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Abstract Despite recent advances in lane detection meth-
ods, scenarios with limited or no-visual-clue of lanes due
to factors such as lighting conditions and occlusions remain
a significant challenge. These scenarios are both common
and crucial for automated driving. Moreover, current lane
representations require complicated post-processing and fail
to address special instances adequately. Inspired by the DETR
architecture, we propose LDTR, a transformer-based model
to overcome these problems. Lanes are modeled with Chain-
anchor, regarding a lane as a whole from the beginning,
which enables LDTR to handle special lanes inherently. To
improve lane instance perception, LDTR incorporates a multi-
referenced deformable attention module to distribute attention
around the object. Additionally, LDTR devises two Line IoU
algorithms to improve convergence efficiency and employs a
Gaussian heatmap auxiliary branch to enhance model repre-
sentation capability during training. By introducing Fréchet
distance, parameterized F1-score and additional synthetic
metrics are discussed to evaluate lane detection models more
reasonably. Experimental results show that LDTR achieves
SOTA performance on well-known datasets. Our code will
be released soon.

Keywords Transformer, Lane detection, Chain-anchor.

1 Introduction
Autonomous driving is an important application of deep
learning, in which the ability to perceive road elements is
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particularly crucial, especially for lane markings as one of
the most essential components of road traffic signs. However,
due to the complexity of road scenes and lane deformation
from varying perspectives, accurate lane detection remains
challenging, such as recalling lanes with little or no-visual-
clue, and precise representation of special lanes.

Given good visibility and simple road conditions, tradi-
tional vision research [1, 2] performs very well, but it is not
robust in complicated real-world scenarios. Recently, various
DNN models [3–6] are trained on large-scale datasets and
can infer lane positions via deep semantic features, deliver-
ing much better generalization and robustness compared to
traditional approaches.

Some research leverages semantic segmentation [3, 5] to
identify lanes by classifying pixels or picking up several key-
points. However, it is difficult to separate different instances
from the lane foreground produced by semantic segmentation
for lanes that are very close to each other. Instead, some other
research turns to a top-down mechanism. LaneATT [9] first
predicts a large number of candidates, then post-processes
with Non-Maximum Suppression (NMS). Similarly, NMS
can not tell apart adjacent lanes precisely which results in
false deletions. CondLaneNet [6] and CANet [8] obtain lane
instances by detecting keypoint responses on heatmaps, but
due to the local perception characteristics of CNN, keypoints
often respond weakly when the visual features are far away
from them, which is prone to missed detections very likely.
HoughLaneNet [10] leverages DHT-based feature aggrega-
tion to detect lanes with weak visual features, but is only
applicable to straight lanes. To mitigate these challenges,
emerging transformer-based research [11–15] uses the global
attention mechanism to extract implicit semantic information.
O2SFormer [14] proposes one-to-several label assignment
to address label semantic conflicts. Chen [15] improves the
convolutional kernel generation network of CondLaneNet [6]
with transformer, thus the object query, after being processed
by attention calculation, results in generated kernels pos-

https://www2.cloud.editorialmanager.com/cvmj/download.aspx?id=110846&guid=1621f5a8-032f-471c-9420-9d1f240ca47c&scheme=1
https://www2.cloud.editorialmanager.com/cvmj/download.aspx?id=110846&guid=1621f5a8-032f-471c-9420-9d1f240ca47c&scheme=1


2 Zhongyu Yang et. al.
C

LR
N

et
LD

TR
G

T

Fig. 1 Prediction results of the current SOTA method (CLRNet [7]) and LDTR for little or no-visual-clue lanes, like lens flare, weak
lighting, occlusion, and hidden lines, in CULane dataset. CLRNet misses certain lanes, while LDTR can recall all instances.
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Fig. 2 Prediction results of current SOTA method (CANet [8]) and LDTR in CurveLanes dataset. Limited by its lane representation, CANet
cannot describe lanes in special cases like T-junctions, roundabouts, waiting areas, and sharp turns, while LDTR can address all of them.

sessing more global information. However, these methods
do not thoroughly utilize target locations to focus on atten-
tion. Therefore, a great amount of the attention calculation is
wasted on the background which is irrelevant to the targets
though, limiting the models’ perception ability towards the
lanes. Fig. 1 shows some cases they are hard to deal with,
especially for those of little or no-visual-clue, which are
critical for common downstream tasks, like lane keeping, and
map-based lane information collection.

Additionally, current lane representations are not suitable
for cases in Fig. 2. Existing methods usually rely on manually
crafted post-processing rules based on priori assumptions.
Almost all methods [5, 6, 14–18] assume that lanes extend
from the bottom of the view upwards, thus fail to detect
those horizontal lanes illustrated in the first three columns of
Fig. 2. Although CANet [8] uses an adaptive post-processing
decoder to avoid such assumptions, a decoder depending on
manual settings cannot cover cases like the last column of
Fig. 2. It is necessary to represent these lanes properly with
improved representations since they are common in daily
driving.

To address the aforementioned problems, we propose a new

top-down end-to-end lane detection network based on trans-
former, LDTR (Lane Detection TRansformer). Specifically,
we propose Chain-anchor to represent the shape of lanes and
two new loss functions to supervise their overall trend and
detailed descriptions. Moreover, to enhance LDTR’s ability
and efficiency during deep semantic information extracting,
the multi-referenced deformable cross-attention algorithm is
applied in the transformer decoder, along with the addition of
auxiliary branches to extract more detailed target information.
As the second row of Fig. 2 demonstrates LDTR’s outstanding
performance in various challenging scenarios, comprehensive
experimental results indicate that LDTR achieves state-of-
the-art performance on multiple datasets [3, 19].

The main contributions of this paper are as follows:
• A new lane representation method called “Chain-

anchor” is proposed. Instead of describing lanes in
discrete dots (pixels or keypoints), Chain-anchor con-
siders multiple nodes as a whole, enabling it to avoid
the rule-based post-processing and additional efforts
on complicated lane shapes. Moreover, Chain-anchor
requires fewer points to denote the important turning
points of a lane, which is more efficient and precise.
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Fig. 3 LDTR follows the structural paradigm of DETR. After the 2D image features are extracted by the backbone, LDTR further extracts
deep semantic information in the encoder through the self-attention mechanism. The input object queries to the decoder are composed of
content embeddings and Chain-anchors. In the computation of each decoder layer, the object queries update themselves through MRDA
and interact with image features, including the correction of Chain-anchors and differentiation of positive or negative objects. After 6
update iterations, the positive Chain-anchors could represent the lane shapes accurately. Additionally, LDTR introduces a Gaussian heatmap
auxiliary branch to enhance the ability for the object query to perceive lane details.

• A multi-referenced deformable attention module
(MRDA) is proposed to transmit the position prior in-
formation contained in Chain-anchor to the network,
which evenly distributes attention around the targets.
This, combined with the global semantic information
extracted by the Encoder, enhances the model’s per-
ception ability toward the targets in case of little or
no-visual-clue.

• Two Line IoU algorithms are devised, namely the “Point-
to-Point” (P2P) IoU and “Dense-Sampling” (DS) IoU.
They are applied in binary matching cost and loss during
training, respectively. Compared to the traditional point-
to-point L1 distance, the new algorithms introduce global
optimization to improve training efficiency and inference
performance.

• To facilitate downstream tasks, we evaluate LDTR with
typical metrics, parameterized F1-score as well as syn-
thetic metrics on public datasets. Experimental results
demonstrate that LDTR performs better overall.

2 Related Work
We relate our work to both the existing lane detection ap-
proaches as well as the object detection methods in general.

2.1 Lane Detection

Deep learning-based lane detection algorithms can be boiled
down into two main categories: bottom-up and top-down.

For bottom-up methods, they cluster or classify lane pixels
or keypoints. Pixel-level segmentation [3–5], evolving from

general visual semantic segmentation, first extracts foreground
lane pixels using semantic segmentation and then clusters
or classifies them using techniques like pixel embedding to
differentiate between different lane instances. In contrast,
keypoints detection-based methods [16, 17] can be regarded
as sparse versions of segmentation models that replace dense
pixel classification with discrete keypoints, which partially
alleviates the problem of excessive focus on segmentation
boundaries in pixel-level segmentation. However, bottom-up
methods are usually unable to handle branching or merging
lanes, and accurately distinguish adjacent boundaries of mul-
tiple closely located lanes. LDTR is designed to address all
such challenging scenarios.

Top-down methods first obtain target instances and then
refine the representation of the shape for each instance. Ba-
sically, there are three major categories based on the lane
representation: parameterized curve fitting [11, 20], tilted an-
chor [7, 9, 14, 21], and row-wise classification [6, 10, 15, 18].

Curve fitting models complex lanes as simple polynomial
curves, which could be very efficient due to the small number
of descriptors that need to be predicted. However, the curves
are hard to match sophisticated lanes in the real world, leading
to poor precision and flexibility. Tilted anchor based methods
obtain a large number of proposals by placing dense anchors,
then filter out unqualified and overlapping instances through
NMS in the post-processing stage. However, double solid
lines and adjacent lanes are placed closely together under
specific perspectives, which may be incorrectly deleted by
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NMS during deduplication, leading to critical information
loss. In contrast, row-wise classification improves efficiency
based on the observation that lanes appear vertically often.
Unfortunately, this also limits the expression for lanes that
appear almost horizontally, like high-angle lanes [8] and
U-turn lanes.

Different from the these three approaches, LDTR uses
set prediction to distinguish lanes that are close in position,
whose anchor ensures precise details while performing well
in various complicated cases, such as U-turns, T-junctions,
and roundabouts, commonly found in real-world situations
and must be addressed.

2.2 Object Detection

Object detection is closely related to lane detection, and
many of its ideas and techniques can be leveraged directly.
Those early CNN-based methods [22–26] mostly require
rule-based post-processing operations, which can lead to poor
model performance in some uncommon scenarios. DETR [27]
proposed a new paradigm of end-to-end object detection,
but suffers from problems like long training iterations and
high computational cost. DETR inspired lots of following
research. Deformable DETR [28] transformed the dense
attention operation in the original cross-attention mechanism
into a more efficient sparse attention mechanism by reference
point sampling, reducing computational cost while improving
model training convergence speed. DAB-DETR [29] explicitly
modeled the object query as an anchor, using the position
of the bounding box to guide attention focus near the target,
which further optimizes the training iteration and improves
model performance.

The global attention mechanism in the DETR paradigm
equip the model with powerful semantic awareness capability,
which helps to improve the model performance in cases of little
or no-visual clues. Based on the structures and optimization
techniques of DETR-family, this paper proposes an end-to-end
lane detection model, LDTR.

3 Methods
3.1 Network Architecture

As a transformer-based model, LDTR is inspired by
DETR [27] architecture as shown in Fig. 3. The black solid
line indicates the lane prediction process. Firstly, LDTR takes
a front view as the network input and extracts feature at
different levels through a backbone network composed of
multiple layers of CNN. The high-level features are reduced
to one dimension and input into the transformer encoder
for further interaction and output. Secondly, the transformer

decoder takes a small fixed number of learnable content em-
beddings and Chain-anchors (Section 3.2) as input object
queries, computes MRDA (Section 3.3) with the output of
the encoder and outputs the modified content embeddings
and anchors. Finally, the modified content embeddings are
passed to the shared parameter feed-forward network (FFN),
which predicts the presence or absence of targets, and the
Chain-anchor could accurately describe target positions.
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Fig. 4 Various lane representations. It is hard for current methods
to represent the horizontal part of lanes, but easy for Chain-anchor.

3.2 Chain-anchor

There are various lane representations available, such as
tilted anchor lines in Fig. 4(b) [9], row-wise classifica-
tion [6, 18] predicting a set of points and sorting them by y-
coordinates [16, 17], and keypoints with adaptive decoders [8]
in Fig. 4(c). Most of them share the same assumption that
lanes extend vertically in the view. Therefore, models with
such assumption usually have promising performance metrics
for such lanes, but fail to recall the horizontal ones. Partic-
ularly, tilted anchor does not support curved lanes, while
keypoints-based anchor can not sort the keypoints properly
in case of storngly curved lanes in which y-coordinates are
messed up.

To address these chanlleges, LDTR describes a
lane as a whole with “Chain-anchor”, Laneca =

{(x1, y1), . . . , (xN , yN )}, where N is the number of nodes
in Chain-anchor, xi, yi are the normalized relative positions
with values in the range of [0, 1] as shown in Fig. 5.

Regarding supervision, LDTR uses two types of ground
truths: an ordered set of manually annotated nodes, Lanem
(Fig. 5(a)), and a densely sampled set of nodes, Lanes
(Fig. 5(b)), obtained by uniformly sampling along the Lanem.
To predict the lane, Lanepr (Fig. 5(c), the initial Chain-
anchor), LDTR first matches it with Lanem using the Hun-
garian algorithm [30]. Nodes in Laneca that have not been
successfully matched are then matched with Lanes using the
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Fig. 5 The regression supervision approach of Chain-anchor en-
ables it to efficiently utilize a small number of nodes to accurately
describe curves, similar to how humans recognize lanes in essense.

same algorithm, ensuring that each node in Lanepr is matched
with one corresponding ground truth, forming the final Chain-
anchor. Finally, LDTR employs L1 distance to supervise the
horizontal and vertical coordinates of each predicted node on
the Chain-anchor, and the loss is presented in Equation (1).

Lreg = − 1

N

∑
(x,y)∈Lane

|P̂xy − Pxy| (1)

where P̂xy and Pxy denote the predicted and the ground truth
nodes, respectively.

Different from the uniform sampling in Point Set [31],
LDTR samples M(M ≫ N) nodes on the annotated lane
and performs Hungarian matching between these nodes and
predictions. It matches each predicted node with the closest
ground truth, giving the nodes higher degrees of freedom. This
allows Chain-anchor to learn the implicit human preferences
in the annotations during training and distribute the nodes at
higher information density turning points. Besides, thanks to
the low prior assumption setting, Chain-anchor can describe
lanes of any shape and requires no longer prior conditions.

In addition, Chain-anchor can also provide fine-grained
position information for the network. The cross-attention
module needs to gather features from the entire feature map,
thus it is necessary to provide appropriate position priors
for each query to focus attention on the locality surrounding
the targets. LDTR explicitly models the query position as
an anchor, which is a similar approach to DAB-DETR [29].
Chain-anchor can effectively help the network aggregate
features from nearby regions of different parts of a target
using multi-referenced deformable cross-attention modules.

Feature Chain-anchor

Sampling Offsets
Head1 Head2 Head3

Query Feature

Attention Weights
0.6 0.7 0.2 0.1 0.8 0.3 0.4 0.9 0.2

Output

Fig. 6 The multi-referenced deformable cross-attention module
utilizes positional information from Chain-anchor to guide the
attention distribution.

3.3 Multi-Referenced Deformable Cross-Attention

As most adjacent features contain similar appearance infor-
mation, traditional cross-attention modules bring a lot of
additional computation, most of which is useless computation
on backgrounds. The improved deformable attention mod-
ule [32] samples partial information based on a learnable
offset field. However, due to the lack of explicit supervision to
guide the sampling along the object contour, the deformable
attention module could still lead to wasted computation when
sampling around the center of elongated lanes, and can not
balance the sampling of endpoints far away from the center
point. Therefore, LDTR uses points (anchors) distributed
along the lanes as reference points and samples only part of
the information around each point, as shown in Fig. 6. By
assigning only a small number of keys along the lanes for each
query, the convergence speed and computational efficiency
can be improved significantly.

3.4 Line IoU

L1 distance loss (Equation (1)) can independently optimize
the position of each node on the chain, but lacking the overall
error calculation of the target nodes means slow convergence.
IoU loss is a widely adopted overall loss function in object
detection/segmentation, computed by bounding box overlap
or pixel-level intersection. For thin and long objects such
as lanes, the bounding box method suffers from large errors
while the latter does not support gradient backpropagation
with the current lane representation.

Hence, CLRNet [7] suggested Line IoU, an approximate
IoU algorithm for lanes. However, it assumes lanes are all
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Fig. 7 Point-to-point (P2P) Line IoU.

vertical and only calculates the horizontal errors between
two lines, thus the IoU results for a pair of lines vary a lot
when they appear at different angles. In addition, the existing
Line IoU algorithm is bound to a row-wise classification
head and can only describe lanes that extend vertically in
the view, which cannot be used to optimize Chain-anchor
that can describe lane lines of any shape. To address such
limitations, we propose two Line IoU algorithms inspired
by the Chain-anchor: “point-to-point” and “dense-sampling”
Line IoU.

3.4.1 Point-to-Point Line IoU
To calculate the IoU of two lines A and B, the Point-to-Point
(P2P) algorithm picks the same number (N ) of keypoints in
them uniformly and pairs the i-th points together (Ai, Bi).
Given a fixed length r, draw two line segments along the
direction of (Ai, Bi) with length 2r, taking Ai and Bi as
midpoints, respectively (thick solid red lines in Fig. 7). Let
LAiBi
union be the distance of the far endpoints (the union) of

the two segments, LAiBi
inter the distance of the near endpoints

(the intersection, green lines in Fig. 7) and ||AiBi||2 the
length of (Ai, Bi). If the two segments overlap, LAiBi

inter is
2r − ||AiBi||2 (solid green lines), while they are separated
from each other (like (An, Bn) in Fig. 7), this expression
is still used instead of 0, describing how far away they are
in negative values (thick white line with the dashed green
border between An and Bn). This is helpful for gradients and
optimization. Then, LIoUP2P is defined as Equation ((2)).

LIoUP2P(A,B) =

∑N
i=1 L

Ai Bi
inter∑N

i=1 L
Ai Bi
union

=

∑N
i=1(2r − ||Ai Bi||2)∑N
i=1(2r + ||Ai Bi||2)

(2)
Fig. 7 illustrates how LIoUP2P is computed. LIoUP2P ranges

from -1 to 1. When the two lines overlap completely, it is 1,
while when they are infinitely apart, it converges to -1.

P2P Line IoU describes the trend similarity between lanes
and is not affected by the lane orientation. Thanks to its
stability in the optimization process, LDTR leverages P2P

dense_iou step1 v

A
B

A1

A2
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B2

(a) Vertical splitting.

dense_iou step1 h

A A1
B B1

B2A2

(b) Horizontal splitting.

Fig. 8 Split U-turn lines.

Line IoU to compute the matching error as a supplement to
the L1 distance and classification costs.

3.4.2 Dense-sampling Line IoU

DS Line IoU consists of two steps:
Step 1: Line splitting. DS Line IoU samples keypoints

in both x and y directions. To be compatible with curved
lanes and backtracking lanes, it first splits the lines in the
sampling direction into multiple segments of one-way sub-
lines. As shown in Fig. 8, after the lines A and B are split,
they respectively consist of sub-lines {A1, A2} and {B1, B2},
each of which contains multiple sample points.

Step 2: Segment-wise calculation. For each unidirectional
sub-line, the algorithm sets reference lines for every distance
d in the sampling direction. If a reference line intersects both
sub-lines, the two intersection points are paired together like
P2P, in which case DS shares the definitions of Linter and
Lunion with P2P in Equation (3).

L
AijBij

inter = 2r − ||AijBij ||2
L
AijBij

union2 = 2r + ||AijBij ||2
(3)

where i is the segment index, j the reference point index, and
X in unionX means the number of intersection points.

dense_iou

dd
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B1i

r

r
2r

r 2r

(a) Vertical Sampling

dense_iou

dd

A1i

B1i

r

r
2r

r 2r

(b) Horizontal Sampling

Fig. 9 Dense-Sampling (DS) Line IoU.

Otherwise, if a reference line intersects only one sub-line,
Linter is set to 0, and Lunion1 is in Equation ((4)). Fig. 9



LDTR: Transformer-based Lane Detection with Chain-anchor Representation 7

illustrates how the reference lines intersect the segments and
cases of different intersection points.

LA
union1 = LB

union1 = 2r (4)

Then, DS Line IoU is defined as the ratio of accumulated
intersection distances to the union ones as P2P in Equation (5).

LIoUDS(A,B) =

O∑
i=1

Ni∑
j=1

L
AijBij

inter

O∑
i=1

Ni∑
j=1

L
AijBij

union2 +
UA∑
i=1

LA
union1 +

UB∑
i=1

LB
union1

(5)
whereO is the number of union2 segments,Ni the number of
sampling points in the i-th union2 segment, UA and UB the
numbers of union1 segments on line A and UB , respectively.

Changing sampling interval d can make a flexible balance
between precision and speed. LDTR sets d to 8 pixels by
default. Though DS consumes more computation than P2P, it
is straightforward to parallelize the algorithm in GPU. This
will not be discussed due to space limits.

LDTR applies DS Line IoU to the overall loss of the target
in Equation (6), which can record subtle differences between
the predictions and GT. Since the entire chain of nodes is
viewed as a whole, the prediction of the horizontal and vertical
coordinates are optimized in x and y directions independently.

Liou = 1− LIoUDS(Pchain, P̂chain) (6)

where Pchain and P̂chain are the ground truth and predicted
chains, respectively.

3.5 Gaussian Heatmap Auxiliary Branch

Multi-task training has been widely used to enhance the
generalization ability of single-task models. Therefore, LDTR
introduces the Gaussian heatmap branch [8] as an auxiliary
training branch. The structure and workflow of the branch are
similar to that of Mask-DINO [33], as shown by the green
dotted line in Fig. 3.

The Gaussian heatmap auxiliary training branch only per-
forms forward and backward propagation during the training
process, and the gradient is backpropagated to update the
network weights. During the inference stage, this branch is
discarded for efficiency. Networks with auxiliary branches
have a larger parameter size, making it easier to learn how
to fit the relationship between input images and ground truth
from the initial state, effectively improving the convergence
speed and stability of the optimization direction of the model.
LDTR uses the same Lmask and Loffset as CANet [8] to
supervise the training of the auxiliary branch.

3.6 Total Loss

In addition, LDTR adopts Focal loss to supervise the classifi-
cation head like DETR, which is used to determine whether
each query corresponds to a target in the input. The classifi-
cation loss is shown in Equation (7).

Lcls =
−1

NQ

∑
q∈Q

{
(1− P̂q)

γ log P̂q Pq = 1

(1− Pq)
λP̂ γ

q log(1− P̂q) otherwise
(7)

where Q represents the set of all queries, Pq and P̂q denote
the prediction and binary match ground truth for Query q,
respectively, and NQ is the query number. Then, the total loss
function in LDTR is Equation (8).

Ltotal = aLcls + bLreg + cLiou + Lmask + Loffset (8)

The hyperparameters a, b, and c are set to 1, 5, and 1,
respectively.

4 Experiments
4.1 Datasets

To evaluate LDTR, extensive experiments are conducted on
two widely used datasets for lane detection, CULane [3]
and CurveLanes [19]. As a comprehensive dataset, CULane
contains images from urban street views, rural roads, and
highways in diverse conditions, like glare and occlusion.
Many lanes have little or no-visual-clue, which requires a
deep understanding of the overall scene by the models as
demonstrated in Fig. 1. Though lanes in CurveLanes are
more obvious than those in CULane, CurveLanes has more
topologically complicated lanes, such as forks, convergences,
sharp turns, and T-junctions as Fig. 2, which are not well
addressed before.

4.2 Performance Indicators
4.2.1 Parameterized F1-score
F1-score is the default evaluation indicator for lane detection
models. Predictions and ground truth are expanded into fixed-
width masks and the IoU between masks greater than the
threshold is regarded as TP. The default IoU threshold of 0.5
originated from general object detections, but is too high for
lane detection. Because lanes are thin, long objects, slight
jitter in predicted points may lead to huge IoU variation. IoU
is so sensitive that lots of predictions may be dropped even
though they are qualified for downstream tasks. The situation
would get worse for cases in Fig. 10.

On the one hand, many lanes are lacking obvious vi-
sual features to provide sufficient information for models
to accurately locate. Some predicted lanes would run al-
most parallelly along the ground truth with a tiny distance,
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(a) Predictions are determined as FP for lanes lacking visual clues.

(b) Incorrect predictions with high IoU.

Fig. 10 Abnormal predictions with typical IoU threshold. Thin
solid lines are ground truth, and thick dotted ones are predicted
lanes. “Dist” is the Fréchet distance between the prediction and its
ground truth.

like the predictions with IoU of 0.34, 0.35, 0.28, and 0.21
in Fig. 10(a). These predictions should be recalled but are
dropped because of the small IoU. Hence, it is reasonable
to decrease the threshold of IoU to recall predictions with
inaccurate but acceptable locations. Concerning Fig. 10(a),
the threshold could be adjusted from 0.5 to 0.2.

On the other hand, certain high IoU predictions should not
be accepted because IoU only focuses on pixel overlapping
but lacks measurement of lane trend as Fig. 10(b) illustrates.
Specifically, two situations cause such misjudgments: in-
complete prediction and incorrect trend prediction, both of
which are harmful to real-world downstream tasks. Simply
decreasing the IoU threshold may exacerbate the occurrence
of such misjudgments, so Fréchet distance is introduced to
filter out predictions that deviate significantly from the real
trend. The original Fréchet distance expects the lines to be
roughly the same length and calculates the maximum shortest
distance bidirectionally. However, concerning lane detection,
the predicted lanes may be longer than the ground truth.
Though the additional predicted segment implies the lane
trend, it is difficult to justify and should be weighted less.

Thus, we modify Fréchet distance to calculate unidirection-
ally from ground truth to predictions only, to make sure every
point in ground truth counts but not vice versa. It follows then
predicted lanes are considered matched only if they satisfy a
hybrid constraint: IoU⩾ α and Fréchet distance⩽ β. That is,
F1-score will depend on two parameters, IoU threshold (α)
and Fréchet distance threshold (β), denoted as F1(α, β). The

classic F1-score configuration is actually F1(0.5, +∞), while
in the experiments we set β to be 4% of the image width, i.e.,
F1(0.2, 60) for CULane and F1(0.2, 10) for CurveLanes. For
simplicity, F1 means F1(0.5, +∞) in the following unless
otherwise specified. Not only lane detection but also other
object detections could benefit from the idea of parameterized
F1-score.

The video material in the supplementary materials com-
pares the prediction results of the current SOTA model CLR-
Net and LDTR on CULane under two different evaluation
indicators. The video visually demonstrates that LDTR has
better instance recall in situations where visual cues are lack-
ing. However, these additional recalls compared to CLRNet
are often regarded as false positives (red lines).

4.2.2 MIoU and MDis

In Fig. 10, all predictions of IoU below 0.5 will be dropped by
F1 because they are regarded as FP, though they are qualified
for downstream tasks and should be accepted instead. Con-
sequently, if a model predicts more such lanes, its precision
will get worse and worse. This contradiction stems from the
definition of precision, and extra insightful indicators are
required to investigate lane detection models together.

Based on such observation, we suggest turning to “MIoU”
(Mean IoU) and “MDis” (Mean Fréchet Distance) as in Equa-
tion (9) to compare position precision and trend similarity
of predicted lanes under similar recall rates. Both metrics
describe how close the predictions relate to ground truth
overall, which makes more sense than precision with respect
to lane detection. In Equation (9), NTP is the number of TP
predictions, and UTP is the set of all TP instances.

MIoU =

∑
i∈UTP

IoUi

NTP
, MDis =

∑
i∈UTP

Disi

NTP
(9)

Table 1 Performance of SOTA models and LDTR on CULane.
Model F1 Precision Recall MIoU MDis F1(0.2, 60)
CANet 79.86 88.03 73.08 82.61 15.83 81.85
CLRNet 80.47 87.13 74.77 82.13 22.62 82.11
LDTR 78.16 81.53 75.06 82.23 12.89 84.18

4.2.3 Necessity Verification of New Indicators

To verify the effectiveness of the synthetic indicators, experi-
mental results of current SOTA models and LDTR in terms
of all metrics are presented in Table 1. Some valuable insights
could be revealed from the results. Although CLRNet reaches
the best F1 and precision, LDTR has a better recall rate.
Additionally, with superior MIoU and MDis, LDTR predicts
lane positions more accurately. CANet has the highest preci-
sion and MIoU due to its adaptive decoder’s great description
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ability for common lanes and a bit of degradation in recall
rate. Therefore, the highest F1(0.2, 60) of LDTR indicates
that some FP predictions otherwise are correctly recalled,
while the smallest MDis guarantees these recalls are safe.

Table 2 LDTR performance by adopting the two IoU algorithms
in different cost and loss combinations.

Cost Loss F1 Precision Recall MIoU MDis F1(0.2, 10)
N/A N/A 86.24 88.20 84.36 79.86 2.88 88.60
P2P P2P 87.15 90.92 83.69 81.25 2.77 88.51
DS DS 87.74 90.28 85.33 81.19 2.86 89.00
P2P DS 87.96 91.19 84.95 81.31 2.85 89.01

4.3 Evaluation of Line IoU Algorithms

Line IoU can be used as a binary matching cost to improve
the stability of matching, or as a loss function to optimize
model training. Table 2 presents LDTR performance using the
two proposed IoU algorithms in different combinations. Both
algorithms adopted as either cost or loss function outperform
the baseline, while P2P is more suitable for cost and DS for
loss. This is because P2P is insensitive to shape jitter, so using
P2P as the cost for bipartite matching can make the training
more stable, while DS can capture the subtle differences and
is suitable for loss function intrinsically to optimize prediction
details.

4.4 Ablation Study

Table 3 presents the ablation experimental results of differ-
ent components of LDTR on CurveLanes. Different from

(a) Original deformable attention (ODA).

(b) Multi-referenced deformable attention (MRDA).

Fig. 11 Distribution of reference points (yellow) and sample points
(red) in cross-attention modules. In MRDA, the attention tends to
be distributed along the line, while in ODA, the attention is often
concentrated near the central point.

other lane description methods that directly perform lo-
cal computation on the image feature map, the transformer
encoder-decoder query-based structure adopted in this paper
does not have a strong mapping relationship between the
query representing each lane instance and the positions in
the image. If replacing chain-anchor with other methods, the
entire decoder needs to be removed, making it impossible
to control variables effectively. Therefore, we have to keep
chain-anchor as the baseline. The baseline (1st row) is the
DETR-based model with Chain-anchor, which utilizes the

Table 3 Ablation experiments of different components in LDTR on CurveLanes.
No. Model F1 Precision Recall MIoU MDis F1(0.2, 10)
1 Chain-anchor 85.57 87.41 83.80 78.86 3.01 88.44
2 +MRDA 86.24+0.67 88.20+0.79 84.36+0.56 79.86+1.00 2.88−0.13 88.60+0.16

3 +Line-IoU 87.96+1.72 91.19+2.99 84.95+0.59 81.31+1.45 2.85−0.03 89.01+0.41

4 +Auxiliary 88.44+0.48 91.55+0.36 85.53+0.58 81.39+0.08 2.69−0.16 89.66+0.65

Table 4 Performance comparison on CULane. The first two groups (CNN-based and Transformer-based) are measured in F1, while the
last one (SOTA, marked with “*”) is in F1(0.2, 60).

Method Total Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night

CNN-based
(F1)

SCNN [3] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
CurveLane-L [19] 74.80 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90
LaneATT-L [9] 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81
CondLaneNet-L [6] 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80
GANet-L [17] 79.63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85
CANet-L [8] 79.86 93.60 78.74 70.07 79.35 52.88 90.18 76.69 1196 74.91
CLRNet(DLA34) [7] 80.47 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37

Transformer-
based
(F1)

PriorLane [12] 76.27 92.36 73.86 68.26 78.13 49.60 88.59 73.94 2688 70.26
LaneFormer [13] 77.06 91.77 75.41 70.17 75.75 48.73 87.65 66.33 19 71.04
LDTR 78.16 93.22 75.91 72.57 79.53 53.02 88.70 70.41 1352 73.66

SOTA
(F1(0.2, 60))

CANet-L [8] * 81.85 95.45 80.57 77.43 77.99 55.45 91.68 71.22 1196 77.10
CLRNet(DLA34) [7] * 82.11 94.54 80.85 80.96 81.14 58.66 91.85 58.33 1155 78.80
LDTR * 84.18 96.12 83.27 81.49 87.39 62.93 92.06 62.77 1352 81.52
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classification loss (Lcls as Equation (8)) and regression loss
(Lreg as Equation (1)).

In the 2nd row, the original deformable attention is replaced
with MRDA, whose attention positions are shown in Fig. 11.
Because of the more precise location prior, MRDA can focus
on more comprehensive detailed features, which boosts all
indicators as the results.

Particularly, Line IoU adopted (3rd row) in the loss and
matching error calculation optimizes each lane instance as a
whole, thus significantly improving the accuracy and MIoU. In
the last row, F1(0.2, 60) and MDis are improved remarkably,
indicating the auxiliary branch can enhance the model to
extract global semantic information.

4.5 Performance on Datasets
4.5.1 Results on CULane
As mentioned in Section 4.1, many lanes are having little
or no-visual-clue in CULane, which is suitable to distin-
guish the recall capabilities of different models. Table 4
presents the comprehensive experimental results. Models
are clustered according to their basic techniques into CNN-
based and Transformer-based groups, and SOTA items are

marked as bold in each group. LDTR is almost ahead of
other Transformer-based models in all subsets, implying the
effectiveness of LDTR’s network structure design. However,
it lags behind CLRNet because CNN-based models often
predict fewer false positives, which results in higher precision
and F1. As discussed in Section 4.2, F1 and precision are
not friendly to downstream tasks concerning lane detection,
so an additional group measured in F1(0.2, 60) is provided
in the last of the table. LDTR outperforms both CANet and
CLRNet by 2.33 and 2.07 overall, respectively, especially in
scenes with fewer visual clues such as Crowded, Dazzle, and
Shadow. It is worth noting that LDTR’s F1 (0.2, 60) score has
significantly improved by 6.02 percentage points compared
to the overall F1 score. This is because, for the no-visual-clue
scenarios that exist in CULane, LDTR’s predictions are re-
called more frequently under a more reasonable TP standard,
while CLRNet and CANet have weaker recall performance in
this scenario, resulting in poorer performance than LDTR in
F1 (0.2, 60).
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(c) IoU threshold=0.5

Fig. 12 F1-scores of different models vs. Fréchet distance thresholds on CULane.
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Fig. 13 F1-scores of different models vs. Fréchet distance thresholds on CurveLanes. As CLRNet did not provide metrics and trained
weights on CurveLanes, it is not included.
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Table 5 Performance comparison on CurveLanes. The first group
models are measured in F1, while the second group is in F1(0.2, 10)
(marked with “*”).

Models F1 Precision Recall FPS
SCNN 65.02 76.13 56.74 7.5
ENet-SAD 50.31 63.60 41.60 75
PointLaneNet 78.47 86.33 72.91 71
CurveLane-L 82.29 91.11 75.03 -
CondLaneNet-L 86.10 88.98 83.41 48
CANet-L 87.87 91.69 84.36 36.6
LDTR 88.44 91.55 85.53 25.2
CANet-L* 88.48 92.33 84.95 36.6
LDTR * 89.66 92.82 86.72 25.2

4.5.2 Results on CurveLanes
Compared to CULane, the CurveLanes dataset covers a wider
range of scenes and has more complicated lane shapes, which
is more qualified to evaluate the ability of lane shape modeling.
Table 5 shows the inference results in detail. LDTR performs
best in terms of either F1 or F1(0.2, 10), especially for recall
rate, which is emphasized by LDTR.

4.5.3 Average Performance
All previous experiments are executed with fixed hyper-
parameters α and β. To evaluate the capability of LDTR

Table 6 Average performance comparison on CULane and Curve-
Lanes. As CLRNet did not provide metrics and trained weights on
CurveLanes, it is not included.

Datasets Models AF1 AP AR

CULane
CANet-L 62.97 69.85 57.33
CLRNet 58.99 63.87 54.81
LDTR 63.65 66.39 61.12

CurveLanes CANet-L 58.55 61.10 56.22
LDTR 62.76 65.06 60.62

with different hyperparameter configurations, we borrow
COCO [34] object detection dataset performance indicators
AP and AR and define AF1 (average F1-score) similarly. By
conducting extensive experiments with lots of α, β combina-
tions, Table 6 shows that LDTR surpasses other networks on
average, implying the effectiveness of the architecture design
independent of specific parameter settings.

To thoroughly understand how the Fréchet distance thresh-
old is determined, Fig. 12 and Fig. 13 present how F1-score
varies along the Fréchet distance thresholds with different
IoU settings in the two datasets, respectively. LDTR generally
performs better than the other two models, especially, when
the IoU threshold is small. As the IoU threshold increases,
no-visual-clue lanes are more likely to be dropped, thus the

(a) CLRNet, F1(0.5, +∞) (b) LDTR, F1(0.5, +∞) (c) LDTR, F1(0.2, 60) (d) GT

Fig. 14 Prediction ability comparison between CLRNet and LDTR for “Congested Scenarios” in CULane. The green and red lines
represent the true positive (TP) and false positive (FP) of the model’s prediction results under a specific evaluation indicator, respectively,
while the ground truth (GT) is represented by blue lines.
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advantage of LDTR gradually diminishes. These figures indi-
cate that it is very flexible to choose different Fréchet distance
thresholds for LDTR to exceed in F1-score.

5 Visual Comparison
For a more intuitive comparison, we have selected and in-
cluded several frames in Fig. 14. These scenes include dif-
ferent lighting conditions, occlusions and most of them have
no-visual-clue for lanes. By comparing the ground truth,
LDTR can nearly predict all the instances while CLRNet
misses certain ones sometimes. However, those predictions
recalled by LDTR but missed by CLRNet are often mistakenly
identified as FP in the default evaluation indicator (F1(0.5,
+∞)), leading to underestimated model performance. The
use of the F1(0.2, 60) evaluation indicator can partially alle-
viate such misjudgement and provide a more objective and
comprehensive evaluation of model performance.

6 Conclusion and Future work
There are still fundamental challenges in lane detection to
be addressed: predict lanes with little or no-visual-clue and
describe lanes of any shape. Aiming at these goals, this
paper proposes LDTR, a transformer-based network, to lever-
age the global perception ability of transformer to improve
the instance recall capability. The Chain-anchor represen-
tation enables LDTR to model lanes flexibly and precisely.
To speed up convergence and reduce computation, a multi-
referenced deformable cross-attention module is proposed to
work together with the Chain-anchor. In addition, two Line
IoU algorithms are designed to facilitate the cost and loss
functions, which further enhances LDTR’s representation
capability along with the auxiliary branch. Considering the
differences between lanes and typical objects, F1-score is
extended to accept Fréchet distance as an additional parame-
ter besides reducing the IoU threshold. Meanwhile, several
synthetic metrics are devised to evaluate LDTR along with
those classic ones. The experimental results show that LDTR
achieves SOTA on two well-known datasets.

In the future, we plan to first improve the inference speed
of LDTR (it is the slowest in Table 5 now). In addition,
the temporal information implied in the video can provide
valuable insights when there are no-visual-clue for lanes in
the following frames. Existing methods, such as RVLD [21],
have demonstrated this. We will explore the potential to share
the semantic information stored in the updated queries in the
decoder between frames in real-time videos.

Electronic Supplementary Material
A demo video is available in the online version of this article,
which shows how LDTR and CLRNet (the current SOTA
model) perform on CULane validation set.

The frame is divided into four parts. The upper and lower
background areas of the frame represent the prediction results
of LDTR and CLRNet respectively, where green and red lines
indicate TP (true positive) and FP (false positive) respectively
measured in the default evaluation indicator. The picture-
in-picture area in the upper part of the frame also displays
the prediction results of LDTR, but in F1(0.2, 60) evaluation
indicator. The picture-in-picture area in the lower part of the
frame displays the visualization results of GT (ground truth).
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