singularity-free frame fields for line drawing vec-
torization. Computer Graphics Forum, 42, 08 2023. 2

[14] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. In
Proceedings of SIGGRAPH ’00, pages 517–526, 2000. 1, 2

[15] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-
Hornung. Instant field-aligned meshes. ACM Trans. Graph.,
34(6):189–1, 2015. 1

[16] T. Jiang, X. Fang, J. Huang, H. Bao, Y. Tong, and M. Des-
brun. Frame field generation through metric customization.
ACM Trans. Graph., 34(4):40:1–40:11, July 2015. 2, 13, 15

[17] F. Kälberer, M. Nieser, and K. Polthier. Quadcover - surface
parameterization using branched coverings. Comput. Graph.
Forum, 26(3):375–384, 2007. 1
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