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Abstract Knowledge distillation is often used for model compression and has achieved a great breakthrough in image 
classification, but there remains scope for improvement in object detection, especially for knowledge extraction of small 
objects. The main problem is the features of small objects are often polluted by background noise and not prominent 
due to down-sampling of Convolutional Neural Network (CNN), resulting in the insufficient refinement of small object 
features during distillation. In this paper, we propose a Hierarchical Matching Knowledge Distillation (HMKD) network 
that operates on P2 to P4 of feature pyramid network (FPN), aiming to intervene on small object features before affecting. 
We employ an encoder-decoder network to encapsulate low-resolution, highly semantic information, akin to eliciting insights 
from profound strata within a teacher network. Then it is matched with the high-resolution feature values of small objects 
from shallow layers as the key, during this period we use an attention mechanism to measure the relevance of the inquiry to 
the feature values. Also in the process of decoding, knowledge is distilled to the student. Experiments show that our method 
achieves excellent improvements in both one-stage and two-stage object detectors. Specifically, the proposed method based 
on Faster R-CNN achieves 41.7% mAP on COCO2017 (ResNet50 as the backbone), which is 3.8% higher than the baseline. 
In addition, our student outperforms even the teacher on VisDrone.

Keywords Knowledge distillation, Object detection, Small object detection, Machine learning

1 Introduction

In recent times, there has been a substantial surge in

the field of computer vision research, with a particular

upswing in the prominence accorded to the domain of

small object detection. Previous researches usually ap-

ply more complex and larger network to improve the

detection accuracy of small objects. However, their

performance improvements are often accompanied by

a large demand for computing power. Huge amount of

mobile and edge computing devices are unable to pro-

vide powerful computing ability, thus preventing those

complex models from being deployed on these devices.

In addition to designing new architectures, quantiza-

tion [1, 2, 3] and network pruning [4, 5, 6], knowledge

distillation [7, 8, 9] has been an effective approach for

lightweight models after it was proposed by Hinton [7]

in 2015. It consists of a teacher (complex and large

model) and a student (simple and small model). The

student not only gains knowledge of the ground-truth

in the dataset but also learns good lessons from the

teacher to improve its generalization without changing

the network structure.

Fig.1. The performance comparisons of small object detection
with the heatmaps generated by Grad-CAM [10]. Small objects
are marked by red boxes. It can be seen that our method is
clearly more sensitive to small objects than other baselines.

Most knowledge distillation methods are based on

object features [11, 12, 13, 14]. These researchers dis-

till the suggested regions predicted by the Region Pro-

posal Network (RPN) [15] or features extracted against
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the Feature Pyramid Network (FPN) [16]. Researchers

are trying their best to find out how to locate useful

knowledge and explore what is useful knowledge. For

example, Kang et al. [17] use conditional distillation

network to locate the required knowledge and realize

the transfer of instance knowledge.

Although these methods have achieved significant

breakthroughs, they ignore the differences in the size of

the objects themselves, which means that these objects

can provide different degree of knowledge in the feature

space. This leads to different difficulties in knowledge

extraction. Therefore, objects of different scales should

not be treated equally. Figure 1 shows the comparison

of different methods for small object detection. The

traditional knowledge distillation method is obviously

insufficient for the recognition of small objects. The

inherent reason why small object features are difficult

to learn is that they may be diluted when the Convo-

lutional Neural Network (CNN) is down-sampled. At

the same time, small objects are easily disturbed by

background noise, which makes them ”more difficult” in

knowledge distillation. When teaching student, teach-

ers should pay more attention to those knowledge that

is ambiguous or difficult to understand. Otherwise it

can lead to knowledge omission or lack of understand-

ing by student. These issues present a notable challenge

in refining knowledge of small objects.

To enhance student’s understanding of small object

knowledge, we propose hierarchical matching for knowl-

edge distillation (HMKD) as shown in Fig 2. It intends

to enhance the student model’s learning of small ob-

ject features in the shallow high-resolution layers of the

FPN, mainly focusing on the P2 to P4 layers. By ap-

plying hierarchical matching, a decoding network is in-

troduced to discover and extract those difficult knowl-

edge. Specifically, we first separate the foreground and

background of the image to prevent small objects from

being contaminated by the background during down-

sampling. Then we encode the strong semantic infor-

mation of small objects at low resolution as inquiries,

and use the fine-grained feature value at high resolu-

tion as key values. Based on the experiments, we have

observed that knowledge distillation for the foreground

only is not the best choice, and the relationship be-

tween foreground and background needs to be consid-

ered. Therefore, we have designed an extra supplemen-

tal distillation module to teach student the background

relationships as an additional knowledge. The contri-

butions of this paper are as follows:

• We propose a novel Hierarchical Matching Knowl-

edge Distillation (HMKD) framework to enhance

small object distillation. In addition, supplemen-

tal distillation is introduced to complement the

background information.

• In HMKD, we encode high-semantic information

at low-resolution of FPN as inquiries, and rep-

resent fine-grained graph feature values at high-

resolution as key-values.

• We perform experiments using the MS

COCO2017 [18] and VisDrone [19] datasets on

mainstream object detection frameworks. The

results show that our approach results in a sig-

nificant performance improvement of the model

with strong generality.

2 Related Work

2.1 Knowledge Distillation

Recently, there have many works using knowl-

edge distillation for object detection with good results.

Kang et al. [17] propose a novel approach to extract

knowledge by using instance search to transfer image

features from the instructor to the student. Yang et



3

Teacher

Student

Neck

Neck

GcBlock

GcBlock

General Object

Small Object

HMKD

Encoding Module

Decoding Module

Low-
resolution 
location

High-
resolution 

feature values

Matching

Supplemental 
Distillation

Binary mask scale mask

Person Kite

Person Kite

Inquiry

FPN

scale maskBinary mask

Fig.2. The pipeline of our method. Firstly, the foreground and background are separated to prevent the background information from
excessively interfering with the extraction of small objects. Then HMKD is used to enhance the small object features, thus improving
the detection ability of the student model. Meanwhile, GcBlock [20] is used to distill the background information.

al. [21] concern that uneven differences between feature

map will negatively affect extraction, so they optimize

the separation of background and foreground to force

student to focus on the teacher’s channels and pixels.

Chen et al. [22] and Li et al. [23] propose prediction-

based approaches to extract features of RPN regions

and distill the foreground knowledge. Wang et al. [11]

extract the specified regions of maximum IoU of an-

chor points and ground-truth. Guo et al. [12] propose

a new loss function to solve the problem of imbalance

between background and object. However, these are

all heuristic-based methods that require rules to be de-

signed in advance, which is inflexible. While Zhang et

al. [13] incorporate the attention mechanism into the

knowledge rectification approach and establish spatial

channel attention to measure distillation. None of these

methods pay attention to the detection of small objects.

Objects of different sizes cannot be treated equally in

the distillation process. Smaller objects are difficult to

detect and the distillation process needs to be focused

to attenuate the loss of information from small objects.

Focused distillation is needed for smaller objects that

are more difficult to detect, to prevent information loss

of small objects during distillation.

To break through the above limitations, we propose

a distillation method to enhance knowledge transfer

for small objects, using hierarchical matching to en-

able student enhance understanding of difficult knowl-

edge(small objects).

2.2 Object Detection

CNN-based object detection frameworks can be

classified as one-stage [24], two-stage [15] and anchor

free [25]. Notably, classical one-stage detector is Reti-
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naNet [24], where FocalLoss is applied to deal with the

background and foreground imbalance. Its performance

when combining with FPN is already comparable to

two-stage detectors. There is also the YOLO [26] series

of detectors, which are currently under development,

have the ability to directly regress box coordinates and

class probabilities from image pixels. The speed is also

very favorable. A classical two-stage detector is the

Faster R-CNN [15], which uses a Region Proposal Net-

work (RPN) to efficiently generate proposal regions.

FPN is also introduced to capture multi-scale feature

maps through lateral connections. It comes with advan-

tages in detection accuracy, but the detection speed is

not as fast as the one-stage detectors. This anchor-

based detection method uses anchor boxes with dif-

ferent aspect ratios to label objects, and then applies

heads to classify and regress each anchor. Recently,

the anchor free detection framework FCOS [25] is pro-

posed to predict the coordinates of labels and candidate

boxes using a fully convolutional network. Since they

all require input features, our knowledge distillation ap-

proach can be applied on these detectors.

2.3 Small Object Detection

Small object detection is a more difficult part of

object detection due to factors such as little semantic

information and susceptibility to complex scene inter-

ference. Most of current researches make improvements

to the performance of small object detection in terms

of data augmentation [27, 28, 29], enhancing the res-

olution of input features [30, 31, 32], multi-scale in-

formation fusion [33, 34, 35], and contextual semantic

information [36, 37, 38]. In recent years, scale regular-

ization strategies such as SNIP [35] and SNIPER [39]

are devised with the primary objective of mitigating

the concern surrounding variations in object dimen-

sions across images of disparate resolutions. Chen et

al. [40] introduce a feedback-driven data provider, aim-

ing at addressing the challenge of detecting small ob-

jects by balancing the detection loss. While the out-

lined technique presents a viable resolution for the chal-

lenge posed by diminutive object detection, regrettably,

its integration into the knowledge distillation paradigm

seems to have been inadvertently disregarded. In a

similar vein, TridentNet [33] develops a parallel multi-

branching approach that utilizes different perceptual

domains to generate more accurate and discriminative

features for small objects.

3 Method

3.1 Overview

In contemporary object detection methodologies

that hinge on detector architecture, the extraction of

features pertaining to diminutive entities frequently en-

tails recourse to high-resolution feature maps. However,

student may have weaker capabilities in extracting such

features compared to its teacher. To address this issue,

we propose an algorithm that enhances the student’s

ability to learn features of small objects. Specifically,

we strengthen the extraction of high-resolution features

in the shallow stages of the FPN. We adopt a hierarchi-

cal matching approach for knowledge transfer, taking

high-level semantics of small objects at low-resolution

as inquiries and fine-grained graph features proposed by

teachers at high-resolution layers as key-values. Finally,

the student’s knowledge is updated by an attention-

weighted feature extraction loss.

3.2 Hierarchical Matching Knowledge Distilla-

tion

3.2.1 Foreground and background separation

In this section, our approach HMKD is elaborated,

which is an enhanced small object knowledge transfer

algorithm based on hierarchical matching. Carion et
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Fig.3. Illustration of HMKD in detail. The high semantic information of small objects at low resolution is encoded as a inquiry, and 
the fine-grained feature values at high resolution are used as key values. In this way, the detection ability of the student for 
small objects gradually converges to that of the teacher.

al. [41] apply the idea of encoder and decoder to object

detection in DETR [41]. Kang et al. [17] also apply it to

knowledge distillation. Inspired by this, we notice the

difficulty in transferring information about small ob-

jects in knowledge distillation. HMKD utilizes the idea

of encoder and decoder. It uses the high semantic infor-

mation of small objects at low resolution as inquiries,

and the fine-grained graph feature values presented by

teacher in the high-resolution layer are used as keys.

Finally, student is updated through feature distillation

losses based on attention weighting, whose goal is to

make these difficult knowledge available to student.

Since background noise may have an effect on small

object features, we decide to remove it as much as pos-

sible at first. This allows the model to focus on the

pure distillation of the foreground. We separate the

background and foreground using the binary mask M .

Mx,y = {1, if(x,y) ∈ g
0, otherwise (1)

where g indicates the ground-truth area of objects, x is

the horizontal coordinate of the feature map, and y is

the vertical coordinate. If (x, y) matches ground-truth,

then Mx,y = 1, otherwise it is 0. The proportions of

the background and the object are different in different

images. Large-scale objects cause more losses because

they take up more pixels. So we treat each different

goal equally in order not to affect the extraction of small

goals. The proportional mask K is to balance the loss

in separation:

Kx,y = {
1

HgWg
, if(x,y) ∈ g

1
Nbg

, Otherwise
(2)

Nbg =
H∑

x=1

W∑
y=1

(1 −Mx,y) (3)

where Hg and Wg denote the height and width of the

boxes respectively. If a pixel is part of more than one

object, K takes the minimum value.
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3.2.2 Distillation Strategy

The one-stage RetinaNet classifies the objects by

using a single FPN module, and the two-stage Faster

R-CNN uses two detection heads for localization. If

the input image size is H ×W , feature size of FPN is

P = Pl ∈ RH×W×C , where l indicates the level of the

pyramid. We add a new head module (Inquiry Head)

to predict the approximate location of the small object,

which works in parallel with the original head module.

Inquiry head receives feature maps as input with stride

2l and output MAP l = RH×W where MAP x′,y′
l de-

notes the probability that the network (x′, y′) contains

a small object. If the area occupied by the object is less

than 32×32, then it is considered as a small object. We

encode the distance between its central point and other

positions on the feature map as the object mapping of

the inquiry head. The distance is also set to be less

than sl to 1 and 0. Then we train inquiry head us-

ing FocalLoss and select the position with a prediction

result higher than the critical value t as the inquiry.

Next, student needs to learn the more difficult parts

of the knowledge, and we suggest to focus on deliver-

ing small object information between the teacher and

the student, which can be seen in Fig 3. ISi and ITi

correspond to the i-th information.

Lsmall−distill =
N∑
i=1

H∑
x=1

W∑
y=1

Mx,yKx,yLs(I
S
i(l−1), I

T
i(l−1))

(4)

The knowledge of the teacher denotes as T and the

knowledge of the condition zi can be expressed as

ITi = D(T, zi), I
S
i similarly, and where D is the decod-

ing module. Since currently commonly used detectors

contain Feature Pyramid Network (FPN), we denote

the multi-scale features as:

T = {Zγ ∈ RC×Hγ×Wγ }γ∈E (5)

where E denotes the spatial resolution and C denotes

the channel dimension. We acquire XT ∈ RU×C

from the connections at different scales, where U =∑
γ∈E HγWγ is the sum of the number of pixels at

multi scales. After we get the information of the small

object, we need to annotate it, which is denoted by

A = {ai}Qi=1, where Q is the number of objects and ai

is the annotation of the information, including category

and size information.

To generate learnable embedding of localization

knowledge for each small object, we need to annotate

the inquiry feature vector. This inquiry feature vector

bi specifies the conditions for collecting the required

knowledge:

bi = Fb(δ(ai)), bi ∈ RC (6)

where δ(∗) is the encoding function and Fb is the multi-

layer perception network (MLP). This is represented by 

the dot product attention [42] of Nm heads in terms of 

inquiry key attention. Where each head j corresponds

to three linear layers (F k
j , F

q
j , F

v
j ) for the construction

of keys, inquiries and values respectively. The eigen-

value ITi is calculated by representing XT and the lo-

cation embedding V = RU×C projection teacher.

ITi(l−1) = F k
j (XT + Fpe(V )), F k

j ∈ RU×c (7)

OT
j(l−1) = F v

j (XT ), OT
j ∈ RU×c (8)

bij(l−1) = F q
j (bi), bij ∈ Rc (9)

mij = softmax(
ITi bij√

c
),mij ∈ RU (10)

where Fpe denotes the linear projection on the lo-

cation embedding. The value features OT
j(l−1) and the

inquiry bij(l−1) are projected by linear mapping on Pl−1

to the subspace with channel c = C/Nm, F v
j and F q

j re-

spectively. The perceptual attention mask mij for the
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j-th head of the i-th information is obtained by the nor-

malized dot product of ITi(l−1) and bij(l−1). In summary,

the inquiries along the key and value features describe

the correlation between results and the small object

information. We gather ITi(l−1) = (mij , O
T
j(l−1))

Nm

j=1
as

the localization information extracted for small objects

from T , which encodes the knowledge corresponding to

the i-th information.

It should be noted that there are fundamental dif-

ferences between our method and Querydet [43]. The

inquiry mechanisms of the two are different. Our ap-

proach focuses on enhancing the transfer of knowledge

for small objects from the teacher to the student during

the knowledge distillation process.

3.2.3 Supplemental Distillation

Next is the supplemental distillation module, where

we use Gcblock [20] to extract background knowledge.

In the previous sections, we separate the background

and distill the foreground knowledge first, which ignore

the relationship between foreground and background.

Therefore, we utilize this module to supplement miss-

ing knowledge regarding the overall relationship be-

tween objects and backgrounds, and transfer it from

the teacher to the student. The loss function about

background is as follows:

Lbackgroud = α ·
∑

f ′ (|FT − FS |
)2

f ′ (F ) = F + Cv2ReLU(LN(Cv1

Np∑
j=1

eCkFj∑Np

m=1 e
CkFM

Fj))

(11)

where Ck, Cv1 and Cv2 are the corresponding convolu-

tion layers, LN is used for normalization, Np is the sum

of pixels and α is the balance factor.

3.3 Distillation Loss

Finally, we present the final knowledge distillation

formula. The attention mask is used as a measure of the

correlation between the features and each information.

Lsmall−distill = Lothers +

1

NmNs

Nm∑
j=1

Ns∑
i=1

< mij , LMSE(ISi(l−1), I
T
i(l−1)) >

(12)

where Ns is the number of information, and

LMSE(ISi(l−1), I
T
i(l−1)) is the mean squared error of pix-

els in the hidden dimension which stabilizes the nor-

malized feature. < −,− > is the Dirac notation of the

inner product, and Lothers is the feature distillation of

the other dimensional object information. Combined

with the supervised learning loss Ldetection and the for-

mula is summarized as follows:

Ltotal = Ldetection + Lbackgroud + βLsmall−distill (13)

where β is the hyper-parameter. As described above,

we divide the small object knowledge into key knowl-

edge taught to student by the teacher while distill-

ing knowledge of the object based on the hierarchical

matching. We use the low-resolution high semantic in-

formation of the small object in the neck stage as a in-

quiry and the high-resolution fine-grained feature map

feature values as keys to enhance student’s learning of

the small object knowledge.

4 Experiments

4.1 Datasets

MS COCO2017 dataset. Our main experiments are

implemented on COCO [18], which contains 80 object

classes. The training set is 120k images and the val-

idation set is 5k images. All the following results are

evaluated on this validation set. Detectors with differ-

ent performances are evaluated using average precision.

VisDrone dataset. We also conduct experiments on

the VisDrone [19] dataset, which is collected by the

AISKYEYE team at Tianjin University and contains

11 categories of drone-captured images. The training
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Method
Faster R-CNN RetinaNet

mAP APS APM APL mAP APS APM APL

ResNet101 (Teacher).3× 42.0 25.2 45.6 54.6 40.4 24.0 44.3 52.2

ResNet50 (Student).1× 37.9 22.4 41.1 49.1 37.4 23.1 41.6 48.3

39.3 22.7 42.3 51.7 38.2 23.1 41.6 48.8

39.3 22.5 42.3 52.2 38.6 21.4 42.5 51.5

40.9 24.5 44.2 53.5 40.7 24.2 45.0 52.7

40.5 22.6 44.7 53.2 39.7 22.0 43.7 53.6

+FitNet [9]

+FGFI [11]

+ICD [17]

+FGD [21]

+TinyKD [44] 33.1 15.8 36.2 45.1 - - - -

+Ours 41.7 (+3.8) 24.8(+2.4) 44.9 54.2 40.7 (+3.3) 24.6 (+1.5) 44.3 52.1

Table 1. Our methods are implemented on Faster R-CNN and RetinaNet, respectively, and compared with others’ methods on MS
COCO dataset. The teacher model is ResNet101 (3×) and the student uses ResNet50 (1×).

Detector Setting Type mAP AP50 AP75 APS APM APL

Mask R-CNN

ResNet101 (Teacher).3×
BBox

42.9 63.3 46.8 26.4 46.6 56.1

ResNet50 (Student).1× 38.6 59.5 42.1 22.5 42.0 49.9

Ours 41.0 (+2.4) 61.5 45.0 25.2 (+2.7) 44.2 53.1

ResNet101 (Teacher).3×
Mask

38.6 60.4 41.3 19.5 41.3 55.3

ResNet50 (Student).1× 35.2 56.3 37.5 17.2 37.2 50.3

Ours 37.2 (+2.0) 58.6 40.1 19.3 (+2.1) 40.0 53.2

FCOS BBox

43.2 62.4 46.8 26.1 46.2 52.8

38.6 57.4 41.4 22.3 42.5 49.8

ResNet101 (Teacher).3×
ResNet50 (Student).1×
Ours 43.6 (+5.0) 62.3 47.3 27.4 (+5.1) 47.5 55.6

Table 2. Our approach is also evaluated on Mask R-CNN and FCOS. The results with bounding boxes (BBox) or instance masks
(Mask) are reported, respectively.

Detector Setting mAP AP50 AP75 APS APM APL

Faster R-CNN

ResNet101 (Teacher).3× 42.0 62.5 45.9 25.2 45.6 54.6

VoVNetV2-19 (Student).1× 32.0 51.4 34.0 18.4 34.4 40.8

Ours 36.4 (+4.4) 56.8 39.1 21.6 (+3.2) 39.1 46.3

Faster R-CNN

VoVNetV2-57 (Teacher).3× 43.3 64.3 47.0 27.5 46.7 55.3

ResNet50 (Student).1× 37.9 58.8 41.1 22.4 41.1 49.1

Ours 40.8 (+2.9) 61.4 44.7 24.2 (+1.8) 44.2 53.3

Faster R-CNN

ResNet101 (Teacher) .3× 42.0 62.5 45.9 25.2 45.4 54.6

MobileNetV2(Student) .1× 26.4 45.0 27.2 14.9 28.6 33.2

Ours 29.8 (+3.4) 47.7 31.9 16.7 (+1.8) 32.0 38.8

RetinaNet

ResNet101 (Teacher) .3× 40.4 60.3 43.2 24.0 44.3 52.2

MobileNetV2 (Student) .1× 20.4 33.3 21.6 10.7 22.1 26.1

Ours 23.4 (+3.0) 37.2 24.7 13.4 (+2.7) 25.0 29.2

Table 3. Results with different backbone networks. We replace the student and the teacher model on Faster R-CNN with the more
efficient VoVNetV2, respectively. And we also consider the mobile network and use MobileNetV2 for our experiments.
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set includes 6,471 images and 10 object classes, which

contains mostly small objects.

4.2 Implementation Details

Our experiments are all set up in the widely used

detectron2 [45] and AdelaiDet [46], using pytorch [47]

for the study. All programs are run on a single NVIDIA

RTX3060 and our batch size sets to 2. We follow the

criterion in detectron2 where 1× scheduler denotes 9k

training sessions. For optimizing the transformer de-

coder during knowledge distillation, we use the AdamW

optimizer [48] as the decoder. The MLP uses the reg-

ular settings [41, 42]. Other hyper-parameters are set

with reference to DETR [41], where the learning rate

and weight decay are set to 0.001. We set the hidden

dimension of the decoder and all MLPs to 256, and the

decoder has 8 heads in parallel. In the supplemental

distillation module, the background distillation hyper-

parameters α = 1 × 10−3.

4.3 Main Results

Results in MS COCO. Our method has good gen-

erality and can be easily applied to various detection

frameworks. We start with experiments on the popular

detectors, as shown in Table 1. The pre-trained mod-

els in the experiments come from the official re lease of

detectron2, the teacher model uses the ResNet101 back-

bone network trained on 3×, and the student uses the

ResNet50 backbone network trained on 1×. It can be

observed that we compare with several more advanced

methods listed so far, and it is not difficult to find that

the results of our method have an advantage. In Faster

R-CNN, the mAP value of our method improves by 3.8

over the baseline, while the APS (less than 32× 32) is

higher by 2.4. This fully demonstrates that our method

can lead to an improvement in the detection of small

objects. The reason for the poor performance of the

TinyKD [44] experiment may be that it is an exclusive

design for tiny person detection, and it is not suitable

for general scenarios of the COCO dataset. This also

reflects the more versatile nature of our method. As

shown in Table 2, we also apply our method to instance

segmentation [49] and FCOS [25], the experimental re-

sults demonstrate its effectiveness in this task as well.

To confirm t he e ffectiveness an d ge neralization of

our approach, we replace ResNet with more efficient

VoVNetV2 [50]. For the lightweight network, we try

MobileNetV2 [51], which is proposed by Google in 2018.

Heterogeneous Distillation. To confirm the consid-

erable generality of our method, we replace the teacher

network under Faster R-CNN and student network for

our experiments. VoVNetV2 is an efficient backbone

network proposed by Lee et al. [50] in 2019 for real-

time object detection and can fully exploit the com-

putational efficiency of  GPU, so  we  choose VoVNetV2

to replace ResNet for our experiments. The pre-

trained models we used are from the official release,

with VoVNetV2-57 (3×) for the teacher model and

VoVNetV2-19 (1×) for the student, other settings re-

main the same as before. As shown in Table 3, the

experimental results demonstrate that our method is

capable of conducting heterogeneous network distilla-

tion. It is worth exploring that the detection ability of

the student does not exceed the original experimental

results after replacing it with a powerful teacher model.

This itself may be related to the difference between dif-

ferent network structures.

Mobile Network. The main purpose of the

lightweight network is to deploy the model on devices

with low computing power, and we mostly use mobile

network for deployment. So we use MobileNetV2, a

classic lightweight network, for our experiment. We

use ResNet101 (3×) for the teacher and MobileNetV2

(1×) for the student. The teacher model uses the of-
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Method
RetinaNet

mAP APS APM APL

R101 (Tea).3× 23.8 14.0 36.3 58.0

R50 (Stu).1× 20.6 11.5 31.9 55.0

+ICD [17] 23.6 13.9 36.1 56.5

+FGD [21] 22.9 11.8 37.3 57.5

+Ours 24.0 (+3.4) 14.2 (+2.7) 36.4 56.6

Table 4. Results on VisDrone. This set of comparison experiments shows that our method still performs well on the small object
dataset. Both teacher and student are trained by ourselves. ICD [17] and FGD [21]. R101(Tea) means ResNet101(Teacher) and
R50(Stu) means ResNet50(Student).

ficial published model in detectron2, and the student

model is obtained by our training. Our experimental

results are shown in Table 3, which shows the compar-

ison among students under different frameworks.

Results in VisDrone. The experimental results are

obtained on the validation set and are shown in Ta-

ble 4. The results indicate that our proposed method

is indeed effective for enhancing the features of small

objects and has better detection capabilities compared

to the baseline and other methods. It is worth noting

that the detection accuracy of our student even sur-

passes that of the teacher. The hyper-parameters are

set the same as in the COCO for the experiments.

4.4 Ablation Studies

Effect of supplemental distillation. Our pur-

pose of separating the foreground from the background

is to avoid the effect of background noise on small ob-

jects. However, the background information also carries

some important information, which contributes to the

model learning more knowledge. Therefore, we intro-

duce a supplemental distillation module to teach the

background knowledge to the student. This can make

the student’s knowledge framework more comprehen-

sive. To validate the effectiveness of the supplemental

distillation module, we conducted a set of experiments

as shown in Table 5. The results demonstrate a notice-

able decrease in experimental performance when the

supplemental distillation module is removed. There-

fore, its inclusion in the HMKD framework is highly

necessary.

Separate+Supplement mAP APS APM APL

× 40.6 24.3 43.9 53.1

✓ 41.7 24.8 44.9 54.2

Table 5. Ablation study of the supplemental distillation mod-
ule.

Number of heads in the decoder. The setting of

heads in the decoder is an important influence factor on

the detection performance. Heads balance the number

of dimensions and spaces in the subspace. After our

experiments, the best number is again kept around 8

as shown in Table 6, which is the same as the original

number of probes.

Heads mAP APS APM APL

1 38.4 23.0 41.6 49.9

4 40.0 23.8 44.4 51.3

8 40.7 24.6 44.3 52.1

16 39.8 23.5 43.9 50.9

Table 6. The effect of different amounts of heads.

Model Analysis. The computation power of a

model is typically measured in Giga-Floating Point Op-

erations per Second (GFLOPS), which indicates the

amount of computational work that can be performed

per second. As the Fig 4 shows, the MobileNet model

in Faster R-CNN network is not very effective in light-
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weighting. Its model parameters are the same as those

of ResNet50 and its computational power is lower than

ResNet50. This suggests that the MobileNet model

may not be the most effective option for light-weighting

in Faster R-CNN network. In contrast, the RetinaNet

network shows a more pronounced change in the com-

putational power with a lighter model. This also cor-

roborates that the one-stage model may be more suit-

able for deployment on edge devices.

180
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166.3

41.7

196.2

44.3

206.8

37.9

138.3

11.5

0

50
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Total Gflops Parameters(M)

Faster R-CNN-R50

Faster R-CNN-MV2

Mask R-CNN-R50

RetinaNet-R50

RetinaNet-MV2

Fig.4. Gflops and Parameters with different methods.

5 Conclusion

We note that small object knowledge is not easily

transferred to students during knowledge distillation,

which is a challenging task. Therefore, we design Hi-

erarchical Matching Knowledge Distillation (HMKD)

to enhance students’ knowledge learning of small ob-

jects. We encode high-semantic information at low-

resolution of FPN as inquiries, and represent fine-

grained graph feature values at high-resolution as key-

values. Through extensive experiments, our method ef-

fectively enhances the student’s understanding of small

objects detection capability and is suitable for main-

stream object detectors or instance segmentation mod-

els. The training time increases due to the additional

augmentation design for small objects and this is also

where we will optimize in the next step. At the same

time, we will investigate differences in knowledge ex-

traction or learning effectiveness between teachers and

students.
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