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Abstract We present a novel framework, named CLIP-
SP, and design an adaptive prompt method to leverage pre-
trained knowledge from CLIP for scene parsing. Our approach
addresses the limitations of DenseCLIP, which has shown
the superior performance of CLIP pre-trained models over
ImageNet pre-trained models in image segmentation, but
struggles with the rough pixel-text score maps for complex
scene parsing. We argue that owing to containing all textual
information on a dataset, the pixel-text score maps, i.e.,
dense prompts are inevitably mixed with noise. To overcome
this challenge, we propose a two-step method. Firstly, we
extract visual and language features and perform multi-label
classification to identify the most likely categories in the
input images. Secondly, based on the top-k categories and
confidence scores, our method generates scene tokens which
can be treated as adaptive prompts for implicit modeling
of scenes, and incorporates them into the visual features
to feed the decoder for segmentation. Our method imposes
a constraint on prompts and suppresses the probability of
irrelevant categories appearing in the scene parsing results.
Our method has achieved competitive performance, limited by
the available visual-language pre-trained models. Compared
with the DenseCLIP, our CLIP-SP achieves a performance
improvement on ADE20K, yielding +1.14% mIoU with a
ResNet-50 backbone.

Keywords visual-language pre-trained model, scene pars-
ing, adaptive prompt

1 Introduction
Scene parsing is a challenge task in semantic segmentation,
which aims to segment and parse an image into different re-
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gions associated with semantic categories, e.g., road, person,
sky and so on. Since Long et al. [3] proposed fully convo-
lutional networks (FCNs) as the pioneer, many efforts have
proposed various advanced improvements such as contextual
representation aggregation [4–6, 23], multi-scale represen-
tation learning [4, 8], and vision transformer architecture
designs [7, 9, 10]. The large-scale pre-training models further
promote the development of semantic segmentation because
of their more robust representation and better modeling of
intrinsic relationships.

Fundamental vision-language pre-training models such as
CLIP (Contrastive Language-Image Pretraining) [2] capture
both fine visual and linguistic features and have shown excel-
lent generalization ability to various downstream vision tasks.
However, directly applying CLIP to scene parsing remains a
challenge. With the help of prompt support sets composed
of the target image, mask and text, CLIPSeg [11] achieves
good performance on zero-shot and one-shot segmentation.
However the method is hard to extend to complex scene
parsing, because it relies on constructing high quality prompt
support sets. DenseCLIP [1] roughly utilizes all categories of
the dataset to generate prompts, which combines the visual
features of image inputs and the linguistic features of all
categories. To fit the segmentation task, the final mode of
prompts is the mask , i.e., pixel-text score maps. We argue
that utilizing all categories to generate prompts inevitably
introduces noise, because redundant prompts are useless and
misleading due to the equal treatment. This method partially
disregards the information provided by the image inputs, thus
the guidance from language approximates to be a retrieval of
categories on a certain dataset.

Through statistical observation shown in Figure 1, it is
found that 99.7% of images contain less than 25 categories
for a single image on the validation set of the challenging
ADE20K [12] dataset, and the maximum number of categories
in one image is 27, which is much less than the total number of
150. To address the aforementioned issue and take advantage
of the above observations, we adopt a two-step approach

https://www2.cloud.editorialmanager.com/cvmj/download.aspx?id=108183&guid=75cc8509-75bf-4f60-beaa-8df7e2ddea19&scheme=1
https://www2.cloud.editorialmanager.com/cvmj/download.aspx?id=108183&guid=75cc8509-75bf-4f60-beaa-8df7e2ddea19&scheme=1


2

5 10 15 20 25 30

P
e
r
c
e
n
t
a
g
e
(
%
)

Number of categories

8.9

48.9

29.25

10.35

2.3 0.3

Fig. 1 Statistical data on the number of categories for each image
on the ADE20K [12] validation set.

that starts with an additional branch to narrow the selection
range of categories for adaptive generation of high quality
prompts based on image inputs. Our approach mimics the way
humans recognize objects in a scene at a glance, where the
concepts present in the scene are instantly identified and then
attributed to objects. To adaptively generate image-specific
prompts, in the first stage we introduce a lightweight decoder
for multi-label classification that takes advantage of multi-
modal knowledge of CLIP. Our approach involves a dual graph
design, which allows the decoder to effectively incorporate
both image and text features. Moreover, we propose a novel
selection strategy to boost model performance and accelerate
training by utilizing a subset of the ground-truth labels for
promoting at the beginning of the training process.

In this paper, we take a step further to explore the appli-
cability of the pre-trained CLIP models for scene parsing.
Compared with the state-of-the-art method DenseCLIP, our
proposed method exhibits +1.14% mIoU on ADE20K with a
ResNet-50 [13] backbone of the CLIP. The main contributions
of this work are summarized as follows:
(1) A two-stage framework is proposed, which comprises

one path of adaptively generating prompts through multi-
label image classification, and the other for prompt-
guided semantic segmentation.

(2) A lightweight dual graph decoder is proposed for multi-
label image classification, which fully utilizes language
knowledge from CLIP serving as the adaptor to prompt
according to the image inputs.

(3) A simple but effective selection strategy is proposed to
improve the performance of fine-tuning, which trans-
forms uni-modal inputs into multi-modal by using partial
ground-truth labels for prompting. Our trick achieves
an improvement in performance and is computationally
efficient, introducing no additional computational over-
head during inference and almost negligible overhead
during training.

2 Related Work
2.1 Semantic segmentation

Semantic segmentation has long been a major topic in the
vision community and is still a challenging task for parsing
diverse contexts in different scenes. In this field there exist
extensive studies which can be generally divided into pixel-
based methods and region-based methods. The pioneer work
of FCNs[3] which treats semantic segmentation as pixel
classification adopts fully convolution networks to make dense
prediction. A number of later works strive to improve the
pixel classifier performance via expanding the receptive field
[5], constructing more reliable contextual information [23],
and fully utilizing multi-scale features [8]. The region-based
methods split semantic segmentation into mask prediction
and mask region classification [24, 25]. Our method can be
regarded as mainly operating in the neck between the encoder
and decoder to enhance features.

2.2 Transferable Representation Learning

Pretraining is the primary impetus to promote the development
of computer vision over the years. The universal approaches
to solve various downstream vision tasks are based on the
ImageNet pretraining that helps to speed up convergence.
To get the larger scale data and simultaneously free manual
annotation, inspired by the success in NLP, some works focus
on masked signal modeling and self-supervised learning
[26, 27], which are friendly to dense prediction tasks in the
initial design. Another attempts to utilize the supervision
directly from natural language to learn visual representation,
e.g., CLIP [2], ALIGN [28]. Contrastive learning and large-
scale image-text pairs make CLIP successful, which has
showed impressive performance of zero-shot transfer on
several classification tasks. However, image features are
considered to be short of fine local information due to the
loose supervision from language, which makes downstream
dense prediction confusing. The latest work DenseCLIP [1]
demonstrates that the reasonable application of text features
from CLIP helps widespread visual models achieve better
performance. Despite its great success, we try to explain the
main causes of why the CLIP visual encoder is not easy to be
fine-tuned to the semantic segmentation task, and propose a
solution from another perspective.

2.3 Multi-label classification

The multi-label classification task aims to identify multiple
predefined labels in a given image. Existing studies exploit
the label correlations to model the semantic relationships be-
tween different categories [33–35] and handle the imbalance
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Fig. 2 The overall framework of CLIP-SP. CLIP-SP first extracts the image embeddings and text embeddings of all categories, and then
utilize them to obtain multi-label predictions. Trough the selection strategy, we use both the text embeddings and confidence scores of
corresponding multi-label predictions to generate scene tokens, i.e., adaptive prompts. In the scene refine module, we combine the image
embeddings and scene tokens to obtain refined features for implicit modeling scenes through adaptive prompts.

issue through well-designed loss functions [31, 32]. A recent
state-of-the-art method ADDS [17] extends CLIP to zero-
shot multi-label classification has inspired us. We propose a
dual graph decoder to exploit the language knowledge and
compare it to a simple MLP decoder in our framework to
verify effectiveness. Even with the simple MLP decoder, the
final performance on semantic segmentation is remarkably
improved compared with the method without the multi-label
classification. Through experiments, we found that the multi-
label classification task forces the model to pay enough
attention to minor concepts and small objects. It does help
the model gain better local information and achieve better
performance in semantic segmentation, as shown in RankSeg
[36].

3 Method
We begin with a brief introduction of CLIP [2] and our failure
case in a naive solution as the preliminary. Then we propose
an improved solution, followed by presenting the proposed
CLIP-SP in detail.

3.1 Overview of CLIP

CLIP is a visual-language pre-training method that consists
of two encoders, including an image encoder V(·) (ResNet
[13] or ViT [9]) and a text encoder T (·) (Transformer [16]).
CLIP aligns the embedding spaces of visual and language
during pre-training on 400 million image-text pairs through
contrastive learning, where original image-text pairs are
regarded as positive samples, while mismatched image-text

m
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Fig. 3 Results of different pre-training settings on the ADE20K
dataset. We report the single-scale mIoU of ResNet50 backbones
with different configurations and the same decoder, semantic FPN
[8].

pairs are negative ones.
Presently, several works [1, 11, 14, 15] have shown that

CLIP inherently embedded local image semantics in its fea-
tures as it learns to associate image content with natural lan-
guage descriptions during pre-training. However, transferring
the pre-trained knowledge of CLIP for the dense downstream
task is nontrivial. At the beginning of the simple experiment,
we only fine-tuned the image encoder, and the performance of
semantic segmentation on the ADE20k dataset is even worse
than the same model pretrained on ImageNet as shown in the
Figure 3. An interesting discovery is that compared with the
same experiment in DenseCLIP, the key point is that in the
original model we used the default BatchNorm rather than
SyncBatchNorm on 4 RTX 3090 GPUs with a batch size of
16. It shows that there is an obvious internal covariate shift
during pretraining on massive image-text pairs, because CLIP
adopts a huge minibatch and the BatchNorm layer is sensitive
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Fig. 4 The overview of our block design of multi-label decoder,
named Dual GraphFormer. FI is the image features and FT is the
text features.

to the batch size during the training.

3.2 Framework

The overall framework of our method is illustrated in Fig-
ure 2, which consists of one path for denoising through
multi-label image classification and utilizing predictions to
generate adaptive prompts, and the other path for semantic
segmentation. The actual input of our framework is only
an image, because we keep the text encoder frozen and the
text embeddings of all categories are unchanged during the
training and inference for fixing language knowledge from the
pretraining. This procedure can be regarded as constructing
a codebook S. Because valuable correlations between text
embeddings and image embeddings are constructed during
the pretraining on a large-scale dataset, and fine-tuning both
V(·) and T (·) is more difficult than fine-tuning V(·) with the
guidance of fixed text embeddings. We utilize the template
“a photo of a [Label].” proposed by CLIP to construct text
embeddings and handle how to adaptively select a subset of
them containing less noise. Then we use both selected text
embeddings and image embeddings to generate prompts, and
combine them with the last stage of feature map output by the
image encoder to explicitly incorporate language knowledge
and local information. Ultimately we feed the features aggre-
gated with prompts to the semantic segmentation decoder.
We explain the formulations and details of both multi-label
image classification and the method of prompting as follows.

Dual GraphFormer for Multi-label Decoder. The moti-
vation to complete the multi-label classification task in our
framework is to eliminate interference from irrelevant cat-
egories in the scene and then reduce the misleading dense
prompts. We are inspired by the Dual-Modal Decoder on
ADDS [17], which uses both frozen V(·) and T (·) and only
fine-tunes the decoder to maintain the original alignment
between image and text features for zero-shot. To simplify the
design and make it more interpretable, we retain the two-way
cross-attention module and based on this, we propose our
module named Dual GraphFormer. As illustrated in Figure 4,
on the one way we use text features as the query and image
features as the key and value, and on the other operate in the
opposite way. Further, to exploit correlations of both label and

the image features of neighborhood, we add graph convolution
layers [30] and try to integrate them via cross-attention.

Dual GraphFromer needs two modal inputs. For the image
path, input V ∈ RC×(H4W4+1) is the concatenated image
features [z̄, z], where H4,W4, C are the height, width and
the number of channels of the image features from the 4-th
stage of the image encoder, and z is the local token and z̄ is
the global token in the global average pooling of CLIP. For
the text path, input S ∈ RK×C is the text embeddings of all
categories, where K,C are the number of total categories
and channels of the text embedding which is the same with
the image embedding for CLIP. At the beginning of block,
the compressed matrix B ∈ RN×(H4W4+1) is generated by
applying a convolutional operation on V , with the goal of
reducing the number of nodes from (H4W4+1) toN , because
there is still redundancy after sampling at 32x downsampling.
The transpose of the compressed matrix B is used to recover
to the origin number for decompression. wv, ws ∈ R1 are
the learnable factors used to weight the short connection.
The normal graph convolution and our implementation are
formulated as:

Hout = σ(AHinW ), (1)

Hout = GELU(LayerNorm(Conv(Hin))), (2)

whereHout andHin are the output and input features of nodes
in the single layer, σ is the nonlinear activation function, A
is related to adjacency matrix and W is weight parameter
matrix. We replace the origin weight parameter matrix with
the LayerNorm layer with elementwise affine to smooth
the relation between different samples while preserving the
relation between different features like in the transformer.
We treat the A as a learnable parameter matrix through one-
dimensional convolution with the kernel size of 1. Specially
on the text path, we use the co-occurrence matrix of labels on
the training set to initialize A with the prior information of
statistics. We use 3 blocks to construct the decoder because
there is no significant improvement in performance while
stacking more than 3 blocks. The logits Sl ∈ RK×1 are
obtained by passing the final outputS′ of the text path, through
a fully-connected layer with sigmoid activation function acting
as a classifier.

Adaptive Prompting. After obtaining the Sl, we can gen-
erate adaptive prompts for modeling scenes in input images.
Firstly, we sort the logits Sl and take the top k indices and
value of Sl to narrow down the selection range and filter
noise. The number of k is related to scene complexity, which
can be simply measured by the number of categories in the
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Fig. 5 The overview of our scene refinement module.

single image. We obtain the corresponding text embeddings
Sk from the codebook S based on k indices, which can be
treated as a rough scene representation. Considering that
different scenes have the same categories and the difference
lies in the different main body, we concatenate the corre-
sponding probabilities with Sk to enhance the representation
ability. After this operation, we ultimately obtain scene tokens
T ∈ Rk×(C+1), i.e., adaptive prompts.

3.3 Scene Refinement Module

We propose the Scene Refinement Module to fuse the in-
formation of adaptive prompts and image features, and then
directly feed image features aggregated by scene information
to semantic segmentation decoder to predict masks. The detail
of our design is illustrated in Figure 5. To make full use of
scene tokens T , we further mine the information within it.
Because scene tokens contains fine-grained information of
scenes and text embeddings are closely related to image fea-
tures during the visual-language pretraining, we can shrink it
to model the channel activation of scenes based on the image
features x4 ∈ RC4×H4×W4 from the 4-th stage of the image
encoder V(·), which is similar to the approach in SENet [37]:

Tg = GlobalPooling(MLP (T )), (3)

x
′

4 = Tg · x4, (4)

where Tg ∈ RC4 . The MLP layer is used for modeling
channel-associations, and we use the parameterized global
pooling layer i.e., the linear project to shrink features. To
obtain dense features from adaptive promptsT for aggregating
image features, we adopt the non-local approach [38] to
calculate cross-attention, and the query is image features
x

′

4, both the key and value are T . Finally, to completely
fuse the information carried in prompts into image features,
we concatenate the output of the cross-attention and image
features x′

4 and leverage 1x1 convolution to fuse features.

3.4 Loss Functions

The final loss is the sum of three intermediate losses: one
for the multi-label decoder, Lml, one for the segmentation

decoder, Lseg , and an auxiliary loss Laux for supervising the
scene awareness in the scene refinement module. We use λ1,
and λ2 to balance the final loss:

L = λ1Lml + λ2Laux + Lseg. (5)

The multi-label decoder loss function Lml is the asymmetric
loss [32], which can effectively handle long tailed distributions
and is also used in the recent multi-label classification work
[17]. The segmentation decoder loss function Lseg is the
cross-entropy loss, and it is the major loss. The auxiliary loss
Laux can be defined as a cross-entropy loss:

Laux = CrossEntropy(m, ŷ), (6)

m = SoftMax(
QKT

√
dk

), (7)

ŷhwi =

{
1, if li = yhw,

0, otherwise,
(8)

where m is the attention map in the non-local operation of
the scene refinement module, ŷ is the one-hot label of m, yhw
is the corresponding label in the (h, w) cell and li is the label
corresponding to the i-th position of top-k results. We treat
the attention map as a coarse scene parsing result and the loss
can help accurately building connections between prompts
and image features.

3.5 Selection Strategy

Although the model can converge normally under our frame-
work, we still worry that in the early stages of training, the
poor performance of multi-label decoder makes the prompts
almost ineffective, which hinders the model from converging
to the optimal solution. The similar types of work, cross-
modal adaptation [22] shows that it is a better fine-tuning
paradigm for multi-modal models such as CLIP to fine-tune
by using cross-modal information as training samples than
uni-modal information for downstream uni-modal tasks. It
inspires us to introduce the ground-truth labels to alleviate the
negative impact of inaccurate top-k results at the beginning of
training. We proposed a simple but effective strategy called
batch drop. We chose a ratio r to mask the batch of top-k
labels from Sl and replace them with labels sampled from
the ground-truth. During training, r decreases exponentially,
because the performance of multi-label classification is grad-
ually improved and we also need to reduce the reliance on
real samples.

4 Experiments
We perform experiments on ADE20K [12], a challenging
large-scale semantic segmentation dataset covering an ex-
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Table 1 Semantic segmentation results on ADE20K. We compare the performance of CLIP-SP with existing methods when using the
same backbone. We report the mIoU of single-scale, the FLOPs and the number of parameters. The FLOPs are measured with 1024 × 1024
input using the fvcore library. The results show that our CLIP-SP outperforms other methods. “∗” represents our implementation under the
same settings.

Backbone Method Pre-train mIoU(%) GFLOPs Params (M)

ResNet-50

FCN[3] ImageNet 36.10 793 50
EncNet[18] ImageNet 40.10 566 36
PSPNet[4] ImageNet 42.48 716 49
CCNet[19] ImageNet 42.08 804 50
DeeplabV3+[5] ImageNet 43.95 712 44
UperNet[20] ImageNet 42.05 953 67
DNL[21] ImageNet 41.87 939 50
Semantic FPN[8] ImageNet 37.49 227 31
Semantic FPN∗ CLIP 39.52 249 31
DenseCLIP + Semantic FPN ∗[1] CLIP 43.45 269 50
CLIP-SP + Semantic FPN∗(ours) CLIP 44.59 260 65

ResNet-101

Semantic FPN[8] ImageNet 40.37 305 50
Semantic FPN∗ CLIP 42.72 327 50
DenseCLIP + Semantic FPN ∗[1] CLIP 45.09 346 68
CLIP-SP + Semantic FPN∗(ours) CLIP 46.24 334 71

ViT-B

Semantic FPN[8] ImageNet 48.32 1037 101
Semantic FPN∗ CLIP 49.06 1037 101
DenseCLIP + Semantic FPN ∗[1] CLIP 50.58 1043 105
CLIP-SP + Semantic FPN∗(ours) CLIP 51.46 1039 106

tensive range of 150 categories. All models were trained on
the 20k training sets, and evaluated on the 2k validation sets.
We report on mIoU in the validation sets in accordance with
the common practice [19, 20] as well as the FLOPs and the
number of parameters for fair comparisons. Our baseline only
contains the pre-trained image encoder of the CLIP as the
segmentation backbone, and the Semantic FPN [8] as the
decoder. The following subsections describe the details of the
experiments and results.

4.1 Implementation Details

For a fair comparison, we trained all the models on 4 RTX3090
GPUs with a batch size of 16 for 160k iterations. We use
the ResNet-50 pre-trained image encoder of the CLIP for
both CLIP-SP and baseline. Our model applies the loss
function ASL for multi-label classification. To evaluate the
effectiveness of our framework, we use a simple MLP decoder
on the path of multi-label classification for comparison, which
consists of three linear layers and a fixed classifier, i.e., S. We
set the lr multiplier of the image encoder to 0.1 and the initial
learning rate to 0.0001 following the schedule of DenseCLIP.
We use weighting terms λ1 = 10 and λ2 = 0.4, to keep the
learning balanced.

4.2 Comparison with the state-of-the-art

We compare the proposed method with state-of-the-art algo-
rithms on ADE20K in Table 1. We include the FLOPs, the
number of parameters, and the mIoU in single-scale testings.
The experiments results show that for the same backbone,
our CLIP-SP with a simple Semantic FPN can outperform
the state-of-the-art methods and is +1.14%, +1.15%, and
+0.88% higher than DenseCLIP on ResNet-50, ResNet-101
and ViT-B backbones with the same input size and reduce
the computational overhead. Besides, only a small number of
computational cost and parameters have been increased.

4.3 Ablation Studies

To further validate the effects of different components of
our CLIP-SP, we perform detailed ablation studies with the
ResNet-50 backbone and the results are shown in Table 2.
Our baseline model is Semantic FPN with the backbone
ResNet-50 on the CLIP pre-train. Firstly, to evaluate the
effectiveness of our framework, we chose a weak multi-label
decoder, i.e., MLP decoder without the batch drop. The base
experiment achieves 3.62% singlescale mIoU improvement,
which shows there is a significant improvement while using
the language knowledge of CLIP. Secondly, replacing the
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input baseline DenseCLIP CLIP-SP ground-truth

Fig. 6 Qualitative results on ADE20K. We visualize the segmentation results on ADE20K validation set of our CLIP-SP based on
ResNet-50, the baseline model and DenseCLIP.

Table 2 Ablation study on the ADE20K. The MLP decoder and
Dual GraphFormer decoder are used for multilabel classification.

Method MLP decoder Dual GraphFormer Batch Drop mIoU(%)
Baseline 39.52

CLIP-SP

✓ 43.14
✓ 44.06
✓ ✓ 44.59

MLP decoder with Dual GraphForm decoder, we obtains the
0.92% improvement. After adding the batch drop, we gain
the 0.53% improvements. It shows that the performance may
hit a bottleneck and these two modules may not contribute
too much to the overall performance.

Table 3 Influence of different number of Dual GraphFormer
blocks. ∆ is compared with CLIP-SP with the baseline.

num 1 3 5
mIoU (%) 43.25 44.59 42.25
∆ +3.73 +5.07 +2.73

Table 4 Influence of the size of the selected label set, i.e., k.
∆ is compared with the baseline.

k 20 25 30 35 40 150
mIoU (%) 43.96 44.09 44.59 43.49 44.22 43.65
∆ +4.44 +4.57 +5.07 +3.97 +4.70 +4.13

Table 5 Influence of different ratios in batch drop. ∆ is
compared with CLIP-SP without batch drop.

rstart 1.0 0.9 0.8 0.9 0.9
rend 0.0 0.0 0.0 0.1 0.2
mIoU (%) 43.69 44.19 43.38 44.59 43.75
∆ -0.37 +0.13 -0.68 +0.53 -0.31

Influence of different number of Dual GraphFormer
blocks. We study the influence of the number of Dual Graph-
Former blocks, as shown in Table 3. According to the results,

our method achieves the best performance on ADE20K when
we adopt 3 Dual GraphFormer blocks. Increasing the number
of blocks, our method even performs worse.

Influence of different top k. We study the influence of
the size of the selected label set, i.e., k, as shown in Table
4. According to the results, our method achieves the best
performance on ADE20K when k=30. Excessive k value
cannot effectively filter, resulting in decreased performance,
especially when k=150.

Influence of different ratios in batch drop. We study
the influence of different ratios in Batch Drop, as shown in
Table 5. The hyper parameter, exponential decay coefficient is
0.9999 in the experiments. r descends from rstart to rend and
then remain unchanged. According to the results, we find that
at the beginning of training, the over reliance on ground-truth
label is harmful to performance. And keeping a small ratio
r during the middle to late stage of training may play a role
similar to the drop out and obtain a better generalization.

4.4 Visualization

To better demonstrate the superiority of CLIP-SP, we pro-
vide several qualitative results in Figure 6. We compare the
segmentation maps of our method with the baseline model
and DenseCLIP, and find that CLIP-SP is more effective in
reducing the probability of irrelevant categories appearing in
the scene parsing output.
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input k=20 k=30 k=40 ground-truth

Fig. 7 Qualitative results on ADE20K of different k values. We visualize the segmentation results on ADE20K validation set of our
CLIP-SP based on ResNet-50.

Table 6 IoU results for different k values and partial categories of our CLIP-SP based on ResNet-50. The displayed subset of categories
are quite representative, as their IoU increases noticeably with the increase of the value of k.

k IoU (%)
counter skyscraper blind bar ottoman canopy oven tank tradename lake

20 24.83 44.24 38.04 18.67 35.62 11.14 33.46 28.03 18.31 39.79
30 27.63 54.36 44.63 22.95 40.77 19.14 40.59 37.64 22.5 53.47
40 33.05 58.22 47.01 49.32 45.91 19.24 56.38 38.79 26.82 57.8

5 Conclusion
In this paper, we have presented a novel framework, CLIP-SP,
to reduce the noise in the dense prompt while transferring
the language knowledge from the CLIP to scene parsing.
The visual features of CLIP contain rich semantics but still
need the guidance of local information. We decrease the
number of prompts compared with the normal method, and
control it within a reasonable range. It shows that more
prompts are not better, instead, they will introduce more
confusion. Our findings suggest that, by constraining the
number of prompts instead of directly constraining classifiers,
our method generally results in a lower number of predicted
categories compared to other methods.

Limitations & challenges. Although our method has
achieved improvement, we find that it is not always beneficial
because the tendency leads to ignore objects that is hard to
identify, but it is advantageous to segment the main objects in
the scene. Also, our design for multi-label classification may
not be good enough to make full use of the visual-language
pre-trained models. Though we believe the better method of
multi-label classification can lead to higher improvements,
we need to consider the trade-off between computational cost
and accuracy. Besides, owing to our method based on the

visual-language pre-trained models, it is nontrivial to expand
to other excellent visual pre-trained backbones. We hope
our initial attempt can inspire more efforts towards adopting
a denoising prompting strategy to exploit the pre-trained
vision-language knowledge.

Appendix

We provide more analyses of the influence of different top
k in Table 4 and the weighting terms of the loss function in
detail.

Details of different top-k value results. According to
the characteristics of our method, different k values have
different impacts on training. Generally a larger k means more
redundancy, and it is not necessarily higher than better in
Table 4. Different values of k cause the model to pay different
attention to categories during training. Here we find that
IoU values for 20% categories of ADE20K increase with the
increase of k and show the results of the 10 categories with the
most significant changes in Table 6. We see that a low k has a
significant negative impact on the performance of the model
in certain categories, such as the bar, the lake and the oven.
Besides, different k values lead to different performances in
different scenes and we provide several qualitative results in
Figure 7. We find that the lower k usually performs better
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due to containing less unrelated categories in simple scenes.
When encountering complex scenes the situation becomes
more complex. The lower k performs poorly in terms of details
in complex scenes for certain categories, as circled in the last
row of Figure 7.

Effects of weighting terms in the loss function. Table 7
shows the effects of λ1 and λ2. We find that adjusting the
weights to make the three loss scales similar is beneficial to
the training results.

Table 7 Influence of different weighting terms.
λ1 1.0 5.0 10.0 1.0 1.0 10.0
λ2 1.0 1.0 1.0 0.4 0.6 0.4
mIoU (%) 43.60 43.68 43.85 44.08 43.72 44.59
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