
Face Anti-spoofing with Unknown Attacks: A Comprehensive Feature
Extraction and Representation Perspective

Xu Wang1, Pengkun Wang1, Yudong Zhang1, Binwu Wang1

1University of Science and Technology of China

Abstract Face anti-spoofing aims at detecting whether the input is a real photo of a user (living) or a fake (spoofing) 
image. As new types of attacks keep emerging, the detection of unknown attacks, known as Zero-Shot Face Anti-spoofing 
(ZSFA), has become increasingly important in both academia and industry. Existing ZSFA methods mainly focus on 
extracting discriminative features between spoofing and living faces. However, the nature of the spoofing faces is to trick 
anti-spoofing systems by mimicking the livings, so the deceptive features between the known attacks and the livings, which 
have been ignored by existing ZSFA methods, are essential to comprehensively represent the livings. Therefore, existing 
ZSFA models are incapable of learning the complete representations of living faces and thus falling short on effectively 
detecting newly-emerged attacks. To address this issue, we propose a novel feature extraction framework that can capture 
both the deceptive and discriminative features between living and existing spoofing faces. This framework is composed 
of a learnable masking mechanism and a two-against-all training scheme. To address the subsequent invalidation issue of 
categorical functions and dominance disequilibrium issue among different dimensions of features after importing deceptive 
features, we employ a newly modified semantic autoencoder to represent all extracted features to a semantic space to 
equilibrate the dominance of each feature dimension. As a result, our method simultaneously achieves a feasible detection 
on unknown attacks and a comparably accurate detection on known spoofing. Experimental results confirm the superiority 
and effectiveness of our proposed method in identifying the livings with the interference of both known and unknown spoofing 
types.
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1 Introduction

Face anti-spoofing is becoming a popular method of

authentication, with widespread use in mobile applica-

tions such as account login and unlocking cell phones,

which has greatly enhanced the convenience of people’s

daily lives [1,2]. With the continuous increase of the ac-

curacy and efficiency of face recognition, it has also been

widely applied in online payment and banking, bringing

safety and reliability issues. Face spoofing attack [3],

which can usually be seen in financial crimes and cheats

face recognition systems with fake faces such as pho-

tos, masks and videos, is one of the most severe safety

threats to face recognition based authentications, and

traditional face recognition technologies are incapable

of distinguishing the authenticity of input faces [4, 5].

To this end, face anti-spoofing has been raised and ex-

tensively studied during recent years, which aims at

detecting whether an input face is a fake image, e.g., a

photo of one’s printed photo, or a real photo of a user.

Early works on this field are mainly based on man-

ual features [6–10] or deep features learned by neu-

ral networks [11–16]. Those methods have achieved

promising performance in intra-domain experiments,

i.e., the training sets cover all the spoofing types in

the testing sets. However, their performances decrease

severely on the zero-shot face anti-spoofing task, which

is closer to real application scenarios as new spoofing

types keep emerging. Several recent studies [11, 17–20]

have made progress in tackling the problem of Zero-

Shot Face Anti-spoofing (ZSFA). These studies have

put forward carefully crafted deep-learning based model

and effective learning strategies to extract discrimina-

tive features that are existentially significant differences

between spoofing and living faces.

Although these features are effective, they are pri-

marily based on known types of spoofing in the labeled
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dataset. However, it is uncertain whether these features

can be generalized to unknown types of spoofing. For

example, if a new attack type is substantially differ-

ent from the known attack types and does not possess

these distinguishing features, the model may mistak-

enly classify it as a genuine face. Furthermore, a living

face that is not present in the training data may exhibit

these distinctive features and be incorrectly identified

as an attack.

Considering the nature of the spoofing faces is to

trick anti-spoofing systems by mimicking the livings,

similar features between living faces and one category

of fake ones, may be valuable for detecting other types

of attacks and may be crucial in accurately representing

livings. In this paper, we define features as deceptive

features, which are specific to certain types of attacks

and are shared with the live entity, excluding other

types of attacks. Deceptive features are considered as

useless for detecting fake facial inputs and their posi-

tive roles have been ignored in traditional methods.For

instance, as illustrated in Figure 1, depth information,

which belongs to deceptive features between living faces

and masks, is useful for distinguishing print photos from

living ones. Regarding existing ZSFA-targeted meth-

ods, they may naturally miss some key features which

can be used to well and roundly represent living sam-

ples and fall short in detecting unknown attacks. To

this end, we can rethink the ZSFA task from a new

perspective that a new type of spoofing faces, which

can successfully deceive existing anti-spoofing systems,

must be imitating the livings in terms of the discrimi-

native features among the livings and all known types

of spoofing faces. Therefore, deceptive features between

living faces and all known categories of fake inputs must

be the essential and key ingredients for detecting un-

known types of spoofing.

Printed 
Photo Live Mask

similar color and facial-
identity features

similar depth information

colors 

identity

depth 

information

Fig. 1. Impacts of deceptive features on anti-spoofing.
Printed photos have similar colors and facial identity features as
the living ones while masks have similar depth information to the
livings. Colors and facial identity features can be utilized to de-
tect masks and depth information can be used to detect printed
photos, meaning that the deceptive features between a spoof-
ing type and the livings can be discriminative for other spoofing
types.

In this paper, we integrate such deceptive features

to provide model more insights, which are apparently

excluded in previous works. We decouple the feature

space into two orthogonal types of features: deceptive

features and discriminative features. Deceptive features

are exclusive features shared between a specific attack

and living faces, which can help the model detect other

types of attacks. Thus, this can boost the generaliza-

tion of the model against unknown attacks. On the

other hand, by cross-checking these features, the recog-

nition of easily confused living faces would be beneficial.

Discriminative features can be further used to identify

livings and attacks. These two features work synergis-

tically to improve the accuracy of the model.

In this paper, we propose a novel anti-spoofing

framework which can achieve a feasible detection on

unknown categories of facial spoofing and a compara-

ble accurate detection on known categories spoofing.

Specifically, to extract uniquely deceptive features be-

tween each spoofing and living faces, which can be used

to detecting other categories of spoofing including un-

known ones, we design a novel two-against-all training

scheme, and this strategy uses a newly designed set

of learnable mask module to masked partial features

of all spoofing and the living, minimizing the diversity
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between it and the living and simultaneously maximiz-

ing the diversity between other spoofing types and the 

combined set of it and the living.Meanwhile, the import 

of deceptive features in detecting spoofing f aces may 

bring the invalidation issue of categorical functions, and 

distance-based metric, which can naturally address the 

invalidation issue may cause serious disequilibrium of 

dominance among different f eatures. To address these 

subsequent issues of employing deceptive features in 

anti-spoofing, in this paper, we apply a modified seman-

tic auto-encoder [21] to represent all extracted features 

to a semantic space where each dimension has almost 

equal dominance for distinguish spoofing, hence a  fea-

sible detection on unknown categories of spoofing and 

accurate detection on known categories of spoofing.

The main contributions can be summarized as fol-

lows.

• To the best of our knowledge, for the first time,

in this paper, we reveal the fact deceptive fea-

tures between known spoofing and living faces are

key and essential for detecting unknown spoof-

ing, and take an initial step on simultaneously

detecting both unknown and known spoofing by

concerning both deceptive and discriminative fea-

tures between living and spoofing samples with

one integrated network.

• To extract effective deceptive features, we propose

a novel two-against-all training scheme to achieve

high-efficient and variable-length filtration of de-

ceptive features, and propose a novel idea of em-

ploying a modified semantic auto-encoder to equi-

librate the dominance among different features,

hence the detection on both unknown and known

spoofing.

• We evaluate our proposed approach on the

dataset of SiW-M for ZSFA scenario, and ex-

tensive experiments demonstrate that, in detect-

ing unknown spoofing, our framework can at

least gain a 5% improvement in terms of ACER

while comparing with the advanced ZSFA solu-

tions. Meanwhile, in detecting known spoofing,

our method have a practical performance of 96.6%

in terms of AUC, which is comparative with al-

ternative anti-spoofing solutions.

The remainder of this paper is organized as follows. We

introduce the existing studies on anti-spoofing and re-

view methodology limitations in Section 2. Next, we

describe the details of our proposed model in Section

3. Section 4 uses multiple datasets to evaluate the pro-

posed model, which mainly includes two parts: the de-

tection accuracy and the contribution measure of each

component. Finally, we make a conclusion for this pa-

per in Section 5.

2 Related Works

Great efforts have been achieved in the field of anti-

spoofing. Most previous works, which can be divided

into two sorts: manual feature based methods [6–10]

and deep feature based methods [11–16, 22, 23], regard

this issue as a classification problem.

Early manual feature based methods [6–10] distin-

guish living faces and spoofing inputs by exploiting spe-

cific handcrafted features with traditional image pro-

cessing methods. Specifically, [8] extracts color tex-

tures to detect attacks by integrating the luminance

and the chrominance in HSV (Hue, Saturation, Value)

space. [6] first abstracts and aggregates four different

features including specular reflection, blurriness, chro-

matic moment, and color diversity, and uses SVM to

achieve dichotomies. Based on the analysis of living

face inputs, [9] exploits and utilizes the Local Binary

Pattern (LBP) features to detect fake ones from in-

puts. [7] carries out the detection based on both the
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multi-level LBP features in HSV space and the Local

Phase Quantization (LPQ) features in YCbCr space.

And [10] senses print and replay attacks by analyzing

the distortions of both color and shape of the input im-

ages. These traditional manual feature based methods,

which have outstanding performances on some specific

data sets, is of insufficient generalization ability gen-

erally, and [24] has indicated that the performances of

this kind of approaches are limited in dealing with 3D

face mask attacks.

Recently, deep feature based methods [11–16] are

proposed to address the issue of face anti-spoofing by

exploiting deep features with deep learning technolo-

gies. In particular, [13] first designs a deep Convolu-

tional Neural Network (CNN) to estimate the depth

map and rPPG signals, and fuses them to execute an

end-to-end detection. [11,12] aim at improving the gen-

eralization abilities of proposed models by regarding

the face anti-spoofing problem as an anomaly detection

mission. [14] first considers spoofing images as noise-

distorted living images and abstracts the noises with

a deep neural network, and subsequently makes clas-

sification decisions based on learned noise pattern fea-

tures. [15] extracts local and global features based on

randomly collecting patches within face regions and the

depth maps of entire input faces respectively, and fuses

these two results to achieve accurate anti-spoofing. [16]

considers both local features and additional optical-

flow-based motion cues to improve the accuracy of face

anti-spoofing. Also, these methods, which aim at effec-

tively learning the feature combination patterns of at-

tacks, are focusing on specific known types of attacks.

Regarding unknown types of attacks, the performances

of such technologies are limited.

All previous methods aim at learning specific fea-

tures from labeled dataset, and use the learned patterns

to detect attacks. Without exception, these methods

take the awareness of the characteristics of attacks as

an essential ingredient, and cannot be directly used to

address the challenge of unknown spoofing detection.

Moreover, addressing the challenge of Zero-Shot

Anti-Spoofing (ZSFA), some latest works propose some

well-designed deep models and learning strategies which

aim at learning generalized face anti-spoofing models.

Specifically, [11, 17] aim at addressing ZSFA by repre-

senting known living samples with carefully and manu-

ally designed features, and [18] distinguishes living faces

from fake ones by using a tree CNN to confirm living

samples. More recently, [19] trains a meta-learner to

learn the discrimination for detecting new spoofing cat-

egory, from the support set where contains predefined

living and spoofing faces and a few or none data of the

new living and spoofing categories. [20] introduces fea-

ture generation networks for producing hypotheses for

the first time and proposes a deep learning framework

for building generalized face anti-spoofing model. [25]

applies patch-wise data augmentation and proposed

DC-DCN model which consists of horizontal/vertical

and diagonal sparse convolution C-CDC. Nevertheless,

all these ZSFA-targeted methods have never considered

the similar features between known spoofing and living

samples, so they may miss some key features which can

be used to well and roundly represent living samples

and fall short in detecting unknown attacks.

3 Methodology

Our approach consists of three sub-parts: feature

extraction, semantic representation for extracted fea-

tures, and spoofing detection. In the feature extraction

part, we use CNN-based model as the backbone with

two well-designed classifiers to extract deceptive and

discriminative features, respectively. To accurately ex-

tract deceptive features, we design a training strategy,

namely two-against-all training scheme. Further, we
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employ an improved semantic autoencoder to represent 

all extracted features into a robust semantic represen-

tation space where each dimension has almost equal 

advantages to distinguish spoofing. F inally, distance-

based classification a lgorithm i s a pplied t o d etect the 

spoofing faces.

Feature
extraction

Semantic
representation

Spoofing
Detection

CNN

Semantic 
autoencoder

Distance-based
classification

algorithm

Concatenation

Living
or

Spoofing
Samples

Fig.2. Solution Overview. In feature extraction, the deceptive
and discriminative features are extracted based on the super-
vision of our purpose-designed loss functions. Then, extracted
features are represented in a learnable semantic space to balance
the importance among different dimensions of feature vectors. Fi-
nally, a distance-based classification algorithm is applied to detect
the spoofing faces.

3.1 Feature extraction of facial images

Previous methods on face anti-spoofing mostly fo-

cus on mining and exploiting discriminative features

between living samples and known spoofing samples.

Considering the fact that all attacks, including known

and unknown ones, are to cheat anti-spoofing models

by imitating some features of living face images, we di-

vide all features X obtained from living samples into

two categories: 1) the features that are discriminative

between living samples and all known spoofing samples,

i.e., Xd; 2) the features that are deceptive between liv-

ing samples and some types of known spoofing sam-

ples, i.e., Xs. Further, assuming there are m known

categories of attacks, we have X = {X 0,X 1, · · · ,Xm}

where X i(1 ≤ i ≤ m) indicates the features of the i-th

category of attacks and X 0 corresponds to the features

of the living samples. Then given 0 ≤ i ≤ m, we have

X i = X i
s⊕X i

d, here ⊕ means concatenation, X i
s and X i

d

respectively indicate the deceptive and discriminative

features between the i−th category of known spoof-

ing and the livings. To supervise feature extraction,

as shown in Figure 3, we introduce two classifiers to

respectively extract discriminative and deceptive fea-

tures. In the subsequent subsections, we describe the

detailed design of these two classifiers. Notice that we

here employ ResNet50 [26] in our experiments as the

CNN backbone for feature extraction, as shown in Fig-

ure 3.

Auxiliary 

task 1

Auxiliary 

task 2
Samples

:Discriminative features classifier : Deceptive features classifier

C
N
N

Fig.3. Multi-task learning for feature extraction. we em-
ploy the CNN backbone to extract deceptive and discriminative
features with a same dimensionality. The extraction of deceptive
features is based on a learnable masking mechanism and a two-
against-all training scheme, and the extraction of discriminative
features is supervised by a binary classifier.

Classifier for discriminative features: Since the

discriminative features Xd are diverse between living

samples and all known spoofing samples, they can be

mapped into two different categories by a binary clas-

sifier, i.e.,

Yi
d ← φd

[
X i

d

]
where i ∈ {0, 1, · · · ,m} (1)

where φd denotes the binary classification network with

parameter ϖd, and Yi
d is the classification result of the

i−th category of known attacks (here 0 indicates the

living). The cross entropy loss is employed for training

the binary classification network, i.e.,

Lossφd
=

m∑
i=1

[
−Li

d · logYi
d − (1− Li

d) log(1− Yi
d)
]
(2)

where Li
d is the label with regard to the output of the

binary classifier φd with the input of the i−th category
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known spoofing samples. It is equal to 0 for any known

spoofing sample categories and 1 for living samples.

Classifier for deceptive features: There exist sim-

ilarities between the livings and every known spoofing

category, i.e.,

∀i ∈ [1, · · · ,m], ∃ ψi, ψi · X 0
s ∼ ψi · X i

s (3)

where ∼ means ψi · X 0
s and ψi · X i

s follow a same distri-

bution. ψi is a vector with the elements of 0 or 1 to ex-

tract the deceptive features between the i−th category

of known spoofing and the livings. Further, here · corre-

sponds the element-wise multiplication. To extract the

deceptive features between all m categories of known

spoofing and the livings, we employm-way two-against-

all binary classifiers, i.e.,
{
φ1
s, · · · , φm

s

}
. As demon-

strated in Figure 4 (b), the i−th category of spoofing

and the livings are classified into one category, which is

different to other spoofing types, by the i−th classifier

φi
s. Therefore, the output of the i−th two-against-all

binary classifier φi
s for the j−th category of spoofing

can be calculated as,

Yj
s (i)← φi

s

[
ψi · X j

s

]
where j ∈ {1, · · · ,m} (4)

Here Yj
s (i) = 1 if and only if j = i. Note that we

have Y0
s (i) = 1 when the input is a living face. For

the sake of efficiency, we here employ a single FC layer,

the two-against-all classification of φi
s with regard to

all m categories of known spoofing and the livings can

be rewritten as,

Yj
s (i) = Sigmoid

(
wi

s ⊗ (ψi · X j
s ) + bis

)
(5)

living

Mask matrix

∙

𝑦𝑠
1

𝑦𝑠
2

𝑦𝑠
3

Element-wise
product

Attack type 1

: Deceptive features

1

1

1

00

0 0

0 0

Attack type 2

Attack type 3

Fig.4. Two-against-all training scheme means, regarding one spe-
cific spoofing type, we first locate the deceptive features between
it and the living by masking partial features of all spoofing and
the living in a learnable manner to minimize the diversity between
it and the living and simultaneously maximize the diversity be-
tween other spoofing types and the combined set of it and the
living.

Note here we have j ∈ {0, · · · ,m}, j = 0 indicates

the livings. And ⊗ means the vector multiplication.

The m-way two-against-all classifications can be for-

mulated by,

Yj
s = Sigmoid

(
Ws ·Ψs ⊗X j

s +Bs

)

where



Ws =
[ (
ϖ1

s

)T (
ϖ2

s

)T · · · (ϖm
s )T

]T
Ψs =

[
ψ1 ψ2 · · · ψm

]T
Bs =

[
b1s b

2
s · · · bms

]T
(6)

Yj
s corresponds to the output of all m classifiers,

regarding the inputs of the j−th categories of known

spoofing. And we have Yj
s =

{
Yj
s (1), · · · ,Yj

s (m)
}
. For

the deceptive features of the livings X 0
s , we have

L0
s = [

m︷ ︸︸ ︷
1 · · · 1 ]T (7)

where L0
s corresponds to the label with regard to the

output of all m two-against-all classifiers. Regarding

the input of the i−th category of spoofing, Li
s should

have the i−th element of 1 and the other elements of

0, i.e.,

Li
s = {

i−1︷ ︸︸ ︷
0 · · · 0 1

m−i︷ ︸︸ ︷
0 · · · 0

} (8)
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So far, the problem of training the m-way two-against-

all classifiers can b e t ransferred t o the optimization of 

the learnable parameter matrix Ws · Ψs. This matrix is 

rather sparse due to the sparsity of Ψs. We can simplify 

the problem to employ the L1-regularization on matrix 

Ws [27] to replace Ws · Ψs . The loss for training the 

m-way classification neural network can be defined by,

Lossφs
=

m∑
i=0

∥∥Yi
s − Li

s

∥∥2
2
+ λ1∥Ws∥1 (9)

where λ1 is a hyper-parameter to adjust the weight of

the corresponding component.

Overall loss for feature extraction: As mentioned,

we obtain the two kinds of features of living samples

by employing a CNN backbone, and train two kinds

of classifiers to check the validity of extracted features.

The feature extraction network can be viewed as the

combination of the CNN backbone and the two kinds

of classifiers, and for training the integrated feature

extraction network, we combine the losses of the two

kinds of classifiers so that the CNN backbone can ex-

tract both the two categories of features. The overall

loss for training the feature extraction network can be

formulated by,

Lossfeature = Lossφd
+ λ2Lossφs

(10)

λ2 is a hyper-parameter to tune the weight of the cor-

responding component. Further, as mentioned in [28],

the inter-class variation of a specific category of fea-

tures may be large, leading to a greater inter-class vari-

ation in subsequent semantic representations. We hence

modified the loss function for training the feature ex-

traction network as,

Loss∗feature = Lossφd + λ2Lossφs + λ3

(
m∑
i=0

∥∥∥X i − εi
∥∥∥2
2

)
(11)

where εi is randomly initiated, and should be subse-

quently updated by the learnable centers of the i cate-

gory of known spoofing [28]. Notice that in case i = 0,

the parameter of εi should be updated by the learnable

center of the livings. Also, λ3 is a hyper-parameter to

tune the weights.

Visualization of feature space: To demonstrate

the effectiveness of our proposed feature extraction

network, regarding all extracted 1920-dimensional fea-

tures of all samples including both deceptive and dis-

criminative features, we transform them into a three-

dimensional space via the t-SNE [29], and the samples

of a specific spoofing category should be concentrated

in the transferred three-dimensional space. Notice that

during training the feature extraction network, we as-

sume the attack category ”Makeup Co” is unknown.

As illustrated in Figure 5, known categories of samples

are nicely clustered by separated categories, and this

verifies that the extracted deceptive and discriminative

features can be further used to distinguish known spoof-

ing. However, the unknown samples are relatively scat-

tered in this figure, and this indicates that the import of

deceptive features may bring distractions to traditional

anti-spoofing classification function, and they cannot

be directly used to address the detection issue of both

known and unknown spoofing. Further, note that in

Figure 5, we cannot use distance based clustering al-

gorithms to directly distinguish known and unknown

attacks either, due to the bar-like inner-class distribu-

tions of samples and the possible intersections among

the bar-like distributions of different categories of spoof-

ing. To this end, we still need to seek a better semantic

representation of all extracted features to equilibrate

the weights of different feature dimensions.
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Fig.5. t-SNE Visualization of the Feature Space

3.2 Semantic representation of extracted fea-

tures

As discussed above, we should represent all features

to a semantic space where the intra-class semantic dis-

tances are minimized while the inter-class semantic dis-

tances are maximized. Further, to well represent the

livings, we require that each dimension in the target se-

mantic space should be a combination of owned features

of the livings. To balance the disequilibrium among dif-

ferent features, we normalize the value of each dimen-

sion in the target semantic space to be [0, 1]. Each di-

mension of the semantic representation of a living sam-

ple should be 1. Regarding a spoofing sample, the value

of each dimension of its semantic representation, which

corresponds to the similarity between this sample and

the livings in terms of the corresponding feature com-

bination, should be a real number within [0, 1]. The

projection from extracted features X to the semantic

space can be written as,

ΘX ←WΘ ⊗X

s.t.



WΘ ⊗X 0 = [ 1 · · · 1 ]

WΘ ⊗X i =
[
θ1i · · · θ

|Θx|
i

]
θji ∈ [0, 1]

where

 i ∈ {1, · · · ,m}

j ∈ {1, · · · , |Θx|}
(12)

Where ΘX denotes the corresponding semantic repre-

sentation of feature X . The matrixWΘ means the pro-

jection between the semantic and feature spaces. Note

that X 0 indicates the extracted features of a living sam-

ple, and X i corresponds to the extracted features of a

sample within the ith category of spoofing.

Another requirement of the projection from feature

space to semantic space is that the information loss

between the original extracted features and their cor-

responding semantic representations should be mini-

mized, and this loss minimization problem can be con-

verted to a reconstruction problem from the semantic

space to the feature space, i.e.,

argmin
WΘ

∥∥X −W ′
Θ ⊗ΘX

∥∥2
2
=argmin

WΘ

∥∥X −W ′
Θ ⊗WΘ ⊗X

∥∥2
2

(13)

W ′
Θ denotes the backward projection from the se-

mantic space to the feature space. Referring to [21,30],

the backward projection W ′
Θ can be simplified as WT

Θ

with negligible losses. The problem can be written as,

argmin
WΘ

∥∥X −WT
Θ ⊗WΘ ⊗X

∥∥2
2
+λ4(1−Y) ∥WΘ ⊗X∥1

(14)

Notice here Y = 1 if X is the features of a living face,

otherwise Y = 0. To equilibrate the weights of differ-

ent feature dimensions, a center loss item is introduced,

i.e.,
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Loss =
∥∥X −WT

Θ ⊗WΘ ⊗X
∥∥2
2

+ λ4(1− Y) ∥WΘ ⊗X∥1

+ λ5

m∑
i=0

∥∥WΘ ⊗X i −WΘ ⊗ εi
∥∥2
2

(15)

Here λ4 and λ5 are also hyper-parameters to tune

the weight of the corresponding components.

3.3 Face detection with trained model

Regarding the extracted features X of a specific

sample , we can obtain its semantic representation ΘX ,

and calculate the distances between ΘX andWΘ⊗εi for

each category of samples. Notice that for 1 ≤ i ≤ m,

WΘ ⊗ εi is the center of the i-th category of spoofing

faces in the semantic space, and for i = 0, WΘ⊗ εi cor-

responds to the center of the livings. After calculating

the Euclidean distance within the semantic space, we

use it to determine whether a sample is living or not,

i.e., a sample is considered as the living if and only if the

distance between ΘX and WΘ ⊗ ε0 is smallest among

all calculated distances.

4 Experiments

In this section, We evaluate the proposed model on

multiple data sets. And focus on the following potential

questions.

• Q1. Compared with the most advanced meth-

ods, how accurate is the proposed method under

various scenarios. Please refer to Section 4.2.

• Q2. Does each insight/component proposed con-

tribute to the performance of the model. Please

refer to Section 4.3.

• Q3. How does the number of known types af-

fect the performance of the model. Please refer

to Section 4.4.

4.1 Experimental setups

Databases: Five databases are used to evaluate the

proposed approach, including SiW-M [18], OULU-

NPU [32], Replay-Attack [4], MSU-MFSD [6] and

CASIA [33]. SiW-M contains rich spoofing types

and is designed for zero-shot face anti-spoofing task.

OULU-NPU is a high-resolution database, and provides

four protocols for traditional intra-domain experiments.

Additionally, following the protocol proposed in [11],

we apply cross-domain testing on Replay-Attack, MSU-

MFSD and CASIA.

Quality measurements: In Oulu dataset, all meth-

ods are evaluated with the following widely accepted

metrics: 1) Attack Presentation Classification Error

Rate (APCER) [34], which indicates the ratio of the

amount of false livings to the amount of spoofing;

2) Bona fide Presentation Classification Error Rate

(BPCER) [34], which corresponds to the ratio of the

amount of false spoofing to the amount of livings; 3)

Average Classification Error Rate (ACER) [34], which

equals to the average of APCER and BPCER. In SiW-

M dataset, Equal Error Rate (EER) and ACER are

employed for evaluation as early works do. For cross-

dataset testing, we apply Area Under the ROC Curve

(AUC) to evaluate all the methods.

Other setups: We extract faces from videos by uti-

lizing the face coordinates given by the datasets them-

selves 1, and then resize all extracted faces into 224*224

resolution. Our proposed model take single images as

inputs and employ ResNet50 as backbone. Feature

extraction network and semantic representation net-

work are trained separately. Besides, the optimizer of

Adam [36] is used to train our model with learning rate

as 0.001. The initial values of the hyper-parameters

are given and fine-tuned according to the dimensions of

1For databases which do not provide face coordinates, we extract face coordinates by [35] as Replay-Attack does.
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Table 1. ZSFA performances of different models on SiW-M.

Method Metrics(%) Replay Print
Mask Attacks Makeup Attacks Partial Attacks

AverageHalf Silicone Trans. Paper Manne. Obfusc. Imperson. Cosmetic Funny Eye Glasses Partial

Auxiliary [13]
ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6±18.5
EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0±17.7

DTN [18]
ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8±11.1
EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1±12.2

SpoofTrace [31]
ACER 7.8 7.3 7.1 12.9 13.9 4.3 6.7 53.2 4.6 19.5 20.7 21.0 5.6 14.2±13.2
EER 7.6 3.8 8.4 13.8 14.5 5.3 4.4 35.4 0.0 19.3 21.0 20.8 1.6 12.0±10.0

DC-CDN [25]
ACER 12.1 9.7 14.1 7.2 14.8 4.5 1.6 40.1 0.4 11.4 20.1 16.1 2.9 11.9±10.3
EER 10.3 8.7 11.1 7.4 12.5 5.9 0.0 39.1 0.0 12.0 18.9 13.5 1.2 10.8±10.1

FGHV [20]
ACER 8.4 7.3 5.2 9.8 14.2 3.2 4.1 16.7 1.9 9.0 18.2 8.3 4.4 8.5±5.1
EER 9.0 8.0 5.9 9.9 14.3 3.7 4.8 19.3 2.0 9.2 18.9 8.5 4.7 9.1±5.4

Ours
ACER 4.2 2.9 5.3 7.7 12.1 1.9 1.6 17.1 1.5 0.9 18.8 7.3 1.2 6.3±6.1
EER 4.7 2.6 7.1 7.8 11.2 2.1 1.9 18.6 1.3 1.1 19.0 6.8 0.8 6.5±6.3

the vectors they control, e.g., Lossφd
and Lossφs

have

the same dimensions, thus the initial value of λ2 is 1.

Analogously,in our experiments, the initial values of the

parameters of λ1,λ2,λ3, λ4, and λ5 are fine-tuned and

finally set to 0.001, 1, 0.001, 0.01 and 1, respectively.

All hyper-parameters are tuned with grid search.

4.2 Main Experiments (Q.1)

We compare the detection accuracy of the proposed

model and SOTA models in three scenarios. First We

evaluated the performance of each model against the

ZSFA task, which mainly depended on the model’s abil-

ity to detect unknown attacks. Second, we evaluate the

model’s performance against hybrid attacks through a

series of experiments on cross-data datasets, which mix

known and unknown attack. Finally, we evaluate mod-

els for traditional anti-spoofing task, covering only the

types of seen attacks.

4.2.1 Evaluation on SiW-M for ZSFA testing

We train our model on SiW-M [18] in a leave-one-out

testing manner as it suggests, which means each time

we split one kind of spoofing images and 20% of the liv-

ing images as the testing set, and train our model with

the rest. To evaluate the performance of our proposed

model on ZSFA, we compare it with five State-Of-The-

Art (SOTA) ZSFA methods, Auxiliary [13], DTN [18],

SpoofTrace [31], DC-CDN [25] and FGHV [20]. The

results are demonstrated in Table 1. The great vari-

ances between accuracy of models on different spoofing

types indicate that diverse spoofing types differ signif-

icantly. Thus, detecting unknown spoofing type based

on known types is a difficult and challenging problem.

According to Table 1, we can find our method outper-

forms other alternative methods in terms of both EER

and ACER in nearly half of all spoofing types. In par-

ticular, our approach achieves an overall 25.8% opti-

mization in terms of EER and 28.6% optimization in

terms of ACER. Althogh the performance of our model

decreases in some cases, the absolute accuracy of our

model in such cases is acceptable and is competitive to

that of baselines. In the worst case, the performance of

our model is lower than the best baseline with a minor

margin less than 1%. This experiments verify the su-

periority of our proposed method in address the ZSFA

issue.

4.2.2 Evaluation for cross-dataset testing

To further evaluate the generalization ability of our

proposed method, by following the protocol proposed

by [11], we conduct a series of cross-dataset evalua-

tions on three alternative datasets, including CASIA,

MSU-MFSD and Replay-Attack. Based on the pro-

tocol, the performances of all methods are reported

with another widely used metric of Area Under the

ROC Curve (AUC). Each time, one spoofing type of
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Table 2. AUC (%) of cross-dataset anti-spoofing on CASIA, Replay, and MSU-MFSD.

Method
CASIA Replay MSU-MFSD

AverageVideo Cut Photo Wrapped Photo Video Digital Photo Printed Photo Printed Photo HR Video Mobile Video

Auxiliary [13] 94.16 88.39 79.85 99.75 95.17 78.86 50.57 99.93 93.54 86.7±15.6
DTN [18] 90 97.3 97.5 99.9 99.9 99.6 81.6 99.9 97.5 95.9±6.2

SpoofTrace [31] 93.6 99.7 99.1 99.8 99.9 99.8 76.3 99.9 99.1 96.4±7.8
DC-CDN [25] 98.5 99.9 99.8 100 99.43 99.9 70.8 100 99.9 96.5±9.6
FGHV [20] 98.6 99.8 99.9 99.9 99.1 99.8 73.2 100 99.9 96.7±8.8

Ours 98.8 99.9 99.8 100 100 99.9 86.6 100 100 98.3±4.2

the three datasets are selected for testing, and other

types for training. Due to the overlap of types in the

three datasets, the experiments are usually applied for

evaluating the performance of models when fed into im-

ages collected in different places by different devices.

The results are reported in Table 2. As observed, our

proposed method can outperform other alternative ap-

proaches in most scenarios. The better performance of

our model indicates that when faced with spoofing faces

in diverse environments, the proposed model achieves

more robust anti-spoofing accuracy. And this can fur-

ther confirm the superiority of our proposed method in

terms of the generalization ability.

4.2.3 Evaluation for intra-dataset testing

Although our model are proposed for ZSFA tasks,

we evaluate the performance of our model in traditional

anti-spoofing task on OULU-NPU. This series of exper-

iments strictly follow the four protocols that OULU-

NPU suggests. As in Table 3, the performances of our

model are competitive with or better than the perfor-

mances of SOTA solutions in traditional anti-spoofing.

This result indicates that introducing deceptive features

will not lead to performance decrease on known spoof-

ing faces. This suggests that our model can also handle

the traditional anti-spoofing task as SOTA works.

Table 3. The results of traditional anti-spoofing on four proto-
cols of OULUNPU.

Protocol Method APCER BPCER ACER

1

Auxiliary [13] 1.6 1.6 1.6
DTN [18] 1.3 1.5 1.4

SpoofTrace [31] 0.8 1.3 1.1
DC-CDN [25] 0.5 0.3 0.4
FGHV [20] 0.5 0.2 0.4

Ours 0.4 0.2 0.3

2

Auxiliary [13] 2.7 2.7 2.7
DTN [18] 2.3 2.0 2.2

SpoofTrace [31] 2.3 1.6 1.9
DC-CDN [25] 0.9 1.9 1.3
FGHV [20] 0.8 1.6 1.2

Ours 0.8 1.6 1.2

3

Auxiliary [13] 2.7±1.3 3.1±1.7 2.9±1.5
DTN [18] 2.5±1.4 3.0±2.1 2.8±1.9

SpoofTrace [31] 1.9±1.6 4.0±5.4 2.8±3.3
DC-CDN [25] 2.2±2.8 1.6±2.1 1.9±1.1
FGHV [20] 2.1±1.9 1.6±2.4 1.8±2.1

Ours 2.0±1.5 1.5±2.5 1.8±2.0

4

Auxiliary [13] 9.3±5.6 10.4±6.0 9.5±6.0
DTN [18] 8.6±4.3 8.0±5.4 8.3±4.8

SpoofTrace [31] 3.3±3.6 5.2±5.4 3.8±4.2
DC-CDN [25] 5.4±3.3 2.5±4.2 4.0±3.1
FGHV [20] 4.6±2.8 3.4±5.3 4.0±4.0

Ours 3.1±2.8 3.3±4.0 3.2±3.4

Summary. Based on the analysis conducted above,

it can be concluded that the proposed model demon-

strates competitive performance in both traditional

anti-spoofing tasks and more challenging ZSFA tasks.

This highlights the versatility of our model in the face

anti-spoofing domain.

4.3 Ablation Study (Q.2)

In this section, we evaluate the effects of each indi-

vidual component through a series of ablation experi-

ments. It is important to note that all ablation experi-
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ments conducted in the ZSFA scenario. Siw-M dataset

is employed here for ablation study.

4.3.1 Impacts of deceptive features

In the proposed model, we divide all features into

two categories: discriminative and deceptive features.

To investigate the impacts of deceptive features on de-

tection, we carry out a series of ZSFA experiments by

ablatively taking one category of discriminative and de-

ceptive features away at each round of evaluations, and

the results are given in Table 4, as we can see, each

individual category of features can effectively help de-

tect unknown category of spoofing faces, and the per-

formances of our approach in case of employing only

one category of features are almost equivalent. And

the employment of these two categories of features can

significantly enhance the performances of our approach

in terms of all the metrics of APCER, BPCER, and

ACER. This verifies that the employment of decep-

tive features is effective on detecting unknown spoofing

faces.

Table 4. Impacts of different kinds of features

Features APCER(%) BPCER(%) ACER(%)

deceptive Only 28.7±21.8 3.14±3.22 14.3±12.1
Discriminative Only 20.4±15.2 6.44±3.72 15.7±18.1

Two Kinds 11.9±10.2 2.74±1.4 7.3±5.2

4.3.2 Impacts of semantic representation

The dimensionality of semantic space determines

the representation ability of semantic space, i.e., a

larger dimensionality can help maintain more informa-

tion from feature space, hence minimizing the infor-

mation loss. However, when the feature dimension is

None, this means that the semantic representation of

this component is invalid.

We then set the dimensionality of semantic space

to 1920, 1024, 512, 256, and None, the results are shown

in Table 5. Note that in case that the dimensionality

is set to None, it means that we use the feature space

directly to detect unknown spoofing. As shown in this

table, the increasing of the dimensionality of semantic

space can positively enhance the performances of our

proposal, and this verifies our previous assumptions.

Notice that even though the dimensionality of seman-

tic space is set to 1920, the computational complexity

of the transformation process is 103 times less than the

computational complexity of the CNN backbone. Thus,

in our final implementation, the dimensionality is 1920.

Table 5. Impacts of dimensionality in semantic space

Dimension APCER(%) BPCER(%) ACER(%)

None 48.2±17.5 34.1±11.6 41.1±14.3
256 39.0±19.6 11.8±3.6 25.4±10.6
512 28.3±18.2 4.78±9.3 16.5±12.1
1024 24.6±21.3 5.32±2.7 15.9±10.4
1920 11.9±10.2 2.74±1.4 7.3±5.2

4.4 Hyperparameter experiment (Q.3)

Given the fact that our proposal can construct bet-

ter descriptions for the livings by considering the de-

ceptive features between living and known spoofing, the

impacts of the number of known spoofing types should

be investigated. For the sake of fairness, in each round

of the experiments, we fix a specific category of spoof-

ing faces as the unknown spoofing type, i.e., Replay.

And the size of training sets are fixed by selecting the

same number of samples from known attacks for fair

comparison, no matter how many categories of known

spoofing types are included. Table 6 shows the results.

The performance of our approach deteriorates dramat-

ically as the number of known types decrease, and this

indicates that a relatively number of known categories

of spoofing is essential for extracting enough deceptive

features to well represent the livings. Also, combined

with Table 1, with respect to Replay attack, we no-

tice that our method with only 8 known categories of
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spoofing can achieve an equivalent level of performance 

to those SOTA solutions with 12 known categories of 

spoofing.

Table 6. Impacts of number of known types

Number of Known Types 12 11 8 5

ACPER(%) 8.67 9.42 10.86 40.62
BPCER(%) 1.04 1.72 5.91 38.14
ACER(%) 4.81 6.54 8.49 40.11

5 Conclusion

To accurately detect unknown types of spoofing re-

mains challenging in the field of anti-spoofing. In this

paper, we investigate the detection of unknown attacks

generally, propose a novel approach to extract domi-

nating features from both deceptive and discriminative

perspectives between the living and known spoofing, de-

vise a semantic autoencoder to represent all extracted

features to a semantic space where each dimension has

almost equal dominance for distinguish spoofing. Ex-

perimental results demonstrate the superiority of our

proposed approach in the mission of detecting both

known and unknown attacks. In future, we will fur-

ther investigate the classification issue of unknown at-

tacks while there exist multiple categories of unknown

attacks, and this may benefit the whole anti-spoofing

community.
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