Point Cloud Denoising Using a Generalized Error Metric

Qun-Ce Xu Yong-Liang Yang Bailin Deng
Tsinghua University, University of Bath, Cardiff University,
China UK UK

quncexu@tsinghua.edu.cn

Abstract

Effective removal of noises from raw point clouds
while preserving geometric features is the key challenge
for point cloud denoising. To address this problem, we
propose a novel method that jointly optimizes the point
positions and normals. To preserve geometric features,
our formulation uses a generalized robust error met-
ric to enforce piecewise smoothness of the normal vec-
tor field as well as consistency between point positions
and normals. By varying the parameter of the error
metric, we gradually increase its non-convexity to guide
the optimization towards a desirable solution. By com-
bining alternating minimization with a majorization-
minimization strategy, we develop a numerical solver
for the optimization which guarantees convergence. The
effectiveness of our method is demonstrated by extensive
comparisons with previous works.

Keywords: Geometry Processing, Optimization, Point
Cloud Denoising

1. Introduction

With the recent development of 3D sensing technologies,
3D acquisition has been made easy for novice users. Nowa-
days, large amounts of 3D point clouds can be obtained from
not only high-end devices such as laser scanners, but also
commodity devices such as mobile phones, RGBD cameras,
and head-mounted displays. However, the captured data
usually deviates from the ground truth due to several factors,
including the precision of the 3D sensor, the physical ma-
terial of the target object, the lighting condition, etc. As a
result, removing noises from the raw point cloud is important
for real-world applications that require high-quality geome-
try, such as reverse engineering, digital cultural heritage, and
person identification, just to name a few.

To solve this problem, point cloud denoising has been
actively studied in the past, and various methods have been
proposed. A key requirement here is to remove the noises
while preserving inherent geometric features of the target ob-
ject such as sharp edges [19]. A popular approach is to first
modify the point cloud normals to promote their piecewise

strongyang@gmail.com

DengB3@cardiff.ac.uk

smoothness and thereby preserve sharp features, using spar-
sity optimization [5, 46], filtering [59], or low-rank optimiza-
tion [32]; afterwards, the point positions are updated accord-
ingly, often via an optimization that enforces the consistency
between the modified normals and the point positions [5, 46].
Since the normals are sensitive to the underlying surface
shape, they can be an effective proxy for denoising the point
cloud. Indeed, such a two-step approach is commonly used
for denoising mesh surfaces [45, 58, 56, 48, 49, 55], a prob-
lem closely related to point cloud denoising. On the other
hand, such a modification of normals does not take their inte-
grability into account, i.e., the normals are modified without
considering the existence of shapes that are consistent with
the new normals. As a consequence, the actual normals re-
sulting from the updated point positions may deviate from
the modified normals in the first step, which can lead to
sub-optimal results.

To address this issue, we propose a new formulation that
jointly optimizes the point positions and normals, with a tar-
get function that enforces both smoothness and integrability
of the normals. To preserve sharp features, we apply a robust
error metric to the smoothness and integrability measures
to promote their sparsity. However, unlike [5, 46] that op-
timize using a single robust metric, we adopt a generalized
metric recently proposed in [7] that unifies a family of met-
rics with different levels and non-convexity. By gradually
changing the metric parameter to increase its non-convexity
and robustness, our optimization first improves the overall
smoothness of the shape and then progressively enhances
the sharp features, which helps to avoid undesirable local
minima. To solve the optimization problem for each instance
of the generalized metric, we develop a numerical solver
using an alternating minimization approach together with
a majorization-minimization strategy [26]. Our solver is
guaranteed to monotonically decrease the target function
and converge to a stationary point. We test our method on a
variety of synthetic and scanned point clouds. Both quantita-
tive and qualitative results demonstrate its effectiveness. To
summarize, our contributions include:

* We propose a point cloud denoising approach that jointly
optimizes the point positions and normals, enforcing both

piecewise smoothness and integrability of the normals.

* We adopt a generalized error metric for our optimization,
and gradually increase its non-convexity and robustness to
guide the optimization towards a desirable solution.

* We develop a numerical solver for the proposed optimiza-
tion, which guarantees a monotonic decrease of the target
function as well as convergence to a stationary point.

2. Related Work

Point cloud filtering has been actively studied in the last
few years. A comprehensive review is beyond the scope of
the present paper. We refer readers to recent surveys [19, 60]
for a detailed summary of the literature. Here we focus on
reviewing the landmark works according to different filtering
methodologies that are representative in the field.

2.1. Local projection based methods

Local projection based methods project points onto a
smooth estimate of the underlying surface within a local
neighborhood. Based on the framework of Moving Least
Squares (MLS) [27, 28], a number of filtering methods [2, 36,

, 4] are proposed to iteratively project points onto a locally
fitted polynomial. The difference is in how to represent the
MLS surface for efficient projection. As MLS is originally
designed for smooth surface approximation, to better handle
sharp features, several variation methods are presented based
on different approaches such as cell complexes [1], algebraic
sphere fitting [16], and robust regression [14, 35]. Unlike
MLS-based methods that usually require local normal and
parameterized surface for point projection, Lipman et al. [30]
present a Locally Optimal Projection operator (LOP) which
enables parameterization-free filtering. The basic idea is
to project points according to the local L; median of the
original point cloud. Weighted LOP (WLOP) [21] involves
locally adaptive density weights to generate a more evenly
distributed point set. Anisotropic LOP (ALOP) [22] applies
anisotropic projection with respect to point normal to better
preserve sharp features. To improve the projection efficiency,
kernel LOP (KLOP) [29] down-samples the point cloud
using kernel density estimate thus reduces the computation
cost of LOP, but the result quality is largely affected by the
number of kernels. Continuous LOP (CLOP) [37] utilizes
Gaussian mixture to continuously describe the input point
density, allowing a high sampling rate using only a few
Gaussian components.

2.2, Statistical based methods

Statistical based methods process point cloud from a
statistical point of view. Various approaches in statistics
have been adopted for filtering noisy points, such as mean
shift [43], Bayesian statistics [23], iteratively re-weighted

least squares [24], and moving robust Principal Component
Analysis (PCA) [34]. More related to our work, recent tech-
niques utilize sparse representation of point normals for
robust point cloud filtering while preserving sharp features.
Avron et al. [5] employ L;-sparsity paradigm to remove
noise by first applying a re-weighted L; optimization to esti-
mate point normals, then restoring smooth point positions
along the estimated normals. To better maintain sharp fea-
tures, Sun et al. [46] utilizes a sparser L solution which also
restores point normals and positions alternatively. While this
method successfully produces piecewise smooth point sets,
edge recovery and point upsampling are further required to
handle cross artifact and gap near sharp edges, especially
when the point cloud contains a large amount of noise.

2.3. Learning based methods

Learning based methods leverage the recent advances
in deep learning and train deep neural networks for point
cloud filtering/consolidation. PU-Net [52] up-samples the
input point cloud by aggregating and expanding features
learned locally using the PointNet++ structure [39]. EC-
Net [53] further preserves sharp features for point cloud con-
solidation based on manually annotated edge segments and
specifically designed edge-aware losses. PointProNets [4 1]
relies on 2D heightmaps to represent local 3D point patches.
This allows the use of 2D CNNs for heightmap filtering,
while back-projection is needed to obtain the resultant point
cloud. Based on a local variant of PointNet [38], PointClean-
Net [40] utilizes a two-stage network for outlier removal and
point denoising respectively. The first stage classifies and
rejects the outliers, and the second stage iteratively cleans
points by predicting displacement vectors that denoise the re-
maining points. Pointfilter [54] employs an encoder-decoder
structure to denoise point cloud patches. Lu et al. [31] esti-
mate normals in a feature-preserving manner for point cloud
denoising. More recently, gradient-based methods [33, 12]
formalize point cloud denoising as an iterative process of
increasing the log-likelihood of each point via estimating
the gradient of the underlying distribution. After that, re-
cent advancements in deep-learning-based methods, such as
SVCNet [57] and FCNet [50], have emerged, focusing on
leveraging noise during the learning phase. SVCNet [57]
introduces the concept of Self-Variation, aiming to learn po-
tential commonalities by perturbing the noise on noisy points.
An edge constraint module is also employed to mitigate the
low-pass effects during the denoising process. On the other
hand, FCNet [50] adopts a two-step network framework to
address feature noise and learn noise-free features through
feature domain losses. To achieve this, the FCNet proposes
the utilization of non-local self-similarity and weighted av-
erage pooling modules, which effectively smooth features
and suppress feature noise resulting from outliers. Unlike
the above supervised methods that require access to the

ground-truth clean data, ‘Total Denoising’ [20] performs
in an unsupervised manner. It maps a point cloud to itself
based on a spatial locality and a bilateral appearance prior,
achieving competitive results against supervised methods at
the time.

3. Our Method

In this paper, we assume the input noisy point cloud
consisting of n points, represented using their positions
{pY € R3} and outward normals {n? € R3} (i = 1,...,n).
The normals are either generated by the scanning device, or
estimated from the positions using PCA followed by post-
processing to choose consistent orientations of the normals
(cf. [44] [51] and references therein). Given the input point
positions and normals, we would like to compute the posi-
tions {p, } and normals {n;} for the denoised point cloud.
Many existing methods such as [5, 46] adopt a two-step
approach to solve the problem: first, the denoised normals
are computed using a feature-preserving smoothing method;
afterwards, the positions are updated using a consistency
condition between positions and normals, e.g. by enforcing
small distance between the new tangent plane at a point and
its neighboring points while penalizing the change of point
positions. Although such an approach is simple to imple-
ment, the normal denoising step does not take into account
the coupling between positions and normals, which may not
produce a desirable result. Indeed, similar issues exist for
many mesh denoising methods that take such a two-step ap-
proach, where the normals computed in the first step may not
correspond to a valid mesh and the vertex positions need to
be updated in a least-squares manner [45, 55]. In this paper,
we propose an optimization-based approach that performs
feature-preserving denoising on both positions and normals
simultaneously. Our optimization enforces the piecewise
smoothness of the resulting normal field, along with the cou-
pled relation between the normals and point positions. In
this way, the optimization ensures that the normals and point
positions are smoothed in a consistent manner, helping to
achieve desirable results. In the following, we present our
formulation, and propose a numerical solver for the opti-
mization problem.

3.1. Optimization Formulation

Let P,N € R3" denote the concatenation of new posi-
tions and new normals, respectively. We compute P and N
via the following optimization

Ir{ligll Efg + wyEunit + waEgisp + Wy Ereg - (D

Here Fjq is a fidelity term that penalize changes in positions
and normals:

Bia=w, [P =P +w, [N=N|*, @

Figure 1. Sample points on a surface (in red) close a sharp feature.
Here neighboring points p; and p2 belong to the same smooth
region, with a small difference between their normals n;, n2, and
the vector p1 — p2 is approximately orthogonal to both n; and
n3. Points p1 and p3 lie across the sharp feature, with a large
difference between their normals ni, ns, and the vector p1 — p3
is not orthogonal to n;.

where P, IN? € R3" are the initial positions and normals
respectively, and w,, w, are user-specified weights. Ey;
penalizes the deviation of the new normals from unit vectors:

Eunit = Zi:l I —]|, 3)

where T; = n;/||n;||. The term Egis, requires the position
change x; — x? for each point to be as parallel to the normal
n; as possible:

n
Eaisp = Zi:l i x (pi —)1)

Finally, Fie is a robust regularization term for the new nor-
mals that also considers their consistency with the new po-
sitions; it will be explained in detail later. wy, wq, w; are
user-specified weights that control the trade-off between
different terms.

To define Eis, we assume that the underlying surface for
the ground-truth point cloud is piece-wise smooth. There-
fore, the difference between normals n;,n; at two neigh-
boring points should be small on most parts of the surface,
while they can be large on some local regions correspond-
ing to sharp features (see Figure 1). Such distribution of
normals can be induced using a target function term that
promotes sparsity across the normal difference between all
neighboring points. In addition, within a smooth region of
the surface, the positions p;, p; and normals n;, n; of two
neighboring points should satisfy a consistency condition
that the vector p; — p; is approximately orthogonal to both
n; and n;; across a sharp feature, on the other hand, this
condition may not be satisfied as shown in Figure 1. There-
fore, the absolute values of inner products (p; — p;) - n;
and (p; — p;) - n; should be small for most neighboring
points, while they can be large on some local regions around
sharp features. This behavior can be similarly induced via a
sparsity-promoting terms for all such inner products across
the surface. However, simply adding two separate sparsity
terms for normal differences and position-normal consis-
tency may not lead to a desirable result. This is because

the sparsity patterns for these two quantities are coupled: a
pair neighboring points with a large difference between their
normals, which indicates their proximity to a sharp feature,
are also likely to violate the consistency condition. Simple
addition of the two sparsity-promoting terms only induces
sparsity for the two quantities individually rather than their
coupled sparsity. For the latter purpose, we need to promote
their group sparsity [0] instead. Specifically, we promote
sparsity for the following quantity that measures normal dif-
ference and position-normal consistency simultaneously for
a pair of neighboring points:

1 [Pi—Pj
hij = L,,\/(7 (i my))% + yfm —n 2, (5)
ij ij

where L;; is the initial distance between p; and p;, and -y is

a user-specified weight. Here the term (=22 . (n; 4 n;))?

measures the consistency between the normals and positions
of two adjacent points, and evaluates to zero when the posi-
tions and normals are consistent with a locally-second-order
surface centered between the two points [42]; this helps to
account for high-curvature regions where a line segment con-
necting two adjacent points may not be orthogonal to their
normals [47]. The term ||n; — n;||? penalizes the deviation
between neighboring normals and induces smoothness of the
normal field. The scaling factor L%J acts as normalization
to account for the uneven spacing between the points. The
quantity h;; should be small on most parts of the surface
except for regions around sharp features. The regularization
term Ei, is then defined as

Ereg = Z ¢(hij)7 (6)
i<j
(i,5)eEN
where N denotes the index set of neighboring points, and ¢
is a robust error metric. To determine the neighboring rela-
tion between points, we perform k-nearest neighbor search
for each point. Two points i, j are considered to be neigh-
bors if point ¢ is among the k-nearest neighbors of point j or
point j is among the k-nearest neighbors of point :.
In Eq. (6), the choice of function ¢ plays an important
role in the performance of our method. One possible choice
is to define Ei., as the £o-norm of all h;;, in which case

o) = {

However, this will lead to a highly non-convex and non-
smooth optimization problem that is challenging to solve,
in particular since h;; is a non-linear function of V and N.
Inspired by the recent work of [&8], we choose ¢ as a member
of a parameterized family of error metric functions instead:

o — x/c)? /2

ij
0, ifx=0,
1, otherwise.

(7

0
-5¢ -4c -3¢ 2c ¢ 0 ¢ 2 3c 4c 5S¢

Figure 2. The generalized metric functions with different values of
the parameter ov.

Here c is a scale parameter for normalization, while a €
R is a shape parameter that controls the robustness of the
error metric. For a given c, as « is decreased ¢, . becomes
increasingly robust and non-convex, and reproduces different
robust loss functions used in the literature. For example,
when « approaches 2, ¢, . approaches the {5 loss:

o -3 o

When o = 1, it becomes a smoothed ¢; loss also known as
the Charbonnier loss [11]:

b1.0(z) = (%)2+1—1. (10)

when « approaches 0, it approaches the Cauchy loss [10]:

1 2
lim ¢ () = log (2 (%) + 1) . an

oa—r
When a = —2, it becomes the Geman-McClure loss [15]:
2 (z/c)”
d_o.c(z) = . (12)
2,e() (@/c)’ +4

When @ — —o0, it approaches the Welsch function [13]:

lim ¢qc(z) =1—exp (—; (i)2> , (13)

a——00

This metric has been used in [55] for robust mesh filtering
since it is bounded from above and it approaches the £y-norm
when ¢ — 0. Following the convention from [8], we adopt
the following definition of ¢, . as illustrated in Figure 2:

1 2
5 (%) s
1
log (2(92)2+1> if o =0,
a,c = 1 i
Pac(2) 1 —exp —2(33)2> if o = —oo,
C

o 2 a/2

la — 2| ((x/6)2| +1) _ 1) otherwise.
[0} o —

(14)

We solve the optimization problem (1) with o gradually
decreased from 2 to —oo. As discussed in Section 3.2.4,
our choice of ¢ enables us to derive an simple solver, and
the strategy of decreasing « helps the solver to find a desir-
able local minimum and improves the denoising accuracy
compared to using a fixed a.

3.2. Numerical Solver

The optimization (1) is a non-convex problem for the
positions P and the normals N, and the term E,., can be
highly non-linear. To effectively solve this problem, we
adopt an alternating minimization strategy. We first fix P
and optimize N, then fix N and optimize P. This process is
repeated until convergence. In the following, we present the
details of each sub-problem.

3.2.1 The N-Update

For the ease of presentation, we assume that the variable
values before the N-update are P(*) and N(*)| with the
individual positions and normals denoted by {pgk)} and
{nz(-k) }, respectively. We update N by fixing P = P(¥) and
minimizing the target function of (1) over N, resulting in
the following sub-problem:

i % (py") m)(2

0y — 1]|% + wy Breg (PP, N).

min w0, [N - N £ 3

+ W Z:l—l
- (15)

The first two terms are convex quadratic, but the remaining
terms are still highly non-convex. To solve this problem,
we adopt the idea of the majorization-minimization (MM)
algorithm [26]: to minimize a target function F'(z), it repeat-
edly constructs a surrogate function F'(x; x(k)) based on the
current variable value z(*) which satisfies the conditions:

Fa®;2M) = F(a®),

F(x;2®) > F(z) V. (10
In other words, the surrogate function bounds the target func-
tion from above, and their graphs touch at the current vari-
able value z(*). The surrogate function is then minimized to
update the variable, and the above process is repeated until
convergence. To apply this idea, we use the current vari-
able value N(*) to construct a convex quadratic surrogate
function Q(IN; N(*)) for the target function in Eq. (15), and
update the value of N via

N*+D = argmin Q(N; N®)). (17
N

It can be shown that the following function meets the sur-
rogate function condition in Eq. (16) (see Appendix A for

verification):
n; —n,;

QINN®) =, [N =N |

n
+wdzi:1‘n x (p

(k) H

(k)

o2
*pi)‘

b (AP (0, (PO, N) 1 BY),
(zzﬁé/\/
(13)

where 5" = n{"/[n{||, AL = W(hy;(P®,N®)),

and ng = O(hi;(P®, N®)) with
1
272 if a = 2,
c
1 t2 _
v = {gze(—gz) Ha=-s a9
1 t 2 a=2
22((/C)2| + 1) * otherwise.
A\ |a—
0 if o« =2,
22 4 12 2 .
o(t) = 1-— 502 exp | — ?> if @ = —o0,
t2 t 2 a=2
Pae(t) — 52 (|(a/_c)2| + 1) ’ otherwise.
(20)

Since Q(N; N(*)) is convex quadratic in N, its global mini-
mum can be computed by solving a linear system:

((wn + w) T+ wed"T + w (K"K +9D"D)) N
— w,N° 4, N". Q1)

Here I € R3*3" is an identity matrix. N™ € R3" concate-
nates {ﬁl(.k)}. J(F) ¢ R37%3n i5 a block diagonal matrix:

k
J
J= (22)
3

with each block J{)

representing the cross product with
p!") — pYsothat 7% n = n x (p* — pY) for any n € R3.
K is a sparse matrix, where each row corresponds to a

neighboring normal pair (n;, n;) and has non-zero entries

VAT) k) :

=P —P;)¥ for both n; and n;. D is a block
2

sparse matrix, where each block row corresponds to a neigh-

boring normal pair (n;,n;) and contains non-zero blocks

/ A“‘) A(k)
=213 and —-~+—-1I3 for n; and n; respectively, with
Ig belng the 3 x 3 1dent1ty matrix. The linear system (21)
is sparse symmetric positive definite, and we solve it via

Cholesky factorization. Moreoever, since the matrix has a
fixed sparsity pattern, we perform its symbolic factoriza-
tion as a pre-processing step, and only perform numerical
factorization in each iteration.

Note that the single update step in Eq. (17) may not pro-
duce the solution to the sub-problem (15). However, as
discussed later in Section 3.2.3, it is guaranteed to decrease
the target function and is sufficient for the convergence of
our iterative solver.

3.2.2 The P-Update

After updating N according to Eq. (17), we fix N = N(k+1)
and minimize the target function of (1) over N, resulting in
the following sub-problem:

i [P = PO w3 a1 x (p; — p)|?
+ Wy Breg (P, N1,
(23)
Similar to the update of IN, we construct a surrogate func-
tion R(P; P*)) for the target function based on the current
variable value P(*), and minimize it to update P:

P* Y = argmin R(P;P™). (24)
P
It can be shown that the following convex quadratic func-

tion meets the requirement for the surrogate function (see
Appendix A):

R(P;PY) =y [P = PO* + s [0

=1

+ wy Z (Ci(f) . <hij (P(k),N)>2 + Dg?)

i<j
(L) eN
(25)

where O = W(hj;(P®) N*+D)) and DY =
O(hi;(P®) NCE+D)) with U and © defined in Egs. (19)
and (20), respectively. Its global minimum can be computed
by solving a sparse symmetric positive definite linear system:

(wpI + wgL"L + w,M"M) P = (w,I + wy(L"L) P°.
(26)
Here L € R3"*3" is a block diagonal matrix:
L{HD
L— 27)
LgLIH»l)

with each block Lgkﬂ) representing the cross product with
n* ™ 5o that L*™p = n*™ x p, vp € R3. Mis

pi fp?)H

0 10 20 30 40 50 60
iterations

Figure 3. For any given parameter «, our solver monotonically
decrease the target function, as shown here for the ‘Fandisk’ model
with o = 1.

a sparse matrix where each row corresponds to a neigh-
boring point pair (p;,p;) and contains non-zero entries
@(ngkﬂ) +n§»k+1))T and f@(ngkﬂ) +n§-k+1))T
for f)z and p; respectively. Similar to the update of N, we
solve the system using Cholesky factorization, performing
symbolic factorization in a pre-processing step and numeri-
cal factorization in each iteration.

3.2.3 Convergence

Our solver alternates between the N-update step (17) and

, the P-update step (24). It can be shown that such an iteration
is guaranteed to decrease the target function of (1) unless it
converges to a stationary point:

Proposition 3.1. Ler E(P,N) denote the target function
of the optimization problem (1). Then using the updates in
Egs. (17) and (24), we have

E(P(kJrl)7 N(k+1)) < E(P(k), N(k)). (28)

Moreover, E(P*+1) N&+DY = B(P®) N®)) if and only
ifPED = PK) gnd NE+D = N®) which is equivalent
to the condition that VE(P®*) N®*)) = 0.

A proof is given in Appendix B. Therefore, we perform
the update steps (17) and (24) until max; ||nl(.k+1) — ngk) I <
€1 and max; ||pl(-k+1) —pl(-k) || < ez L, where €7, €5 are user-
specified thresholds, and L is the average distance between
neighboring points in the initial point cloud. We choose
€4 =1x103and e = 1 x 10~ % in all experiments. An
example of convergence is shown in Figure 3.

3.2.4 Gradual Decrease of o

From the function graphs in Figure. 2. we can see that as «
is decreased, the error metric function becomes more non-

convex and closer to the ¢p-norm, and regularizer terms with
large values of h;; (such as those arising from sharp features)
will have less influence on the target function and can be
better tolerated by the optimization. Ideally, we would like to
perform the optimization (1) with & = —o0 in order to max-
imize its capacity of inducing sparsity and accommodating
sharp features. However, optimizing with o = —oo from the
beginning can lead to sub-optimal results. This is because
with o = —o0, a regularization term with a large error value
of h;; may have a very small weight (Afj in Eq. (18) or Cl(jk)
in Eq. (25)) according to the formula in (19). As a result,
these terms are effectively discarded in the surrogate func-
tion, regardless of whether their large error value is caused
by the noise or an actual underlying sharp feature. To make
the optimization more robust, we would like to incorporate
more effective terms into the surrogate function initially to
perform a coarse optimization, and only disregard regulariza-
tion terms with large errors in a later stage when they emerge
from the coarse optimization to indicate sharp features. We
achieve this by gradually decreasing « to —oo, since the
weight formula (19) shows that a larger o will result in less
attenuation of weights for regularization terms with large
errors. Concretely, we prescribe a decreasing sequence of
a values a1 > ag > ... > «,, with a,,, = —0o. We start
with & = a4, and perform the optimization (1). Then we
use the result as the initial value to re-run the optimization
with @ = ai. This process is repeated until we complete
the optimization with « = «,,, and the final solution is
taken as the denoising result. In all our experiments, we
use the sequence (2,1.0,0.5,0,—1.0, —2.0, —8.0, —co) for
«. Before running an optimization with a new «, we also
update the value of ¢ according to the distribution of h;; with
the current result. Specifically, we first update the k-nearest
neighbor relationship based on the latest point positions, and
compute all values of h;; accordingly. Then we choose c as:

¢ = max (Ea Cmin)) (29)

where h is the median of all h;j values, and cpin is a lower
bound that prevents ¢ from being too small. Noting that the
scale of h;; in Eq. (5) is roughly 1+~ ||n; — n;||/L;;
and the quantity ||n; —n;||/L;; can be considered as a local
curvature measure, we choose cpmin = /1 + /7 where
7y 1s the bounding sphere radius for the initial point cloud.
Algorithm 1 summarizes our method for denoising with
decreasing values of a.

4. Results

In this section, we extensively evaluate our method by
comparing it with existing methods on publicly available
dataset for point cloud denoising, as well as validating our
design choice.

Algorithm 1: Robust point cloud denoising.

Input: P° N: initial positions and normals;
L: average distance between neighboring points in
the initial point cloud;
€1, €2: variable convergence thresholds;
kmax: the maximum number of iterations;
(a1,...,an): asequence of decreasing « values.

_ p0. _ 0.
1 Platest =P B Nlatest =N s
2 forj=1,2,...,mdo

3 o = Oy, PW = Piagests NO = Niggests
4 Compute k-neareast neighbors for each point
using positions Paes;
5 Compute c accroding to Eq. (29);
6 Perform symbolic factorization for the linear
systems (21) and (26);
7 k=1,
while TRUE do
9 Compute N*+1) accroding to Eq. (21);
10 Compute P*+1 accroding to Eq. (26);
11 €1 = max; ||n£k+1) — ngk)H;
12 ez = max; [|p""" — p{"|J
13 k=k+1;
14 if £ > knax OR (61 < g AND e3 < €5 - L)
then
15 Platest = P(k); Niatest = N(k)7
16 break;
17 end if
18 end while
19 end for

20 return Piaieqt, Niatest 5

4.1. Implementation Details

Our optimization framework is implemented in C++, us-
ing the Eigen library [17] for linear algebra operations and
OpenMP for parallelization. All experiments are run on a
PC with a 3.7GHz Intel Core i7-8700K CPU (6 Cores) and
16GB memory. The parameter setting is shown in Table. 1.
While the default parameters are generally sufficient, em-
pirically fine-tuning the parameters would help to achieve
further improvements. The computational time is affected by
both the number of points in the point cloud and the neigh-
borhood size. For models with 11~50K points, our method
takes 3~10 minutes, which is comparable to previous sta-
tistical methods [5, 46]. The statistics of running time and
iteration numbers on different datasets are shown in Table. 2.

4.2. Test Data

We evaluate our method based on the dataset used in
PU-Net [52], similar to the majority of existing papers. We

Noisy ["l Clean

Score-Based Ours

Figure 4. Qualitative comparison of a variety of point clouds with different number of points and noise levels. Different colors in the color

map illustrate distances to the ground truth.

Table 1. Parameter settings.

Parameter Range(default)
neighbour size 7~21(16)
weight wp 1~10(10)
weight w, 1~10(10)
weight wy 1(1)
weight wy 10~100(10)
weight w; 10~100(10)
balance weight 0.1~1.0(1.0)

gather 20 meshes and apply Poisson disk sampling to gen-
erate point clouds. All shapes are normalized to fit within
a unit sphere. After sampling, we introduce noise to the
point positions by adding Gaussian noises with standard de-
viations of 1.0%, 2.0%, and 3.0% relative to the bounding
box diagonal, respectively. To test the performance under
different sampling densities, we sample each mesh using
10K and 50K points, respectively. We also test our method

on point clouds sampled from the CAD models in the ABC
dataset [25], as well as the real-world point clouds from the
Kinect v1 dataset from [49].

4.3. Evaluation Metrics

For quantitative evaluation, we use two metrics to mea-
sure the quality of the denoising results. First, to measure the
deviation between the denoised point cloud and the ground-
truth shape, we compute the average distance from each
denoised point to its closest point on the ground-truth mesh
surface (the P2M distance). In addition, we use the Cham-
fer Distance (CD) to measure the deviation between the
denoised point cloud and the original (noise-free) sample
points. To make the metric values more intuitive, we nor-
malize them with the bounding box diagonal length of the
model. In the following, we also use color coding to visual-
ize the distance between the denoised point cloud and the
ground-truth mesh surface.

Table 2. Statistics of running time and iteration count for different datasets according to point numbers.

Point Number . Running Time(s) .Iteration number

min | max | average | min | max | average
PU-Net [57] 10K 475 | 4843 | 1764 94 | 697 269
50K 42.1 | 6234 | 321.9 113 | 693 274
ABC [25] 10K 44.6 | 352.2 | 162.8 70 | 495 204
50K 53.4 | 590.1 175.4 69 | 489 290
Kinect v1 [49] 13K ~ 25K | 33.6 | 440.1 | 201.2 | 197 | 548 221

Table 3. Quantitative evaluation based on the Chamfer Distance (CD) between the denoised and ground-truth point cloud, and the average
distance from the denoised points to the ground-truth mesh faces (P2M).

Points 10K(Sparse) 50K(Dense)

Noise 1% 2% 3% 1% 2% 3%
Metric(10~%) CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M
EAR [22] 4311 | 1.629 | 6.010 | 3.470 | 8.821 | 4.673 | 2.876 | 1.878 | 3.740 | 2.198 | 6.549 | 4.672
RIMLS [35] 6.891 | 3.702 | 9.172 | 5.680 | 14.553 | 9.724 | 3.509 | 1.899 | 4.608 | 2.390 | 6.722 | 3.936
PCN [40] 3422 | 1.129 | 7.562 | 4312 | 13.077 | 9.505 | 1.142 | 0.353 | 1.559 | 0.712 | 3.498 | 1.371
Score-based [33] | 3.409 | 0.512 | 5.890 | 1.391 | 6.895 | 1.946 | 0.746 | 0.161 | 1.244 | 0.534 | 2.602 | 1.021
DF-PCF [31] 3.609 | 1.251 | 4311 | 1.322 | 6.425 | 4567 | 1.263 | 0.186 | 1.381 | 0.273 | 1,844 | 0.939
Pointfilter [54] | 4.129 | 1.333 | 6.812 | 4.214 | 11.874 | 7.649 | 1.375 | 0.267 | 1.465 | 0.671 | 3.697 | 1.783
PSR [12]* 2.353 1 0.306 | 3.350 | 0.734 | 4.075 | 1.242 | 0.649 | 0.076 | 0.997 | 0.296 | 1.344 | 0.531
Ours 2.034 | 0.252 | 297 | 0.692 | 4.339 | 1.566 | 0.535 | 0.061 | 0.723 | 0.269 | 1.145 | 0.442

*The results are taken from the original paper as there is no released model available.

Table 4. Evaluation on a subset of the ABC dataset [

] based on the Chamfer Distance (CD) between the denoised and ground-truth point

cloud, and the average distance from the denoised points to the ground-truth mesh faces (P2M).

Points 10K (Sparse) 50K(Dense)
Noise 1% 2% 3% 1% 2% 3%
Metric(10~%) | CD P2M | CD | P2M CD P2M CD P2M CD P2M CD P2M
Ours 2.232 | 0.339 | 3.24 | 0.782 | 4.529 | 1.803 | 0.825 | 0.076 | 1.011 | 0.317 | 1.323 | 0.541

Table 5. Ablation study that disables different terms in the target function. The evaluation is done on the PU-Net dataset [

] using the

Chamfer Distance (CD) between the denoised and ground-truth point cloud, and the average distance from the denoised points to the
ground-truth mesh faces (P2M).

Points 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%
Metric(10~%) | CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M
Ours(full) 2.034 | 0.252 | 297 | 0.692 | 4.339 1.566 | 0.535 | 0.061 | 0.723 | 0.269 | 1.145 | 0.442
w/o Egisp 4.340 | 2.157 | 6.982 | 4.664 | 10.184 | 7.478 | 1.493 | 0.589 | 2.414 | 1.648 | 4.138 | 2.574
w/0 Eynie 3.606 | 0.710 | 3.460 | 1.121 | 5.891 2.511 | 0.764 | 0.122 | 1.213 | 0.402 | 1.497 | 0.573
w/0 Ereq 7.238 | 2.201 | 9.243 | 5439 | 13.692 | 10.241 | 1.827 | 0.614 | 4.901 | 2.725 | 7.367 | 2.772

4.4. Comparison

We compare our method with existing procedural meth-

ods based on edge-aware point set resampling (EAR) [

|

and robust non-linear kernel regression of moving least
squares (RIMLS) [35], as well as recent learning based
approach called PointCleanNet (PCN) [40], Score-based
Methods [33], DF-PCF [31], PointFilter [54] and PSR [12].
Note that EAR and RIMLS require suitable parameters re-
lated to scale, neighbor size, etc. to adapt to different noise
levels, while PCN handles different noise levels using the

same hyper-parameters trained with varying noisy data. In
our experiment, we tune the parameters for EAR and RIMLS
for each model, in order to achieve their best results for a
fair comparison. Table 3 shows the quantitative evaluation
on the synthetic dataset, by computing the average CD and
P2M values over all models for each configuration of sam-
pling density and noise level. We can see that our method
based on adaptive robust error metric generally achieves bet-
ter performance. Figure 4 further shows the color-coding
visualization of denoising errors on some models. It can
be seen that our method not only removes noises from the

Noisy [70l Clean

Figure 5. Experimental results on a subset of the ABC Dataset [25]. The first row displays the ground-truth mesh, while the second row
shows the noisy point clouds with varying point numbers and noise levels. The denoised results obtained using our method are presented in

the last row.

point clouds, but also achieves better preservation of details
and sharp features than other methods. On the other hand,
due to the resampling strategy, EAR [22] causes relatively
large errors around detailed features while it performs well
near prominent edges (see the 1st and 3rd row of Figure 4).
RIMLS [35] works well on cases with low-level noises, espe-
cially on simple planar and spherical geometries. However,
it starts to blur detailed features when the noise level in-
creases. PCN [40] effectively reduces the noise level but
struggles to generalize well to point clouds with varying den-
sities that were not part of the training data. Note that PCN
requires outlier removal as a preparatory step; otherwise,
the denoising may fail in some cases. Meanwhile, although
DF-PCF [3 1] demonstrates the ability to preserve certain fea-
tures, the model does not generalize well in some test cases,
resulting in poorer denoising performance. Furthermore,
the time required for processing is deemed unacceptable,
where a model consisting of only 10K points can take over
30 minutes to complete even on an Nvidia RTX 4090, as
indicated in the code released by the authors. Pointfilter [54]
is not robust to high-level noise, as indicated by the results.
While score-based methods [33] and PSR [12] achieve good
performance overall, their design does not consider feature
preservation and the results are sub-optimal in this regard. In
summary, the aforementioned learning-based methods have
their limitations, stemming from issues related to model gen-
eralization, variations in point cloud density, and challenges
associated with noise levels. In contrast, our methods demon-
strate improved robustness and overall performance while

endeavoring to preserve the input model’s sharp features.

We also evaluate the performance of our method on a
subset of the ABC dataset [25] consisting of 1000 CAD
models. The visualization of the results is shown in Figure 5,
and the corresponding quantitative results are provided in
Table 4. The results show that our method is effective on
point clouds from CAD models.

4.5. Additional Results

One of the main strengths of our generalized error metric
is its capability to preserve sharp features. To highlight our
performance here, we compare different methods on two
representative models with prominent sharp features. The
input point cloud is constructed by sampling the ground-truth
mesh and adding Gaussian noise. After denoising the point
cloud, we reconstruct a mesh from the result using the ball
pivoting method [9], in order to visualize the features after
denoising. The results are shown in Figure 6. It is easy to
see that our method can remove noises on the surface while
preserving sharp features, producing results with the best
visual quality.

Furthermore, we test our method on the real-world point
clouds in the Kinect v1 dataset from [49]. The point clouds
in the dataset are derived from depth images produced by a
Kinect vl camera, and are non-uniform on the object surface.
Figure 7 shows the denoising results. It shows that our
method remains effective on non-uniformly sampled points.

4.6. Ablation Study

PF Score-based Ours GT

Figure 6. Comparison on sharp feature preservation. The model ‘Star’ at the top is with 2.0% Gaussian noise. The ‘Polyhedron’ in the

bottom is with 1.5% Gaussian noise.

Ground Truth Raw Mesh Noisy Point Cloud Our Results

Clean

Noisy

Figure 7. Our method is effective on non-uniform point clouds.
Here we show some experimental results on the Kinect v1 dataset
from [49], where the point clouds are captured using depth images
from a Kinect camera and are non-uniform on the object surface.
The input and results are visualized using the mesh connectivity
provided by the Kinect v1 dataset.

To validate the effectiveness of the components of our
optimization target function, we conduct an ablation study
to assess the influence of different terms. Specifically, we
disable Fgisp, Eunic and Ey, respectively by setting their
weights to zero, and run the optimization on the PU-Net

dataset. The results are presented in Table 5 and Figure 8.

It shows that the term Ejsp firmly guides the direction of
vertex movement, ensuring that the overall shape remains as
close as possible to the initial shape. When the term Eg;p is
excluded, the vertices tend to move in incorrect directions

Input w/o Egisp w/0 Eynie W/0 Epeg Ours(full)

.

A
a)

Noisy [l Clean (

Figure 8. Ablation study results on the Bunny Model with 10K
points and 1% Gaussian noise. (a) Without Ey;sp, the preservation
of shape is compromised, resulting in a poor outcome. (b) Without
Eunit, the performance suffers particularly in areas with prominent
features, while smoother areas are relatively better preserved. (c)
Without Eie, the optimization will reach the minimum and termi-
nate at the beginning.

influenced by other factors, leading to suboptimal outcomes,
such as the clustering of points in a single location and the
occurrence of shape holes, as illustrated in Figure 8(a). On
the other hand, the term E,,;; demonstrates a less explicit in-
fluence on overall performance. Serving as an auxiliary term,
it helps control the normals’ length to improve the accuracy
of normal computation. Removing this term may lead to a
slight performance degradation. According to Equation 1,
the core term Ei., cannot be disregarded in the optimization.
The optimization fails to proceed without this regularization
term as all the energy is minimized.

To demonstrate the effectiveness of gradually decreasing
the value of «, in Figure 9 we compare our results with

0.008

surface distance
3

e
o

Our result

a=2.0

a=-00

Figure 9. Comparison on different metric settings using Gargoyle
model with 20K points and 1.0% Gaussian noise. From left to
right, top to bottom, the noisy input data, our adaptive metric result,
result from /2-norm (v = 2), Welsch function (¢ = —o0).

alternative settings with a fixed parameter value of o = 2 and
a = —oo, respectively. We can see that with a fixed o = 2,
the resulting /5-norm metric can cause over-smoothing and
fail to preserve details. With a fixed « = —oo, the result
achieves better preservation of details thanks to the use of
Welsch function as a robust norm, but there are still areas
with large deviations from the ground-truth shape. This is
because the noisy input point cloud is not a suitable initial
solution for the Welsch-function-based formulation, and the
solver produces a local minimum that is still far away from
the desirable result. In contrast, our strategy of gradually
changing a helps to steer the point cloud towards a desirable
solution, achieving a notably better outcome than fixing «.

5. Discussion and Conclusion

In this paper, we present a novel point cloud denoising
method based on a generalized robust metric. By optimizing
the objective function with an adaptive metric setting, the
point cloud can be effectively denoised with features being
successfully preserved. We demonstrate that our approach
achieves state-of-the-art performances compared with repre-
sentative methods in the field.

In the future, we would like to further improve the method
in the following directions. First, although the optimal pa-
rameters of our method lie within a small range, they still

need to be manually chosen according to the level of noise
and the sharpness of prominent features. A strategic and
systematic parameter setting optimization is worth exploring.
Second, currently our method cannot handle extremely noisy
data with outliers. A preprocessing step of outlier removal
may be added to enhance its robustness in the future. Lastly,
although we do not observe topological changes resulting
from our denoising algorithm in our experiments, our current
framework does not guarantee the preservation of topology.
This is because it uses KNN to determine the neighbors of
a point: as KNN is based on the Euclidean distance, points
that are nearby in the ambient space but far away on the
underlying surface may be mistakenly treated as neighbors,
which can potentially lead to topological changes. Improv-
ing our method with topology preservation guarantee will be
an interesting future work.

Acknowledgements This work was supported by the Na-
tional Natural Science Foundation of China (Grant Number:
62220106003), Research Grant of Beijing Higher Institution
Engineering Research Center, Tsinghua-Tencent Joint Labo-
ratory for Internet Innovation Technology, and RCUK grant
CAMERA (EP/M023281/1, EP/T022523/1).

References

[1] A. Adamson and M. Alexa. Point-sampled cell complexes.
ACM Trans. Graph., 25(3):671-680, 2006. 2

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,

and C. T. Silva. Point set surfaces. In Proceedings of the

Conference on Visualization "01, VIS *01, pages 21-28, USA,

2001. IEEE Computer Society. 2

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,

and C. T. Silva. Computing and rendering point set surfaces.

IEEE Transactions on Visualization and Computer Graphics,

9(1):3-15, 2003. 2

N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM

Trans. Graph., 23(3):264-270, 2004. 2

[5]1 H. Avron, A. Sharf, C. Greif, and D. Cohen-Or. ¢;-sparse
reconstruction of sharp point set surfaces. ACM Trans. Graph.,
2010. 1,2, 3,7

[6] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimiza-
tion with sparsity-inducing penalties. Found. Trends Mach.
Learn., 4(1):1-106, 2012. 4

[7]1 J. T. Barron. A general and adaptive robust loss function.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 1

[8] J. T. Barron. A general and adaptive robust loss function. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4331-4339, 2019. 4

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and

G. Taubin. The ball-pivoting algorithm for surface recon-

struction. /EEE transactions on visualization and computer

graphics, 5(4):349-359, 1999. 10

[10] M. J. Black and P. Anandan. The robust estimation of mul-

tiple motions: Parametric and piecewise-smooth flow fields.

3

—

[4

—_

[9

—

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

Computer vision and image understanding, 63(1):75-104,
1996. 4

P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud.
Two deterministic half-quadratic regularization algorithms
for computed imaging. In Proceedings of Ist International
Conference on Image Processing, volume 2, pages 168—172.
IEEE, 1994. 4

H. Chen, S. Luo, W. Hu, et al. Deep point set resampling via
gradient fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(3):2913-2930, 2022. 2, 9, 10

J. E. Dennis Jr and R. E. Welsch. Techniques for nonlin-
ear least squares and robust regression. Communications in
Statistics-simulation and Computation, 7(4):345-359, 1978.
4

S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving
least-squares fitting with sharp features. ACM Trans. Graph.,
24(3):544-552, 2005. 2

S. Geman and D. E. McClure. Bayesian image analysis:
An application to single photon emission tomography. In
Proceedings of the American Statistical Association, 1985. 4
G. Guennebaud and M. Gross. Algebraic point set surfaces.
ACM Trans. Graph., 26(3), 2007. 2

G. Guennebaud, B. Jacob, et al.
http://eigen.tuxfamily.org, 2010. 7

B. Ham, M. Cho, and J. Ponce. Robust image filtering using
joint static and dynamic guidance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4823-4831, 2015. 14

X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and
L. Xiao. A review of algorithms for filtering the 3D point
cloud. Signal Processing: Image Communication, 57:103—
112,2017. 1,2

P. Hermosilla, T. Ritschel, and T. Ropinski. Total denoising:
Unsupervised learning of 3d point cloud cleaning. In The
IEEE International Conference on Computer Vision (ICCV),
October 2019. 3

H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or.
Consolidation of unorganized point clouds for surface recon-
struction. ACM Trans. Graph., 28(5):1-7, 2009. 2

H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and
H. R. Zhang. Edge-aware point set resampling. ACM Trans.
Graph., 32(1), Feb. 2013. 2,9, 10

P. Jenke, M. Wand, M. Bokeloh, A. Schilling, and W. Stral3er.
Bayesian point cloud reconstruction. Computer Graphics
Forum, 25(3):379-388, 2006. 2

E. Kalogerakis, D. Nowrouzezahrai, P. Simari, and K. Singh.
Extracting lines of curvature from noisy point clouds.
Computer-Aided Design, 41(4):282 — 292, 2009. Point-based
Computational Techniques. 2

S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov,
E. Burnaev, M. Alexa, D. Zorin, and D. Panozzo. Abc: A
big cad model dataset for geometric deep learning. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 8,9, 10

K. Lange. MM Optimization Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2016. 1,
5

Eigen v3.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(43]

D. Levin. The approximation power of moving least-squares.
Math. Comput., 67(224):1517-1531, Oct. 1998. 2

D. Levin. Mesh-independent surface interpolation. In G. Brun-
nett, B. Hamann, H. Miiller, and L. Linsen, editors, Geometric
Modeling for Scientific Visualization, pages 37-49, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. 2

B. Liao, C. Xiao, L. Jin, and H. Fu. Efficient feature-
preserving local projection operator for geometry reconstruc-
tion. Computer-Aided Design, 45(5):861-874, 2013. 2

Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer.
Parameterization-free projection for geometry reconstruction.
In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New
York, NY, USA, 2007. Association for Computing Machinery.
2

D. Lu, X. Lu, Y. Sun, and J. Wang. Deep feature-preserving
normal estimation for point cloud filtering. Computer-Aided
Design, 125:102860, 2020. 2, 9, 10

X. Lu, S. Schaefer, J. Luo, L. Ma, and Y. He. Low rank matrix
approximation for 3d geometry filtering. IEEE Transactions
on Visualization and Computer Graphics, pages 1-1, 2020. 1
S. Luo and W. Hu. Score-based point cloud denoising. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4583-4592, 2021. 2,9, 10

E. Mattei and A. Castrodad. Point cloud denoising via moving
RPCA. Computer Graphics Forum, 36(8):123-137, 2017. 2
A. C. Oztireli, G. Guennebaud, and M. Gross. Feature preserv-
ing point set surfaces based on non-linear kernel regression.
Computer Graphics Forum, 28(2):493-501, 2009. 2, 9, 10
M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification
of point-sampled surfaces. In Proceedings of the Conference
on Visualization *02, VIS °02, pages 163170, USA, 2002.
IEEE Computer Society. 2

R. Preiner, O. Mattausch, M. Arikan, R. Pajarola, and
M. Wimmer. Continuous projection for fast 11 reconstruction.
ACM Trans. Graph., 33(4),2014. 2

C.R. Qi, H. Su, M. Kaichun, and L. J. Guibas. PointNet: Deep
learning on point sets for 3d classification and segmentation.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 77-85, July 2017. 2

C.R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In
Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pages 5105-5114,
Red Hook, NY, USA, 2017. Curran Associates Inc. 2

M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra,
and M. Ovsjanikov. PointCleanNet: Learning to denoise and
remove outliers from dense point clouds. Computer Graphics
Forum, 2019. 2,9, 10

R. Roveri, A. C. Oztireli, I. Pandele, and M. H. Gross. Point-
ProNets: Consolidation of point clouds with convolutional
neural networks. Comput. Graph. Forum, 37(2):87-99, 2018.
2

S. Rusinkiewicz. A symmetric objective function for ICP.
ACM Trans. Graph., 38(4), 2019. 4

O. Schall, A. Belyaev, and H.-P. Seidel. Robust filtering of
noisy scattered point data. In Proceedings of the Second Euro-
graphics / IEEE VGTC Conference on Point-Based Graphics,

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

SPBG’05, pages 71-77, Goslar, DEU, 2005. Eurographics
Association. 2

N. Schertler, B. Savchynskyy, and S. Gumhold. Towards
globally optimal normal orientations for large point clouds.
Comput. Graph. Forum, 36(1):197-208, 2017. 3

X. Sun, P. L. Rosin, R. Martin, and F. Langbein. Fast and
effective feature-preserving mesh denoising. IEEE Transac-
tions on Visualization and Computer Graphics, 13(5):925—
938, 2007. 1,3

Y. Sun, S. Schaefer, and W. Wang. Denoising point sets via lo
minimization. Computer Aided Geometric Design, 35-36:2—
15,2015. 1,2,3,7

J. Wang, Z. Yang, and F. Chen. A variational model for
normal computation of point clouds. The Visual Computer,
28(2):163-174, 2012. 4

P.-S. Wang, X.-M. Fu, Y. Liu, X. Tong, S.-L. Liu, and B. Guo.
Rolling guidance normal filter for geometric processing. ACM
Trans. Graph., 34(6), 2015. 1

P.-S. Wang, Y. Liu, and X. Tong. Mesh denoising via cascaded
normal regression. ACM Trans. Graph., 35(6):232-1, 2016.
1,8,9,10, 11

X. Wang, W. Cui, R. Xiong, X. Fan, and D. Zhao. Fcnet:
Learning noise-free features for point cloud denoising. /EEE
Transactions on Circuits and Systems for Video Technology,
2023. 2

R. Xu, Z. Dou, N. Wang, S. Xin, S. Chen, M. Jiang, X. Guo,
W. Wang, and C. Tu. Globally consistent normal orientation
for point clouds by regularizing the winding-number field.
ACM Transactions on Graphics (TOG), 42(4):1-15, 2023. 3
L. Yu, X. Li, C. Fu, D. Cohen-Or, and P. Heng. PU-Net: Point
cloud upsampling network. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2790-2799,
June 2018. 2,7,9

L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. EC-Net:
An edge-aware point set consolidation network. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer
Vision — ECCV 2018, pages 398—414, Cham, 2018. Springer
International Publishing. 2

D. Zhang, X. Lu, H. Qin, and Y. He. Pointfilter: Point cloud
filtering via encoder-decoder modeling. IEEE Transactions
on Visualization and Computer Graphics, 27(3):2015-2027,
2020. 2,9, 10

J. Zhang, B. Deng, Y. Hong, Y. Peng, W. Qin, and L. Liu.
Static/dynamic filtering for mesh geometry. /EEE transac-
tions on visualization and computer graphics, 25(4):1774—
1787,2018. 1,3, 4

W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu. Guided
mesh normal filtering. Computer Graphics Forum, 34(7):23—
34,2015. 1

T. Zhao, P. Gao, T. Tian, J. Ma, and J. Tian. From noise
addition to denoising: A self-variation capture network for
point cloud optimization. IEEE Transactions on Visualization
and Computer Graphics, 2022. 2

Y. Zheng, H. Fu, O. K. Au, and C. Tai. Bilateral normal filter-
ing for mesh denoising. IEEE Transactions on Visualization
and Computer Graphics, 17(10):1521-1530, 2011. 1

[59] Y. Zheng, G. Li, X. Xu, S. Wu, and Y. Nie. Rolling normal
filtering for point clouds. Computer Aided Geometric Design,
62:16-28, 2018. 1

[60] L. Zhou, G. Sun, Y. Li, W. Li, and Z. Su. Point cloud denois-
ing review: from classical to deep learning-based approaches.
Graphical Models, 121:101140, 2022. 2

A. Verification of Surrogate Functions

In this section, we first show that the function in Eq. (18)
is indeed a surrogate function for the target function in
Eq. (15), i.e., they satisfy the surrogate function conditions
given in Eq. (16). We note that the first three terms in Eq. (15)
are already convex quadratic and are used directly in Eq. (18).
Thus we only need to verify the property for the term Fieg,
which amounts to showing that given zoy > 0, the quadratic
function

¢(x;w0) = W(wo) - 2° + O(x0)
is a surrogate function for the function ¢, . in Eq. (14) with
« > 2, and the coefficient functions ¥, © are defined in
Egs. (19) and (20), respectively. Since it is trivial to verify
the first condition of Eq. (16), we will focus on the second
condition, namely that the surrogate function bounds the
original function from above.

We first consider the cases @« = 2 and & = —oo. The
former case is trivial as the function ¢, . is already quadratic.
The latter case has been verified in [18].

Next, we consider the case where —o0o < a < 2. We
compute the derivative functions of ¢, () and ¢(x; x¢) as

2 (a=2)/2
do) =5 (B +1)

2 (a=2)/2
(0/c? , |
o —2]

asan) = 5

Since o < 2, we have

2 (a=2)/2 2 (a=2)/2
((z/c) +1> > ((ng/c)+1) if x < xg,

|a — 2| |aw — 2

2\ (a-2)2 2\ (a-2)/2
(WC) +1) < ((“"O/C)H) itz > 2.

|oe — 2| |oe — 2|
Therefore,
Do () > @' (320) Vo € [0,20),
G o) < @' (z320) Va € (20,+00).

s

Since ¢q,c(x0) = ¢(xo; x0), then for any = € [0,) we
have

$(a: 20) = Blwo: z0) — / " § (23 20)de

> (ba,c(xO) - / i (b;)c(l‘)d.%‘
= (ba,C(m)'

And for any = € (zg, +00) we have

o(z0; 20) / &' (z;20)d

> Goe(0) + /¢>
= Boe(a).

Therefore, ¢(x; 70) > ¢a.c(z)if z > 0. Since both ¢(z; z¢)
and @q,.(z) are even functions, we have

(]3(30;1;0)

P(x;20) > Pac(x) Vo €R,

which completes the proof.

Using the same arguments, we can verify that the function
in Eq. (25) is a surrogate function for the target function in
Eq. (23).

B. Proof of Proposition 3.1
We first prove the following:

Lemma B.1. The N-update step in Eq. (17) satisfies:
EP® Ny < B(p® N*)), (30)

Moreover, E(P®) N*+1)) = B(P®) N®) if and only if
NGED = NE) ywhich is equivalent to the condition that
oF

P® N®) =0,
aN (’)
Proof. Let Q(IN) denote the target function in Eq. (15).
Since N+ s the global minimum of its surrogate function
Q(N;N®) we have Q(NF+D; N®)) < Q(NF); N*)),
Combined with the conditions (16) for surrogate functions,
we have:

QIN!HY) < QIN*HD,NW) < QN NW) =
(3D
i.e., the update to N®*+1) does not increase the value of
function (). The Eq. (30) follows from the fact that the
difference between Q(N) and E(P*), N) is a constant.
Next we show E(P®*) N*+1)) = p(P®*) N®) if and
only if N*+1) = N®) Obviously, if N+1) = N(k)
then E(P*) N*+1)) = p(P®) N®)), On the other hand,
if E(P®) NEHD) = B(P®) N®), then Q(N*+1) =
Q(N)), and Eq. (31) means that
QN+ N®) = QN N®). - (32)
Since Q(N; N(*)) is a strongly convex quadratic function,
it has a unique minimizer. Since N**1 is a minimizer of
Q(N; N®), Eq. (32) implies that N1 = N(¥),
Finally, we show that N(*+1) = N(¥) js equivalent to the

condition that S—N(P(k), N®)) = 0. N*+D = N®) if and

only if N*) is a minimizer of Q(IN; N(*)), which means

QIN™),

that VQ(IN*): N(*)) = 0. From the surrogate function
conditions (16) we have

VQN®) = VQ(N®
Since E(P®) N

N®) = 0.
) and Q(IN) differ by a constant, we have

oE

N (P(k), N(k))

= VQIN®W) =0,

which completes the proof. O
Similarly, we can prove the following:

Lemma B.2. The P-update step in Eq. (24) satisfies:
EPFH) NED) < pp®) NEHD) - (33)

Moreover, E(PF+D NE+D) — p(P®FE) NE+D) if and
only if P*+D = P& which is equivalent to the condition

OF
that 8—P(P<k> NG*+D) = 0.

Then we prove Proposition 3.1:

Proof of Proposition 3.1. From Lemma B.1 and Lemma B.2
we have

E(P(kJrl)’N(kJrl)) < E(P(k),N(kJrl)) < E(P(k),N(k)),
(34)
which proves Eq. (28).
If B(P*+D N+
Eq. (34) we have

E(P® N®), then from

E(P(k“'l),N(kH)) — E(P(k),N(lﬁl)) — E(P(k),N(k)).

(35)
Then from Lemma B.1 we have N®*+1) — N(*) and from
Lemma B.2 we have P(*+1) = P(*)_Qn the other hand, if
P+ = P() and N+ = N then Eq. (35) follows
from Lemma B.1 and Lemma B.2. This proves the equiv-
alence between E(P*+1) NG*+1) = p(P®) N®*)) and

P+ — p(F) N+ — N,

If Pkt — P(k) N(k+1)

Lemma B.1 and Lemma B.2 we have g—ﬁ

N®), then from
(P(k), N(k)) -0
and

ag P® NEHY =0, (36)

OF b N#)
5p —(PW NW) =
On the other hand, if VE(P®) N®*)) = 0, then from
Lemma B.1 we have N*+1 — N®&) which implies
Eq. (36). Then it follows from Lemma B.2 that P(F+1) =
P(%). This proves the equivalence between P(+1) —
P®) N+ = N*) and the condition VE(P*) N*))
0, which completes the whole proof.

o

