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Abstract In the domain of point cloud registration, the coarse-to-fine feature matching paradigm has received significant
attention due to its impressive performance. This paradigm involves a two-step process: first, the extraction of multi-level

features, and subsequently, the propagation of correspondences from coarse to fine levels. However, this paradigm faces two
notable limitations. Firstly, the use of the Dual Softmax operation may promote one-to-one correspondences between su-
perpoints, inadvertently excluding valuable correspondences. Secondly, it is crucial to closely examine the overlapping areas
between point clouds, as only correspondences within these regions decisively determine the actual transformation. Consid-
ering these issues, we propose OAAFormer to enhance correspondence quality. On one hand, we introduce a soft matching

mechanism to facilitate the propagation of potentially valuable correspondences from coarse to fine levels. Additionally, we
integrate an overlapping region detection module to minimize mismatches to the greatest extent possible. Furthermore, we
introduce a region-wise attention module with linear complexity during the fine-level matching phase, designed to enhance
the discriminative capabilities of the extracted features. Tests on the challenging 3DLoMatch benchmark demonstrate that
our approach leads to a substantial increase of about 7% in the inlier ratio, as well as an enhancement of 2-4% in registration
recall. Finally, to accelerate the prediction process, we replace the conventional RANSAC algorithm with the selection
of a limited yet representative set of high-confidence correspondences, resulting in a 100x speedup while still maintaining

comparable registration performance.
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1 Introduction

The task of point cloud registration involves deter-

mining a rigid transformation that aligns one point

cloud with another. This challenge is of fundamen-

tal importance in the fields of computer vision and

robotics and has wide-ranging applications, includ-

ing 3D reconstruction
[1–4]

, SLAM
[5–8]

, and autonomous

driving
[9–12]

. A common approach to this task involves

two key stages: point feature matching and globally

consistent refinement. During the point feature match-

ing phase, the goal is to generate a set of initial corre-

spondences with a high inlier ratio, ideally including as

many true correspondences as possible while minimiz-

ing false ones. However, achieving this objective is a

formidable challenge due to inherent noise and dispari-

ties in the input point clouds, as well as the possibility

of partial overlap between them. Conversely, in the

globally consistent refinement step, the focus shifts to

rapidly identifying a subset of correspondences capa-

ble of consistently encoding the actual transformation
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Fig.1. Considering that in coarse-level matching, the correspon-
dence between a source superpoint and a target superpoint in-
herently embodies a patch-based mapping, there exists the possi-
bility of overlooking potentially valuable correspondences due to

the use of the Dual Softmax operation
[13, 14]

. To ameliorate this
concern, we introduce a soft matching mechanism that permits
one-to-many correspondences, effectively addressing this limita-
tion. Moreover, our network incorporates a dedicated module for
predicting overlap regions, which serves the purpose of filtering
out significantly unhelpful correspondences. It is noted that the
intensity of the color (yellow or blue) indicates the overlapping
score.

While a substantial body of literature
[15–19]

has fo-

cused on the extraction of discriminative features to

enhance correspondence quality, the inherent sparsity

and disparities in point clouds, along with potential

through further refinement.
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partial overlap, present persistent challenges. Recently,

the coarse-to-fine matching paradigm
[14, 20]

has gar-

nered significant attention for its impressive perfor-

mance. This paradigm begins by downsampling the

input point cloud into superpoints and establishing cor-

respondences between these superpoints, where each

superpoint inherently represents a point patch. Sub-

sequently, sparse correspondences are propagated to

encompass more points, resulting in the generation of

dense correspondences.

However, accurately matching a superpoint from

one scan to another can be challenging, as the corre-

sponding point patches may not exhibit perfect align-

ment. As illustrated in Fig. 1, suppose we have two

input point clouds P and Q. The superpoint A is as-

sociated with B,C,D simultaneously. Yet, the use of

the Dual Softmax operation
[13, 14]

within the coarse-to-

fine paradigm has the potential to enforce one-to-one

correspondences between superpoints, unintentionally

excluding valuable correspondences. This represents

the first limitation of the coarse-to-fine paradigm. On

the other hand, it is crucial to examine the overlap-

ping regions between point clouds, as only correspon-

dences within these areas decisively determine the ac-

tual transformation. Consequently, there is a pressing

need to enhance the discriminability of the features ex-

tracted from points within these overlapping regions to

improve the overall performance of the coarse-to-fine

paradigm.

Motivated by these considerations, we propose a ro-

bust matching network, named OAAFormer, with the

explicit objective of augmenting the performance of the

coarse-to-fine matching paradigm. This augmentation

is achieved through the systematic integration of a suite

of strategies meticulously designed to elevate the qual-

ity of correspondences. Firstly, OAAFormer employs

a sophisticated soft matching mechanism, with the

explicit purpose of seamlessly propagating potentially

valuable correspondences from the coarse to the fine

levels of the matching process. Secondly, OAAFormer

incorporates an intricately designed overlapping region

detection module, strategically engineered to minimize

the probability of mismatches. Thirdly, it introduces

a region-wise attention module characterized by linear

computational complexity, meticulously designed to en-

hance the discriminative capabilities of the extracted

features during the fine-level matching phase. Empir-

ical validation underscores the efficacy of these strate-

gies. For instance, tests on the exacting 3DLoMatch

benchmark show that our approach yields a substan-

tial increase of approximately 7% in the inlier ratio,

as well as a discernible enhancement of 2-4% in reg-

istration recall. Furthermore, we replace the conven-

tional RANSAC algorithm
[21]

with the selection of a

limited yet representative set of high-confidence corre-

spondences for accelerating the prediction process.

In summary, the main contributions of this work are

as follows:

• We use a soft matching mechanism to facilitate

the propagation of potentially valuable correspondences

from coarse to fine levels, which finally results in a sub-

stantial increase in the inlier ratio and registration re-

call.

• We introduce a region-wise attention module with

linear complexity during the fine-level matching phase,

designed to enhance the discriminative capabilities of

the extracted features.

• Through the replacement of the inefficient

RANSAC algorithm with a more intelligent mecha-

nism for selecting high-confidence correspondences, we

achieve a remarkable 100x acceleration in the prediction

process.
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2 Related work

2.1 Point cloud registration

The construction of feature descriptors with spe-

cific characteristics proves to be an effective means of

encoding the curvature of the underlying surface, pro-

viding valuable information for the alignment of point

clouds. In previous research, a multitude of tradi-

tional methods
[22–26]

have relied on handcrafted fea-

tures to craft such descriptors. With the prolifera-

tion of deep learning techniques, various learning-based

descriptors
[27–34]

have been introduced to enhance the

expressiveness of these feature descriptors. However,

the task of identifying valuable correspondences be-

tween points based solely on geometric descriptors re-

mains a challenging one, primarily due to the presence

of various defects in the input point clouds, includ-

ing noise, disparities, and partial overlapping. Conse-

quently, approaches such as the Random Sample Con-

sensus (RANSAC) algorithm
[21, 35, 36]

or meticulously

designed neural networks
[37–40]

are frequently employed

to address this challenge. These methods aim to elim-

inate mismatches, even when dealing with points pos-

sessing similar features, ultimately resulting in a more

robust and accurate registration outcome.

Additionally, a variety of keypoint detectors tai-

lored for rigid registration tasks have emerged. For in-

stance, D3Feat
[17]

introduces a keypoint selection strat-

egy that overcomes the inherent density variations of

3D point clouds. However, this approach does not

fully account for overlapping areas and exhibits reduced

robustness in scenarios with low overlap. Another

noteworthy method, Predator
[19]

, develops an overlap-

attention block for early information exchange between

the latent encodings of the two point clouds. Keypoints

are selected based on both saliency and overlap scores.

While Predator
[19]

demonstrates substantial improve-

ments over existing methods across indoor and outdoor

benchmarks, challenges persist in extracting a set of

representative keypoints.

Recently, the coarse-to-fine paradigm has garnered

attention for enhancing the quality of correspondences,

not only in 2D image matching
[41–44]

but also in the do-

main of point cloud registration
[14, 20]

. For instance,

CofiNet
[20]

incorporates an optimal transport
[45, 46]

matching layer to establish correspondences between

mutually nearest patches and subsequently refines these

correspondences at the fine-level stage. In a simi-

lar vein, Geotransformer
[14]

introduces a self-attention

mechanism to learn geometric features, thereby improv-

ing the matching accuracy between superpoints based

on whether their neighboring patches overlap.

In this paper, we further enhance the coarse-to-fine

mechanism through a set of strategies, including (1) a

soft matching mechanism that streamlines the propaga-

tion of potentially valuable correspondences from coarse

to fine levels and (2) a region-wise attention module

characterized by linear complexity during the fine-level

matching phase.

2.2 Efficient Transformer

In the standard Transformer model
[47]

, the mem-

ory cost exhibits a quadratic increase due to matrix

multiplication, which has become a bottleneck when

handling long sequences. Recently, several efficient

Transformer variants
[48–52]

have been introduced. For

example, the Linear Transformer
[48]

reformulates self-

attention as a linear dot product of kernel feature maps

and exploits the associativity property of matrix prod-

ucts to reduce computational complexity. BigBird
[51]

combines local and global attention mechanisms at spe-

cific positions and introduces random attention for se-

lected token pairs. FastFormer
[52]

employs an additive

attention mechanism to model global contexts, achiev-
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Fig.2. The backbone network down-samples the input point cloud to extract features in multiple resolutions. In the coarse-level
matching step, a soft matching mechanism is employed to establish one-to-many correspondences between superpoints, while the over-
lapping detection module is introduced to eliminate mismatches outside the overlapping region. In the fine-level matching step, the
correspondences between superpoints propagate to the dense point sets P̃ and Q̃, and the matching capability of features is enhanced
through linear attention modules. Ultimately, the transformation estimation is calculated using an efficient estimation module based
on feature similarity.

ing effective context modeling with linear complexity.

Inspired by these advancements, we propose a region-

wise attention module with linear complexity during

the fine-level matching phase, meticulously designed to

enhance the discriminative capabilities of the extracted

features for points within overlapping areas.

3 Method

3.1 Pipeline

Suppose that we have a source point cloud P ={
pi ∈ R3 | i = 1, . . . , N

}
and a target point cloud Q ={

qi ∈ R3 | i = 1, . . . ,M
}
. The objective of rigid regis-

tration is to estimate the unknown rigid transformation

T = {R, t}, where R ∈ SO(3) represents a rotation

matrix and t ∈ R3 represents a translation vector. Let

C∗ = {pik 7→ qjk , k = 1, 2, · · · ,K}

denote the set of ground-truth correspondences be-

tween P and Q. The true transformation T should

accurately map each pik ∈ P to qjk ∈ Q, meaning that

it should minimize the difference vector

Rpik + t− qjk

to be nearly zero. In real-world scenarios, where the

elusive optimal correspondences set C∗ is challenging

to obtain, the prevalent approach involves extracting a

subset of correspondences that are deemed reasonably

reliable between two point clouds. Subsequently, the

estimation of the transformation matrix relies on the

consistency of these correspondences.

As shown in Fig. 2, our algorithmic pipeline includes

the following stages:

(1) During the feature extraction stage, we utilize

KPConv
[53]

as the backbone to downsample the point

cloud and extract multi-level features. Subsequently,

we select sample points from both the first and last

levels for the subsequent matching process.

(2) In the coarse-level matching stage, we utilize the

Geotransformer
[14]

to generate the geometric features of

the superpoints. Additionally, we estimate the overlap

region using a dedicated detection module specifically

designed for this purpose. Refer to Section 3.2.

(3) Subsequently, we introduce a soft matching

mechanism to extract valuable correspondences at the

patch level, followed by a filtering step to remove po-

4
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tential mismatches. Refer to Section 3.2.

(4) In the fine-level matching stage, we introduce

a region-wise attention module characterized by linear

complexity. This module is designed to enhance the dis-

criminative capabilities of the extracted features. Refer

to Section 3.3.

(5) In the pose estimation stage, we have devised

an efficient seeding mechanism for the identification

of high-confidence correspondences, aiming to expedite

the process. Refer to Section 3.4.

3.2 Coarse-level Matching

Intra- and Inter- Consistency Enhancement: In

the coarse-level matching phase, considering super-

points P̂ and Q̂ with associated features FP̂ ∈ R|P̂|×dt

and FQ̂ ∈ R|Q̂|×dt , we alternately apply the self-

attention layer within each point cloud and the cross-

attention layer between point clouds Nc times to en-

hance the consistency. It’s worth noting that we uti-

lize the geometry-aware self-attention mechanism
[14]

in-

stead of the standard self-attention
[47]

, as the former is

better suited for capturing long-range contextual infor-

mation.

Overlap Region Detection Module: To en-

hance the distinction between overlapping and non-

overlapping regions, we introduce a token-based atten-

tion mechanism. Specifically, we employ a feature to-

ken, denoted as GP̂ , to encapsulate information related

to the overlapping region. The initialization of GP̂ is

accomplished through a max-pooling operation applied

to the augmented feature set HP̂ . Subsequently, we

employ a cross-attention operation to update the to-

ken GP̂ , resulting in GP̂
o . This updated token is in-

strumental in distinguishing between overlapping and

non-overlapping regions. In the implementation, the

query originates from the initialized token GP̂ , while

both keys and values are derived from the feature set

HP̂ . Finally, the tokens obtained, namely GP̂
o and GQ̂

o ,

serve as guiding elements for updating the original fea-

turesHP̂ andHQ̂ through an additional cross-attention

operation. This is formally represented as:

GP̂
o = vanillaTransformer(Q = GP̂ ,K = V = HP̂),

(1)

where GQ̂
o is computed in the same way.

Subsequently, the obtained tokens GP̂
o and GQ̂

o are

used as guide items to update the original features HP̂

and HQ̂ through another cross-attention operation:

HP̂
o = vanillaTransformer(Q = HP̂ ,K = V = GQ̂

o ),

(2)

where HQ̂
o is computed in the same way. During this

process, HP̂ and HQ̂ are updated to HP̂
o and HQ̂

o , re-

spectively, such that they are aware of the overlapping

region between P̂ and Q̂. The overlapping-aware mech-

anism is highly advantageous as it enhances the ability

to effectively discriminate between the overlapping re-

gion and the non-overlapping region.

To further identify the location of the overlapping

region, we have devised an additional module designed

to assign a probability score indicating the likelihood

that a point is situated within the overlap region.

Specifically, we project the decoded tokens GP̂
o and GQ̂

o

through matrix multiplication and the sigmoid function

to create the weight mapping. The weight map wP̂

is employed to enhance the overlap information within

the features. Subsequently, a linear projection opera-

tor WO ∈ Rdt×1, and a sigmoid function are applied to

obtain the overlapping confidence:

wP̂ = sigmoid((HP̂
o )

TGP̂
o ), (3)

OP̂ = sigmoid((wP̂ ⊙HP̂
o +HP̂

o )W
O), (4)

where OQ̂ is then computed in the same way. To this

end, we consider the points whose confidence is greater

than a threshold θo to be within the overlap region.
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Soft-Matching Module: For the output features HP̂
o

and HQ̂
o generated by the overlapping region detec-

tion module, we first normalize them to the unit hy-

persphere. Subsequently, we calculate the similarity

matrix S ∈ R|P̂|×|Q̂|, where each element is defined

as si,j = exp

(
−
∥∥∥hP̂

i − hQ̂
j

∥∥∥2
2

)
. Accordingly, we apply

the softmax operation to the similarity matrix S on two

dimensions separately to allow one-to-many matching.

Next, we extract purified correspondences by applying

a threshold θm.

Sk = softmax(S(i, ·))j , (5)

Ĉk = {(p̂i, q̂j)|Sk(i, j) ≥ θm∥} (6)

where k ∈ 0, 1, S0 and S1 are the matching proba-

bility matrix obtained by softmax operation along the

first dimension and the zeroth dimension, Ĉ0 and Ĉ1 are

the corresponding coarse-level correspondences propos-

als. Compared with the commonly used top-k selection

strategy that needs to specify the number of matches,

our strategy of using a tolerance can ensure that the

number of selected correspondences is adaptive to the

overlapping rate.

It is important to acknowledge that while the previ-

ously mentioned strategy generates a larger number of

potentially beneficial correspondences, it may lead to

a low inlier ratio. To enhance this inlier ratio, we in-

troduce a procedure where, for each superpoint in the

source point cloud, we initially identify the most closely

matched target superpoint based on S, as well as the

k-nearest neighbors of the target superpoint. Out of

these k+1 correspondences, only those that satisfy the

condition defined in Eq. (5) are retained. Similarly, for

each superpoint in the target point cloud, this process

is repeated until a pruned correspondence set Ĉk is ob-

tained. Finally, we further filter out mismatches outside

predicted overlap regions OP̂ and OQ̂.

3.3 Fine-level Matching

Linear Transformer: Linear Transformer
[50]

proposes

to reduce the computation complexity by substituting

the exponential kernel used in the original attention

layer
[47]

with an alternative kernel function:

sim(Q,K) = ϕ(Q) · ϕ(K)T , (7)

where ϕ(·) = elu(·)+1. Utilizing the associativity prop-

erty of matrix products, the multiplication between

ϕ(K)T and V can be carried out first. Since dt ≪ |P|,

the computation cost is reduced to O(|P|).

Thanks to our overlap region detection module, we

perform linear attention operations to improve feature

discrimination only for points within the overlap region

and not for all dense points. This reduces the impact of

points in non-overlapping region on the one hand, and

reduces the cost of calculation on the other hand. To be

specific, we only focused on the points P̄ within patch

{GP̃
pi
|pi ∈ OP̂} instead of all dense points P̃, and the

relevant features note as FP̄ . We perform the same op-

eration to get overlapping region points Q̄ and relevant

features FQ̄.

Next, we adopt the linear transformer
[50]

to perform

the self- and cross-attention to collect the global infor-

mation through intra- and inter-relationship between

features FP̄ and FQ̄. The self-attention layer updates

its message by:

ZP̄ = LinearTransformer(Q = K = V = FP̄), (8)

and for ZQ̄, Q = K = V = FQ̄. The cross-attention

layer updates messages with information collected from

the inter-relationship between two frame features:

ZP̄ = LinearTransformer(Q = FP̄ ,K = V = FQ̄) (9)

and for ZQ̄, Q = FQ̄,K = V = FP̄ .

Relative Position Embedding: Unlike the previous

work, which either chooses to reduce the point cloud
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resolution
[54, 55] 

to decrease the computing overhead of 

the transformer or only aims to enhance the feature

representation capability of superpoints
[14, 54] 

, our ap-

proach introduces a linear transformer
[48] 

to augment 

the fine-level f eatures. To improve the rotation invari-

ance of the features, inspired by the work of Lepard
[54] 

, 

we integrate rotation-invariant information by adding

rotation position embeddings
[56] 

to the inputs at each 

transformer layer. This helps mitigate limitations on

rotation datasets. For further details, please refer to

the Appendix.

Hard-Matching Module: Through the aforemen-

tioned operations, we obtain a series of one-to-many

superpoint correspondences situated in overlapping re-

gions. The associated patches may have a low overlap

rate, inevitably leading to a large number of dense point

mismatches. Therefore, different f rom t he s oft match-

ing strategy in Section 3.2, adopting a stricter matching

strategy to suppress mismatches at the fine level is the

key to obtaining robust registration. Hence, we em-

ploy the point matching module
[14] 

, which operates in 

conjunction with the optimal transmission strategy
[45] 

, 

to extract dense correspondences. The resultant corre-

spondence set is denoted as C. Additionally, the confi-

dence score of C is denoted as ZC . For further details, 

please refer to the Appendix.

3.4 Feature-similar-based Efficient Registra-

tion

In robust pose estimators such as RANSAC
[21]

, a

large number of iterations is typically required to guar-

antee accuracy, leading to inefficiency. Considering

the high inlier ratio of OAAFormer, we have designed

an efficient estimator to achieve comparable perfor-

mance while significantly reducing the computational

cost. This design is motivated by the crucial obser-

vation that a well-distributed set of correspondences,

which are more similar in the feature space, is benefi-

cial for transform estimation.

Global sampling strategy: In order to obtain the

global sampling distribution, we employ the spectral

matching technique
[57]

to select reliable seeds. Cor-

respondences with a local maximum confidence score

within their neighborhood with radius R are then cho-

sen. The number of seed points Ns is determined by

the proportion of the whole correspondences |C|. For

each seed, we select its k-nearest neighbors in ZC to

expand into a consensus set. The total consensus sets

can be noted as: CS ∈ RNs×k.

Feature similarity compatibility: We conducted

further analysis on the feature similarity of correspon-

dences within each consensus set. The intra-difference

of each correspondence in a consensus set is denoted as

DF ∈ Rk×1, and subsequently normalized as: DF =

1 − DF/max(DF). Moreover, we employ a sigmoid

operation to expand the inter-difference of correspon-

dences as follows:

DF = sigmoid((DF −mean(DF)) · σs) (10)

where σs is a parameter controlling the sensitivity to

differences in features. Simultaneously, DF serves as

a feature similarity score. The closer the correspon-

dence features are, the closer the score is to 1; other-

wise, it approaches 0. Subsequently, we compute the

compatibility matrix of this consensus set, denoted as

CM ∈ Rk×k, where each element of CM represents the

minimum value of the two correspondence scores.

Hypothesis Selection: The association of each cor-

respondence with the leading eigenvector is adopted as

the weight for this correspondence and can be solved by

power iteration algorithm
[58]

. Then we use the weighted

SVD
[59]

on the consensus set to generate an estimation

(Ri, ti) for each seed. Finally, we choose the transfor-
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mation that allows the most correspondences in C:

R, t = max
Ri,ti

∑
(p̃j ,q̃j)∈CJ∥Ri · p̃j + ti − q̃j∥22 < τaK

(11)

where J·K is the Iverson bracket. τa is the acceptance

radius.

3.5 Loss function:

The final loss consists of the coarse-fine-level loss

and the overlap loss: L = Lc + Lf + 0.5 ∗ Lo. As with

geotransformer
[14]

, we use overlap-aware circle loss
[14]

Lc and negative log-likelihood loss
[60] Lf for coarse

and fine level features, respectively. This also ben-

efits us in allowing features to be closer between su-

perpoints/patches with higher overlap ratios in coarse-

level matching, rather than strictly limiting one-to-one

matching. At the fine-level, stricter supervise can also

help eliminate mismatches. Here, the overlap region es-

timation is regarded as a binary classification task, and

the overlap loss Lo =
(
LP̂
o + LQ̂

o

)
/2 is defined as:

LP̂
o =

1

|P̂|

|P̂|∑
i=1

ōp̂i
log (op̂i

) + (1− ōp̂i
) log (1− op̂i

) .

(12)

The ground truth label ōp̂i
of superpoint p̂i is de-

fined according whether it is in the ground-truth coarse

matches set A:

ōp̂i
=

{
1, if i ∈ A(x, ·)
0, otherwise

(13)

The reverse loss LQ̂
o and ground truth label ōp̂i

are

computed in the same way.

Table 1. Evaluation results on 3DMatch and 3DLoMatch

# Samples=5,000 3DMatch 3DLoMatch

Origin Rotated Origin Rotated

Feature Matching Recall (%)

SpinNet
[30]

97.4 97.4 75.5 75.2

Predator
[19]

96.6 96.2 78.6 73.7

CoFiNet
[20]

98.1 97.4 83.1 78.6

YOHO
[32]

98.2 97.8 79.4 77.8

RIGA
[34]

97.9 98.2 85.1 84.5

Lepard
[53]

98.0 97.4 83.1 79.5

GeoTrans
[14]

97.9 97.8 88.3 85.8

Ours 98.6 98.2 89.8 89.5

Inlier Ratio (%)

SpinNet
[30]

48.5 48.7 25.7 25.7

Predator
[19]

58.0 52.8 26.7 22.4

CoFiNet
[20]

49.8 46.8 24.4 21.5

YOHO
[32]

64.4 64.1 25.9 23.2

RIGA
[34]

68.4 68.5 32.1 32.1

Lepard
[53]

58.6 53.7 28.4 24.4

GeoTrans
[14]

71.9 68.2 43.5 40.0

Ours 82.9 79.6 50.1 48.2

Registration Recall (%)

SpinNet
[30]

88.8 93.2 58.2 61.8

Predator
[19]

89.0 92.0 59.8 58.6

CoFiNet
[20]

89.3 92.0 67.5 62.5

YOHO
[32]

90.8 92.5 65.2 66.8

RIGA
[34]

89.3 93.0 65.1 66.9

Lepard
[53]

91.7 84.9 62.5 49.0

GeoTrans
[14]

92.0 92.0 75.0 71.8

Ours 94.2 93.8 77.2 76.0

4 Experiments

In this section, we evaluate OAAFormer on indoor

3DMatch/3DLoMatch benchmarks (Section 4.1), the

outdoor KITTI odometry benchmark (Section 4.2), and

synthetic ModelNet/ModelLoNet benchmarks (Sec-

tion 4.3). For the coarse-level matching module, we re-

peatedly alternate between the geometric self-attention

module
[14]

and the vanilla cross-attention module
[47]

by

setting Nc = 3 and then pass through the overlap re-
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gion detection module. Regarding the threshold θm,

we observed that θm = 0.05 is safe to limit the num-

ber of superpoint matches to be within the range of

[256, 512]. For k nearest neighbors, we find that k  =  3

achieves the best results. For fine-level m atching, we

also interleave the linear self-/cross-attention module

by setting Nf = 3 to enhance feature discrimination.

For the proposed efficient po se es timator, σs  = 10  is

used to enhance the distinctiveness of correspondences,

with k = 20 for establishing the minimum consensus

set, and the number of seeds Ns set to 30% of the total

sampled correspondence count. For specific experimen-

tal details and network architecture, please refer to the

Appendix.

4.1 Indoor Benchmark: 3DMatch

Dataset. 3DMatch
[27]

is a collection of 62 scenes,

of which we employ 46 scenes for training, 8 for vali-

dation, and 8 for testing. We utilize the training data

preprocessed by [19] and conduct evaluations on both

the 3DMatch and 3DLoMatch benchmarks. The for-

mer features a 30% overlap, while the latter exhibits

low overlap in the range of 10% to 30%. To assess ro-

bustness to arbitrary rotations, we follow [32] to create

rotated benchmarks, where full-range rotations are in-

dependently applied to the two frames of each point

cloud pair.

Metrics. We follow [14, 19, 20] to employ three met-

rics for evaluation: (1) Inlier Ratio (IR), which com-

putes the ratio of putative correspondences with a resid-

ual distance smaller than a threshold (i.e., 0.1m) under

the ground-truth transformation; (2) Feature Matching

Recall (FMR), which calculates the fraction of point

cloud pairs with an IR exceeding a threshold (i.e., 5%);

and (3) Registration Recall (RR) , which quantifies the

fraction of point cloud pairs that are accurately reg-

istered (i.e., with a root mean square error, RMSE

<0.2m).

Table 2. Evaluation results on 3DMatch and 3DLoMatch with
a varying number of correspondences

# Samples 3DMatch 3DLoMatch

5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)

PMatch
[28]

95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2

FCGF
[29]

97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3

D3Feat
[17]

95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5

SpinNet
[30]

97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6

Predator
[19]

96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3

YOHO
[32]

98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1

CoFiNet
[20]

98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6

GeoTrans
[14]

97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3

Ours 98.6 98.6 98.5 98.5 98.2 89.8 89.9 90.1 90.1 89.9

Inlier Ratio (%)

PMatch
[28]

36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8

FCGF
[29]

56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6

D3Feat
[17]

39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0

SpinNet
[30]

47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1

Predator
[19]

58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8

YOHO
[32]

64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0

CoFiNet
[20]

49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9

GeoTrans
[14]

71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7

Ours 82.9 83.1 83.3 85.5 86.1 50.1 52.4 55.6 58.6 60.1

Registration Recall (%)

PMatch
[28]

78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0

FCGF
[29]

85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8

D3Feat
[17]

81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1

SpinNet
[30]

88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8

Predator
[19]

89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1

YOHO
[32]

90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0

CoFiNet
[20]

89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0

GeoTrans
[14]

92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5

Ours 94.2 94.2 93.8 93.2 93.0 77.2 77.2 77.0 76.8 76.4

Correspondence results. We begin by comparing

the results of OAAFormer with the recent state-of-the-

art in Table 1, and then proceed to analyze the impact

of varying the number of correspondences in Table 2

and Table 3. Notably, our method excels in terms of

FMR, outperforming all baselines significantly, par-
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ticularly in the case of 3DLoMatch. This implies a

substantial increase in the likelihood of achieving cor-

rect registration with our robust pose estimator in low-

overlap scenarios, where we consistently find more than

5% inliers. Furthermore, for IR, our approach ex-

hibits even more substantial improvements, surpassing

all benchmarks by over 10% on 3DMatch and more than

7% on 3DLoMatch. It is worth mentioning that our

method maintains a stable performance even when the

number of correspondences varies. Additionally, due

to our incorporation of rotational invariance position

information during fine-level matching, we perform ad-

mirably on the rotated datasets.

Registration results. As Table 1 shows, the primary

metric related to the ultimate objective of point cloud

registration is RR. For this metric, we compute the

transformation using RANSAC
[21]

with 50K iterations.

OAAFormer excels in terms of RR, outperforming the

competition with significant margins. Specifically, we

achieve improvements of 2.2% on both the standard and

rotated datasets for 3DMatch and even more remark-

able enhancements of 2.2% and 4.2% on 3DLoMatch.

Additionally, we report registration recall under dif-

ferent numbers of correspondences in Table 2 and Ta-

ble 3. It’s evident that our method’s performance is

remarkably stable, eliminating the need for extensive

correspondence sampling, as seen in previous methods

aimed at performance improvement.

We then compare RR using RANSAC-free estima-

tors in Table 4 . We begin with weighted SVD
[59]

over correspondences to solve for the alignment trans-

formation. Thanks to high values of FMR and IR,

OAAFormer achieves RR scores of 88.4% and 62.1%

on 3DMatch and 3DLoMatch, respectively, while the

results of the baseline methods deteriorate significantly.

This can be explained by the fact that, on one hand,

the coarse-to-fine mechanism constrains the correspon-

dences to specific patches rather than the global do-

main. On the other hand, our model further narrows

down the correspondences to the overlapping region and

enhances the discriminative capabilities of fine-level fea-

tures.

Subsequently, we employ the local-to-global regis-

tration module (LGR) [14] and (FSR) in Section 3.3

separately to compute the transformation. In compari-

son with LGR, the FSR in our method maintains a sim-

ilar time cost but significantly improves the sampling

distribution, making it more effective for transforma-

tion estimation and yielding higher RR scores. This

efficient estimator delivers performance on par with the

robust pose estimator (RANSAC) but with significantly

lower time costs, offering over 100 times acceleration.

Table 3. Evaluation results on Rotated 3DMatch and 3DLo-
Match with a varying number of correspondences

# Samples 3DMatch(Rotated) 3DLoMatch(Rotated)

5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)

SpinNet
[30]

97.4 97.4 96.7 96.5 94.1 75.2 74.9 72.6 69.2 61.8

Predator
[19]

96.2 96.2 96.6 96.0 96.0 73.7 74.2 75.0 74.8 73.5

YOHO
[32]

97.8 97.8 97.4 97.6 96.4 77.8 77.8 76.3 73.9 67.3

CoFiNet
[20]

97.4 97.4 97.2 97.2 97.3 78.6 78.8 79.2 78.9 79.2

GeoTrans
[14]

97.8 97.9 98.1 97.7 97.3 85.8 85.7 86.5 86.6 86.1

Ours 98.2 98.2 98.2 98.1 98.1 89.8 89.6 89.6 89.4 89.2

Inlier Ratio (%)

SpinNet
[30]

48.7 46.0 40.6 35.1 29.0 25.7 23.9 20.8 17.9 15.6

Predator
[19]

52.8 53.4 52.5 50.0 45.6 22.4 23.5 23.0 23.2 21.6

YOHO
[32]

64.1 60.4 53.5 46.3 36.9 23.2 23.2 19.2 15.7 12.1

CoFiNet
[20]

46.8 48.2 49.0 49.3 49.3 21.5 22.8 23.6 23.8 23.8

GeoTrans
[14]

68.2 72.5 73.3 79.5 82.3 40.0 40.3 42.7 49.5 54.1

Ours 82.9 82.9 83.3 83.3 83.5 48.2 48.5 50.4 52.3 54.6

Registration Recall (%)

SpinNet
[30]

93.2 93.2 91.1 87.4 77.0 61.8 59.1 53.1 44.1 30.7

Predator
[19]

92.0 92.8 92.0 92.2 89.5 58.6 59.5 60.4 58.6 55.8

YOHO
[32]

92.5 92.3 92.4 90.2 87.4 66.8 67.1 64.5 58.2 44.8

CoFiNet
[20]

92.0 91.4 91.0 90.3 89.6 62.5 60.9 60.9 59.9 56.5

GeoTrans
[14]

92.0 91.9 91.8 91.5 91.4 71.8 72.0 72.0 71.6 70.9

Ours 93.8 93.8 93.6 93.6 93.2 76.0 75.4 75.4 75.3 74.9
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Table 4. Registration results w/o RANSAC on 3DMatch (3DM) 
and 3DLoMatch (3DLM). The time overhead for transformation 
estimation is also provided

Model Estimator #Samples
RR(%) Time(s)

3DM 3DLM Pose

SpinNet
[30]

RANSAC-50k 5000 88.6 59.8

2.344

Predator
[19]

RANSAC-50k 5000 89.0 59.8

CoFiNet
[20]

RANSAC-50k 5000 89.3 67.5

GeoTrans
[14]

RANSAC-50k 5000 92.0 75.0

Ours RANSAC-50k 5000 94.2 77.2

SpinNet
[30]

weighted SVD 250 34.0 2.5

0.008

Predator
[19]

weighted SVD 250 50.0 6.4

CoFiNet
[20]

weighted SVD 250 64.6 21.6

GeoTrans
[14]

weighted SVD 250 86.5 59.9

Ours weighted SVD 250 88.4 62.1

CoFiNet
[20]

LGR 5000 85.5 63.2

0.019GeoTrans
[14]

LGR 5000 91.2 73.4

Ours LGR 5000 93.2 76.2

CoFiNet
[20]

FSR 5000 85.8 64.2

0.022GeoTrans
[14]

FSR 5000 91.5 73.8

Ours FSR 5000 93.4 76.8

Ablation studies. To gain a more comprehen-

sive understanding of the individual modules within

our method, we conducted a series of ablation studies.

Following the methodology outlined in [14], we intro-

duced the metric Patch Inlier Ratio (PIR) to measure

the fraction of patch matches with actual overlap. Ad-

ditionally, we introduced another metric, Patch Over-

lap Precision (POP), to assess the precision of patches

within the actual overlap. It’s worth noting that the

metrics FMR and IR were reported with correspon-

dences in the set C, while RANSAC
[21]

was employed

for the registration process.

To investigate the effectiveness of the overlap detec-

tion module (ODM), we compared it with the MLP-

directly
[19]

module (MLP) in Table 5. Leveraging the

attention mechanism, our module has the capability to

model the global overlap position, allowing for better

perception of the overlap region. With a well-designed

re-weighted prediction module, we obtained more accu-

rate detection results for the overlap region. As accu-

rate overlap estimation is pivotal for eliminating mis-

matches, our proposed module outperforms alternatives

across all metrics.

Moving forward, to explore the interactions between

the soft-matching module (SMM), overlapping detec-

tion module (ODM), and linear transformer module

(LTM), we conducted relevant ablation experiments in

Table 6. When all modules were removed, OAAFormer

reverted to Geotransformer
[14]

and served as the base-

line. In general, when we replaced the strict match-

ing mechanism of the original implementation with

SMM, due to the introduction of a one-to-many match-

ing paradigm, while introducing a prior for local-to-

local matching, some mismatches were inevitably in-

troduced, resulting in a decline in all metrics. The in-

troduction of ODM and LTM, on the other hand, en-

hanced the accuracy of coarse- and fine-level matching,

respectively, and outperformed the original implemen-

tation. When all three modules were introduced simul-

taneously, SMM mined more potential patch matches,

ODM eliminated mismatches distributed outside the es-

timated overlapping regions, and LTM made the dense

features of the overlapping region more discriminative,

achieving the best performance.

To better elucidate the impact of each module,

we present qualitative results of coarse/fine-level cor-

respondences under different module ablations, as de-

lineated in Fig. 3. (a) showcases the outcomes of

Geotransformer
[14]

, which extracts a fixed number of

coarse and dense correspondences. (b) illustrates the

outcomes when solely the SMMmodule is incorporated.

Due to the introduction of one-to-many matching and

adaptive threshold settings, more matches are estab-

lished at the coarse-level matching stage, inevitably in-

troducing some outliers that propagate to the fine-level

matching stage. However, more inliers are fortunately

discerned at this stage. (c) demonstrates that intro-

ducing the ODM module can preserve inliers while pre-
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dominantly eliminating outliers introduced by the SMM

module. In comparison to Geotransformer
[14]

, which

samples a fixed number of coarse correspondences, we

can adaptively sample fewer correspondences in low-

overlap scenes, thereby enhancing PIR and diminish-

ing unnecessary interference in the fine-level matching

stage. (d) illustrates that introducing the LTM mod-

ule notably enhances the feature matching capability

in the overlapping regions, thereby further refining the

matching capability at the fine-level matching stage.

In addition, we replaced the relative position

embedding
[56]

with the absolute position embedding
[47]

in the linear attention module and conducted relevant

ablation experiments. As shown in Table 7, in the

context of the rotated version benchmark within the

3DMatch/3DLoMatch dataset, it is evident that the

inclusion of relative position embedding resulted in su-

perior performance. This observation suggests that in-

corporating relative positional information not only as-

sists the neural network in effectively modeling distant

spatial relationships but also enhances the network’s

capacity to discriminate between features within re-

gions that are otherwise similar. Furthermore, it con-

tributes to the augmentation of feature rotation invari-

ance, thereby strengthening the network’s robustness

in handling variations in rotational transformations.

#  Coarse Corrs: 256
Inlier Ratio: 21.1%
Inlier Num: 54 

#  Coarse Corrs: 425
Inlier Ratio: 16.2%
Inlier Num: 69

#  Coarse Corrs: 163
Inlier Ratio: 36.8%
Inlier Num: 60 

#  Coarse Corrs: 163
Inlier Ratio: 36.8%
Inlier Num: 60 

C
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rs
e-
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#  Dense Corrs: 1000
Inlier Ratio: 26.4%
Inlier Num: 264

#  Dense Corrs: 1000
Inlier Ratio: 45.3%
Inlier Num: 453

#  Dense Corrs: 1000
Inlier Ratio: 52.1%
Inlier Num: 521

#  Dense Corrs: 1000
Inlier Ratio: 30.3%
Inlier Num: 303 
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(a) (b) (c) (d)

Fig. 3. Qualitative results of coarse-/fine-level correspon-
dences under different module ablations. (a) depicts results of

Geotransformer
[14]

. (b) illustrates results with only SMM. (c)
showcases results with SMM+ODM. (d) demonstrates results of
the complete model with SMM+ODM+LTM. Green/red lines in-
dicate inliers/outliers.

# Dense Corrs: 500
Inlier Ratio: 97.8%

# Dense Corrs: 500
Inlier Ratio: 97.8%

# Dense Corrs: 500
Inlier Ratio: 97.2%

RRE: 1.747°
RTE: 0.062m

RRE: 1.331°
RTE: 0.047m

RRE: 0.100°
RTE: 0.067m

# Overlap Ratio: 10.8%

# Overlap Ratio: 10.9%

# Overlap Ratio: 10. 8%

(a) (b) (c) (d) (e)

Fig. 4. Qualitative results on 3DLoMatch. (a) illustrates the
input point cloud. (b) shows the predicted overlap region. (c)
represents the established correspondences. (d) demonstrates the
registration results. Green/red lines indicate inliers/outliers.

Table 5. Ablation experiments of the overlapping region detec-
tion module

Model 3DMatch 3DLoMatch

POP PIR FMR IR RR OP PIR FMR IR RR

MLP
[19]

89.6 84.2 98.2 73.4 92.5 84.5 53.4 88.5 45.2 75.5

ODM 93.5 85.6 98.6 82.9 94.2 88.1 54.2 89.8 50.1 77.2

Table 6. Ablation experiments of main modules

3DMatch 3DLoMatch

SMM ODM LTM PIR FMR IR RR PIR FMR IR RR

86.1 97.9 71.9 92.0 54.9 88.3 43.5 75.0

✓ 82.7 97.4 68.0 91.3 46.4 86.1 38.1 73.5

✓ 86.4 98.1 73.6 92.7 55.3 88.7 44.8 75.5

✓ 86.1 98.4 79.2 93.4 54.9 89.3 46.4 75.8

✓ ✓ ✓ 85.6 98.6 82.9 94.2 54.4 89.8 50.1 77.2

Table 7. Ablation experiments of position embedding

Model 3DMatch(Rotated) 3DLoMatch(Rotated)

FMR IR RR FMR IR RR

Absolute
[47]

98.0 80.2 93.2 88.4 43.8 75.2

Relative
[55]

98.2 82.9 93.8 89.8 48.2 76.0

Qualitative results. Fig. 4 offers a visualization

of the overlap region prediction in the coarse level and

the dense correspondence results in the fine level. The

overlapping region detection module excels in perceiv-

ing the global position, and the interaction module aids

in determining whether superpoints are situated within

the overlap region. Moreover, the Linear Transformer

module with the relative position embedding strategy

enhances the discriminative ability for dense correspon-

dences, resulting in more reliable correspondences.
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Correspondences Results Registration Results

# Dense Corrs: 500
Inlier Ratio: 8.0%

# Dense Corrs: 500
Inlier Ratio: 6.2%

# Dense Corrs: 500
Inlier Ratio: 8.9%

# Dense Corrs: 500
Inlier Ratio: 68.4%

# Dense Corrs: 500
Inlier Ratio: 79.8%

# Dense Corrs: 500
Inlier Ratio: 60.6%

RRE: 75.333°
RTE: 0.255m

RRE: 14.737°
RTE: 0.312m

RRE: 85.511°
RTE: 3.140m

RRE: 3.482°
RTE: 0.139m

RRE: 4.328°
RTE: 0.143m

RRE: 1.924°
RTE: 0.062m

# Overlap Ratio: 11.7%

# Overlap Ratio: 12.7%

# Overlap Ratio: 28.0%

(a) (b) (c) (d) (e) (f)
Fig.5. Qualitative comparison results on 3DLoMatch. Geotransformer

[14]
serves as the baseline. (a) illustrates the input point cloud.

(b) and (c) respectively depict correspondence results of Geotransformer
[14]

and our method. (d) and (e) respectively illustrate regis-

tration results of Geotransformer
[14]

and our method. (f) represents the ground-truth. Green/red lines indicate inliers/outliers.

A gallery of registration and matching comparison

results with state-of-the-art methods is shown in Fig. 5.

It is evident that our method can establish more ac-

curate correspondences across a broader spectrum of

domains, yielding robust registration outcomes.

4.2 Outdoor Benchmark: KITTI

Dataset. The KITTI odometry dataset
[60]

comprises

11 sequences of LiDAR-scanned outdoor driving scenar-

ios. For training, we adhere to the setup of
[17, 37]

, utiliz-

ing sequences 0-5, while sequences 6-7 are reserved for

validation, and sequences 8-10 are designated for test-

ing. In line with the approach described in
[19]

, we refine

the ground-truth poses using ICP, and restrict the eval-

uation to point cloud pairs that are within a maximum

distance of 10 meters.

Metrics. We adhere to the evaluation metrics estab-

lished by
[17, 19]

, which include the following: (1) Rela-

tive Rotation Error (RRE): This metric quantifies the

geodesic distance between the estimated and ground-

truth rotation matrices. (2) Relative Translation Er-

ror (RTE): It calculates the Euclidean distance be-

tween the estimated and ground-truth translation vec-

tors. (3) Registration Recall (RR): This metric mea-

sures the fraction of point cloud pairs for which both

RRE and RTE fall below specific thresholds, typically

set as RRE<5◦ and RTE<2 meters.

Table 8. Registration results on KITTI odometry

Model RTE(cm) RRE(◦) RR(%)

3DFeat-Net
[15]

25.9 0.25 96.0

FCGF
[29]

9.5 0.30 96.6

D3Feat
[17]

7.2 0.30 99.8

SpinNet
[30]

9.9 0.47 99.1

Predator
[19]

6.8 0.27 99.8

CoFiNet
[20]

8.2 0.41 99.8

GeoTrans
[14]

7.4 0.27 99.8

Ours (RANSAC) 6.6 0.24 99.8

FMR
[61]

∼66 1.49 90.6

DGR
[38]

∼32 0.37 98.7

HRegNet
[37]

∼12 0.29 99.7

GeoTrans (LGR)
[14]

6.8 0.24 99.8

Ours (FSR) 6.0 0.21 99.8

Registration results. In Table 8 (top), we com-

pare OAAFormer with recent state-of-the-art meth-

ods, employing RANSAC as the pose estimator:

D3Feat
[17]

, SpinNet
[30]

, Predator
[19]

, CoFiNet
[20]

, and

Geotransformer
[14]

. Our method performs comparably

to these methods on RR but outperforms the baseline
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by approximately 0.7 cm in terms of RTE and 0.03◦ in

RRE. We also compare our method to three RANSAC-

free methods in Table 8 (bottom): FMR
[61]

, DGR
[38]

,

HRegNet
[37]

, and Geotransformer (with LGR)
[14]

. Our

method outperforms all the baselines significantly. Fur-

thermore, when using FSR as an estimator, our method

surpasses all the RANSAC-based methods.

4.3 Synthetic Benchmark: ModelNet

Dataset. ModelNet comprises 12,311 CAD models of

synthetic objects spanning 40 distinct categories. We

adhere to the practice of employing 5,112 samples for

training, 1,202 samples for validation, and 1,266 sam-

ples for testing. Similar to [19], we conduct evaluations

under two partial overlap scenarios: ModelNet, char-

acterized by an average pairwise overlap of 73.5%, and

ModelLoNet, which exhibits a lower average overlap of

53.6%.

Metrics. We adhere to the methodology outlined in

[19, 54] for performance evaluation, employing three key

metrics: (1) RRE (2) RTE (with definitions consistent

with those in Section 4.2), and (3) Chamfer distance

(CD), which quantifies the chamfer distance between

two registered scans.

Table 9. Registration results on ModelNet dataset

Model ModelNet ModelLoNet

RRE RTE CD RRE RTE CD

Predator
[19]

1.739 0.019 0.00089 5.235 0.132 0.0083

Ours (RANSAC) 1.484 0.016 0.00081 4.143 0.091 0.0044

PointNetLK
[63]

29.725 0.297 0.0235 48.567 0.507 0.0367

OMNet
[64]

2.947 0.032 0.0015 6.517 0.129 0.0074

DCP-v2
[65]

11.975 0.171 0.0117 16.501 0.300 0.0268

RPM-Net
[66]

1.712 0.018 0.00085 7.342 0.124 0.0050

REGTR
[54]

1.473 0.014 0.00078 3.930 0.087 0.0037

Ours (FSR) 1.366 0.012 0.00074 3.884 0.074 0.0032

Registration results. In Table 9, we conduct a com-

parative analysis of OAAFormer against state-of-the-

art RANSAC-based methods and RANSAC-free meth-

ods. Notably, a few RANSAC-free methods are opti-

mized primarily for ModelNet, and these models exhibit

rapid performance deterioration in real-world scenar-

ios. In contrast, OAAFormer demonstrates a substan-

tial performance advantage over all baseline methods

across all metrics, whether in the context of high over-

lap (ModelNet) or low overlap (ModelLoNet) scenarios.

5 Conclusions

In this paper, we have enhanced the coarse-to-fine

matching mechanism through a series of strategies. Key

enhancements include (1) the development of a soft

matching module to preserve valuable correspondences

among superpoints, (2) the introduction of an over-

lapping region detection module for the elimination

of mismatches and (3) the incorporation of a region-

wise attention module with linear complexity to bol-

ster the discriminative capabilities of the extracted fea-

tures. Furthermore, we propose a technique to ac-

celerate the prediction process by carefully selecting

limited but representative correspondences with high-

confidence. Our method’s effectiveness and robustness

are validated through experiments conducted on three

publicly available datasets.
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1 APPENDIX

In this appendix, we first provide the implementa-

tion details in Section 1.1, then details of the Geometric

Structure Embedding and the hard-matching module

are illustrated in Section 1.2 and Section 1.3 respec-

tively. Following this, we elaborate on the evaluation

metrics in Section 1.4. In addition, the detailed net-

work architecture is shown in Section 1.5. Moreover,

more qualitative experimental results are demonstrated

in Section 1.6. Finally, the limitations are further dis-

cussed in Section 1.7.

1.1 Implementation Details

We implement and evaluate OAAFormer with

Pytorch
[1]

on an NVIDIA RTX 3090 GPU. The net-

work is trained with Adam optimizer and the learning

rate starts from 1e-4 and decays exponentially by 0.05

every epoch. We use the matching radius of τ = 10cm

for 3DMatch, τ = 60cm for KITTI and τ = 10cm for

ModelNet to determine overlapping during the gener-

ation of both coarse-level and fine-level ground-truth

matches.

In the training stage, we randomly sample 128

ground-truth superpoint matches, and in the inference

stage, the related parameters for overlap region and

confident threshold are set as θo = 0.4 and θm = 0.05

respectively. In addition, the upper and lower bounds

for selecting superpoint matches are set as [256, 512].

In order to obtain a higher quality correspondences set,

we vary the hyper-parameter k in the multual top-k

selection and set the confidence score as 0.05 of the

hard matching module to control the number of the

dense correspondences for OAAFormer. i.e., k = 1 for

250/500/1000 matches, k = 2 for 2500 matches, and

k = 3 for 5000 matches. And we use top-k selection

to sample a certain number of the correspondences to

report the performances of our method.

1.2 Geometric Structure Embedding

In [2], the geometric structure embedding encodes

the relative distances and angles across superpoints.

The details are as follows:

Given the relative distance ρi,j , the pair-wise dis-

tance embedding rDi,j is computed by the sinusoidal

function
[3]

:


rDi,j,2k = sin

(
di,j/σd

100002k/dt

)
rDi,j,2k+1 = cos

(
di,j/σd

100002k/dt

) (1)

where dt is the feature dimention, and σd is a temper-

ature which controls the sensitivity to distance varia-

tions.

The relative angular embedding can be computed

in the same way. Given the angle αk
i,j , the angular em-

bedding rAi,j is computed as:


rAi,j,k,2x = sin

(
αk
i,j/σa

100002x/dt

)

rAi,j,k,2x+1 = cos

(
αk
i,j/σa

100002x/dt

) (2)

where σa is another temperature which controls the sen-

sitivity to angular variations.

The geometric embedding ri,j finally represents as:

ri,j = rDi,jW
D +maxx

{
rAi,j,xW

A
}

(3)

where WD,WA ∈ Rdt×dt are two learnable matrices.

Fig. 1 illustrates the computation of geometric struc-

ture embedding.
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Fig.1. An illustration of the distance-and-angle-based geometric
structure encoding and its computation

1.3 Hard-Matching Module

Unlike the soft allocation strategy employed dur-

ing coarse-level matching, applying a stricter matching

strategy to suppress mismatches at the fine-level is cru-

cial for obtaining robust registration. Consequently, for

each coarse-level match Ĉi = (p̂xi
, q̂yi

), we extract lo-

cal dense point correspondences between patch GP̃
xi

and

patch GQ̃
xi

by an optimal transport layer. To be specific,

a coherence matrix Ci ∈ R|Gxi
|×|Gyi

| is first computed

as:

Ci = FP
xi

(
FQ

yi

)T
/
√
d̃ (4)

To suppress mismatches, we augment each set with a

dustbin so that mismatches are explicitly assigned to

it. Specifically, we augment the coherence matrix Ci to

C̄i by appending a new row and column, filled with a

single learnable parameter α:

C̄i,|Gxi
|+1 = C̄|Gyi

|+1,j = C̄|Gxi
|+1,|Gyi

|+1 = α ∈ R (5)

Then, we iteratively utilize Sinkhorn algorithm for C̄i

to compute the assignment matrix Z̄i which is then re-

covered to Zi by dropping the last row and the last

column. and then, the mutual top-k selection strategy

to extract correspondences where selected if the match

among the k largest entries for the row and column in

Z:

Ci =
{(

GP
xi
(xj) ,GQ

yi
(yj)

)
| (xj , yj) ∈ mutual topkx,y

(
zix,y

)}
(6)

and the fine-level correspondences set C is the collec-

tion of each subset Ci: C =
⋃Ni

i=1 Ci. For the conve-

nience of subsequent calculation, the confidence of each

Ci is saved as: ZC
i = {Zi(x, y)|(x, y) ∈ Ci}, similarly,

the confidence ZC for all correspondences is noted as:

ZC =
⋃Ni

i=1 Z
C
i .

1.4 Evaluation metrics

Following common practice, we use different eval-

uation metrices for 3DMatch, KITTI and ModelNet.

On 3DMatch, we report Inlier Ratio, Feature Match-

ing Recall and Registration Recall. Following with [2],

We also report Patch Inlier Ratio to evaluate the su-

perpoint (patch) correspondences. In addition, another

metric Patch Overlap Precision is introduced to mea-

sure the precision of patches within the actual overlap.

On KITTI, we report Relative Rotation Error, Relative

Translation Error and Registration Recall. On Model-

Net, we report Relative Rotation Error, Relative Trans-

lation Error and Chamfer Distance.

Relative Rotation Error (RRE) that measures the

geodesic distance in degrees between estimated and

ground-truth rotation matrices. In practice, it mea-

sures the differences between the predicted and the

ground-truth rotation matrices.

RRE = arccos

(
trace

(
RT · R̄− 1

)
2

)
(7)

Relative Translation Error (RTE) that measures

the Euclidean distance between estimated and ground-

truth translation vectors. In practice, it measures the

differences between the predicted and the ground-truth

translation vectors.

RTE = ∥t− t̂∥2 (8)

Inlier Ratio (IR) that computes the ratio of puta-

tive correspondences whose residual distance is smaller

2
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than a threshold (i.e., τ1 = 0.1m) under the ground-

truth transformation T̄ 
P→Q:

IR =
1

|C|
∑

(pxi
,qyi)∈C

J
∥∥T̄P→Q (pxi

)− qyi

∥∥
2
< τ1K (9)

where J·K is the Iverson bracket.

Feature Matching Recall (FMR)) that calculates

the fraction of point cloud pairs whose IR is larger than

a threshold (i.e., τ2 = 5%). FMR measures the likeli-

hood of recovering the accurate transformation by using

a robust estimator such as RANSAC
[4]

.

FMR =
1

M

M∑
i=1

JIRi > τ2K (10)

where M is the number of all point cloud pairs.

Registration Recall (RR)) that counts the fraction

of point cloud pairs that are correctly registered.

For 3DMatch (i.e., withRMSE <0.2m). RMSE is the

root mean square error of the ground-truth correspon-

dences C∗ after applying the estimated transformation

T̄P→Q:

RMSE =

√√√√ 1

|C∗|
∑

(pxi
,qy4)∈C∗

∥∥TP→Q
(
p∗
xi

)
− q∗

yi

∥∥2
2

(11)

RR =
1

M

M∑
i=1

JRMSEi < 0.2mK (12)

For KITTI (i.e., with RRE <5◦ and RTE <2m).

RR =
1

M

M∑
i=1

JRREi<5◦ ∧RTEi<2mK (13)

Patch Inlier Ratio (PIR))) that counts the fraction

of superpoint (patch) matches with actual overlap un-

der the ground-truth transformation T̄P→Q. It reflects

the quality of the putative superpoint (patch) corre-

spondences:

PIR =
1

|C|
∑

(p̂xi
,q̂yi)∈Ĉ

J∃p̃ ∈ T̄P→Q(GP̃
xi
), q̃ ∈ GQ̃

yi

s.t.∥p̃− q̃∥2 < τK

(14)

where the matching radius is τ .

Chamfer Distance (CD)) that measures the quality

of registration on synthetic data. We follow [5] and use

the modified Chamfer distance metric.

CD(P,Q) =
1

|P|
∑
p∈P

min
q∈Q

∥∥T̄P→Q − q
∥∥2
2
+

1

|Q|
∑
q∈Q

min
p∈P

∥∥q− T̄P→Q(p)
∥∥2
2

(15)

1.5 Network Architecture

The detailed network configurations are shown in

Table 1.

Backbone. We adopt KPConv
[6]

as a backbone to

downsample the point cloud and extract the point-wise

features simultaneously. Before being fed into the back-

bone, the input point clouds are first downsampled with

a voxel size of 2.5cm on 3DMatch, 30cm on KITTI

and 5cm on ModelNet. The voxel size is then doubled

in each down-sampling operation. Since the distribu-

tion density of point cloud is different, we use a 4-stage

backbone for 3DMatch, a 5-stage backbone for KITTI

and 3-stage backbone for ModelNet. The configura-

tions of KPConv are the same as in [7] and the group

normalization
[8]

is used after the KPConv layers.

Geo-Aware
Self-Attention

R F

Linear

Add & Norm

Feed Forward

Add & Norm

Output

dtN N× ×R :

d dR
t t×W ： Q d dt t×W ： d dK

t t×W ： d dV
t t×W ：

dtN ×F :

Softmax

dtN ×Z :

N N×A :

N N×E :

N N×TQR : N N×TQK :

dtN N× ×R : dtN ×Q : dtN ×K : dtN ×V :

Fig.2. Left: The structure of geometric self-attention module.
Right: The computation graph of geometric self-attention.
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Vanilla
Cross-Attention

ˆ
F

Linear

Add & Norm

Feed Forward

Add & Norm

Output

ˆ
dtN ×F :

Q d dt t×W ： d dK
t t×W ： d dV

t t×W ：

Softmax

dtN ×Z :

N N×A :

N N×E :

dtN ×Q : dtN ×K : dtN ×V :

ˆ
F

ˆ
dtN ×F :

Fig.3. Left: The structure of feature-based cross-attention mod-
ule. Right: The computation graph of Vanilla cross-attention.

Coarse-level Matching Module. At the onset of

the coarse-level matching module, a linear projection is

employed to compress feature dimensions and mitigate

memory consumption. For 3DMatch and ModelNet,

the feature dimension is dt = 256. Since KITTI has

larger number of points, the feature dimension here is

set to dt = 128. Then, we repeatedly interchanging the

geometry-aware self-attention layer and vanilla cross-

attention layer for Nc = 3 times. All attention mod-

ules have 4 attention heads. In the geometric structure

embedding, we use σd = 0.2m on 3DMatch and Mod-

elNet, and σd = 4.8m on KITTI, while σa = 15◦ on all

datasets. The computations of the geometric structure

embedding, geometric-aware self-attention and vanilla

cross-attention for inputs are shown in Fig. 1, Fig. 2 and

Fig. 3. Afterwards, we use another linear projection

to to get hybrid features HP̂ and HQ̂ with dimension

of 256, and then fed into overlapping region detection

module. In order to get a suitable overlap region for

mismatches filtering, we used θo = 0.4 on all datasets.

The specific structure is shown in Fig. 4.

Overlap prediction
MLP&Sigmoid

Overlap prediction
MLP&Sigmoid

Vanilla cross-Attention

Vanilla cross-Attention

maxpooling

maxpooling

ˆ :1 tG d×

ˆ :1 tG d×

ˆ : tO N d×

ˆ : tO M d×

ˆH : tN d×

ˆH : tM d×

Vanilla cross-Attention
ˆ ˆ ˆ(Q ,KV H ) :1 tG G d= = => ×  

Vanilla cross-Attention

Vanilla cross-Attention

Vanilla cross-Attention
ˆ ˆ ˆ(Q H ,KV ) H : tG N d= = => ×  

ˆH : tN d×

ˆH : tM d×

ˆ :1 tG d×

ˆ :1 tG d×

Overlap prediction
MLP&Sigmoid

ˆ ˆ ˆ T: sigmoid(H ( ) )to N d G× =  

ˆ ˆ ˆ: sigmoid(H (1 )W ) O
tO N d o× = +  

W : 1O
td ×

Fig.4. The structure of overlapping region detection module.

Linear-Attention

Linear

Add & Norm

Feed Forward

Add & Norm

Output

da
tN ×F :

Q d dt t×W ： d dK
t t×W ： d dV

t t×W ：

dtN ×Q : dtN ×K : dtN ×V :

db
tN ×F :

( ) 1elu ⋅ + ( ) 1elu ⋅ +

d dt t×A :

dtN ×Z :

aF bF

Fig.5. Left: The structure of feature-based linear-attention mod-
ule. Right: The computation graph of Linear attention.

Fine-level Matching Module. Through the coarse-

level matching module, a series of superpoint corre-

spondences are extracted. However, due to the in-

evitable partial overlap between two patches caused by

the point-to-node grouping strategy. It is also necessary

to strengthen the differentiation of fine-level features,

which are always neglected by existing work. While

the memory cost of vanilla transformer is the second

order O(N2) of sequence length due to matrix multi-

plication, which results in being impractical in the con-

text of fine-level feature matching. To solve this prob-

lem, Linear attention is introduced as an alternative,

which reduces the complexity by replacing the exponen-

tial kernel of the original attention layer with a kernel

function sim(Q,K) = f(Q) · f(K)T , f(·) = elu(·) + 1.

Utilizing the associativity property of matrix products,

the multiplication between K and V can be carried out

first. Due to dt ≪ N , the complexity is reduced from

O(N2) to O(N). The computation of the linear at-
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¯ Q̄

¯

tention module is shown in Fig. 5. In practically, we

repeatedly exchange self- and cross-attention layer to

update fine-level f eatures f or N f =  3  t imes t o get reli-

able dense point matching.(i.e. for self-attention, Fa = 

Fb = FP̄ 
/FQ; for cross-attention, Fa = FP̄ 

, Fb = F 

or Fa = FQ, Fb = FP̄ 
).

Feature-similar-based Efficient Registration.

The number of seed points Ns is set to 0.3 ∗ |C|, where

|C| is number of the correspondences set C. For each

seed, we use ck = 20 nearest neighbors search in ZC to 

expand into a consensus set. The total consensus sets

can be noted as: CS ∈ RNs×ck. When compute the fea-

ture similarity of correspondences, the hyper-parameter

θm is set to 10. To select the best transformation, the

acceptance radius is τa = 10cm on 3DMatch and Mod-

elNet, and τa = 60cm on KITTI.

1.6 More qualitative Results

Indoor benchmark: 3DLoMatch. In Fig. 6, we

show more qualitative comparative experimental re-

sults with Geotransformer
[2] 
, and our approach per-

forms quite well in these low-overlap cases. It is worth

pointing out that, due to our soft matching module al-

lowing one-to-many matching in coarse-level matching

phase, OAAFormer can mine more potential inliers lo-

cated in overlapping regions, such as 1, 3, 5-th rows

and 3-th cols. Morover, Our method can distinguish

similar regions in close spatial positions, such as 6,7-th

rows and 3-th cols, which is mainly because our linear

attention module and relative position embedding can

better identify the spatial positions of dense points, so

that the features in similar regions have stronger dis-

crimination ability. Additionally, we show more chal-

lenging qualitative results for 3DLoMatch with overlap

rate below 15% in Fig. 7, our method can accurately

identify overlapping regions and obtain a set of reliable

dense correspondences.

Outdoor benchmark: KITTI. Fig. 8 visualizes the

patch overlap prediction, dense correspondences and

registration results of OAAFormer on KITTI. We can

see that our method is still robust and effective even

in sparse outdoor scenes. Here, accurate registration

results obtained by using FSR as an estimator.

Synthetic Benchmark: ModelNet. As shown in

the Fig. 9, thanks to the powerful local and global

geometric modeling capabilities, OAAFormer also has

excellent performance on the synthetic object dataset

with fewer points.

1.7 Limitations

We further show some failure cases in Fig. 10. It

can be observed that the main reasons for the failure of

3DLoMatch are as follows: In the first case, the over-

lap region has a similar ambiguous object, such as the

yellow chair in the first row, while the blue area just

has a similar chair. Unfortunately, it is not the over-

lap region, so the mismatches are established under the

case of low overlap ratio. In the second case, the yellow

table corner is located in the overlap region of the two

point clouds, but the corresponding blue table corner is

partial missing due to real scanning. Interestingly, the

table corner just matches the ”false corner” formed by

the table and the missing area. In the third case, the

overlap region is only on the floor, although 5% inliers

are obtained, the matches between two plane cannot de-

termine the consistent direction, resulting in the point

cloud fitting in the opposite direction.
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Table 1. Detailed network architecture for 3DMatch, KITTI and ModelNet.

Stage 3DMatch KITTI ModelNet

Backbone

1
KPConv(1 → 64) KPConv(1 → 64) KPConv(1 → 64)

ResBlock(64 → 128) ResBlock(64 → 128) ResBlock(64 → 128)

2
ResBlock(64 → 128, strided) ResBlock(64 → 128, strided) ResBlock(64 → 128, strided)

ResBlock(128 → 256) ResBlock(128 → 256) ResBlock(128 → 256)
ResBlock(256 → 256) ResBlock(256 → 256) ResBlock(256 → 256)

3
ResBlock(256 → 256, strided) ResBlock(256 → 256, strided) ResBlock(256 → 256, strided)

ResBlock(256 → 512) ResBlock(256 → 512) ResBlock(256 → 512)
ResBlock(512 → 512) ResBlock(512 → 512) ResBlock(512 → 512)

4
ResBlock(512 → 512, strided) ResBlock(512 → 512, strided)

-ResBlock(512 → 1024) ResBlock(512 → 1024)
ResBlock(1024 → 1024) ResBlock(1024 → 1024)

5 -
ResBlock(1024 → 1024, strided)

-ResBlock(1024 → 2048)
ResBlock(2048 → 2048)

6 -
NearestUpsampling

-
UnaryConv(3072 → 1024)

7
NearestUpsampling NearestUpsampling NearestUpsampling

UnaryConv(1536 → 512) UnaryConv(1536 → 512) UnaryConv(768 → 256)

8
NearestUpsampling NearestUpsampling NearestUpsampling

UnaryConv(768 → 264) UnaryConv(768 → 264) UnaryConv(768 → 264)

Coarse-level Matching Module

1 Linear(1024 → 256) Linear(2048 → 128) Linear(512 → 256)

2
GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4) GeometricSelfAttention(256, 4)
VanillaCrossAttention(256, 4) VanillaCrossAttention(128, 4) VanillaCrossAttention(256, 4)

3
GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4) GeometricSelfAttention(256, 4)
VanillaCrossAttention(256, 4) VanillaCrossAttention(128, 4) VanillaCrossAttention(256, 4)

4
GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4) GeometricSelfAttention(256, 4)
VanillaCrossAttention(256, 4) VanillaCrossAttention(128, 4) VanillaCrossAttention(256, 4)

5 Linear(256 → 256) Linear(128 → 128) Linear(256 → 256)

Fine-level Matching Module

1 Linear(264 → 264) Linear(264 → 264) Linear(264 → 264)

2
LinearSelfAttention(264, 4) LinearSelfAttention(264, 4) LinearSelfAttention(264, 4)
LinearCrossAttention(264, 4) LinearCrossAttention(264, 4) LinearCrossAttention(264, 4)

3
LinearSelfAttention(264, 4) LinearSelfAttention(264, 4) LinearSelfAttention(264, 4)
LinearCrossAttention(264, 4) LinearCrossAttention(264, 4) LinearCrossAttention(264, 4)

4
LinearSelfAttention(264, 4) LinearSelfAttention(264, 4) LinearSelfAttention(264, 4)
LinearCrossAttention(264, 4) LinearCrossAttention(264, 4) LinearCrossAttention(264, 4)

5 Linear(264 → 264) Linear(264 → 264) Linear(264 → 264)
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# Dense Corrs: 500
Inlier Ratio: 0.0%

# Dense Corrs: 500
Inlier Ratio: 67.2% # Overlap Ratio: 26.1%RRE: 128.759°

RTE: 3.144m
RRE: 3.948°
RTE: 0.081m

# Dense Corrs: 500
Inlier Ratio: 7.6%

# Dense Corrs: 500
Inlier Ratio: 33.0% # Overlap Ratio: 24.4%RRE: 94.716°

RTE: 1.761m
RRE: 5.112°
RTE: 0.230m

# Dense Corrs: 500
Inlier Ratio: 4.4%

# Dense Corrs: 500
Inlier Ratio: 39.8% # Overlap Ratio: 21.2%RRE: 126.453°

RTE: 5.675m
RRE: 5.112°
RTE: 0.230m

# Dense Corrs: 500
Inlier Ratio: 2.8%

# Dense Corrs: 500
Inlier Ratio: 62.4% # Overlap Ratio: 20.3%RRE: 171.956°

RTE: 4.903m
RRE: 5.112°
RTE: 0.230m

# Dense Corrs: 500
Inlier Ratio: 5.0%

# Dense Corrs: 500
Inlier Ratio: 63.2% # Overlap Ratio: 11.7%RRE: 9.778°

RTE: 3.442m
RRE: 5.112°
RTE: 0.230m

# Dense Corrs: 500
Inlier Ratio: 5.0%

# Dense Corrs: 500
Inlier Ratio: 42.0% # Overlap Ratio: 10.3%RRE: 29.955°

RTE: 1.379m
RRE: 5.112°
RTE: 0.230m

# Dense Corrs: 500
Inlier Ratio: 1.0%

# Dense Corrs: 500
Inlier Ratio: 55.4% # Overlap Ratio: 10.2%RRE: 113.249°

RTE: 3.757m
RRE: 5.112°
RTE: 0.230m

Correspondences Results Registration Results

(a) (b) (c) (d) (e) (f)

Fig.6. More qualitative results on 3DLoMatch. Geotransformer
[? ]

serves as the baseline. (a) illustrates the input point cloud. (b) and

(c) respectively depict correspondence results of Geotransformer
[? ]

and our method. (d) and (e) respectively illustrate registration

results of Geotransformer
[? ]

and our method. (f) represents the ground-truth. Green/red lines indicate inliers/outliers.
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# Dense Corrs: 500
Inlier Ratio: 65.0%

RRE: 2.784°
RTE: 0.085m

# Overlap Ratio: 12.3%

# Dense Corrs: 500
Inlier Ratio: 78.4%

RRE: 3.236°
RTE: 0.132m # Overlap Ratio: 11.1%

# Dense Corrs: 500
Inlier Ratio: 81.6%

RRE: 2.962°
RTE: 0.122m # Overlap Ratio: 11.5%

# Dense Corrs: 500
Inlier Ratio: 83.8%

RRE: 1.436°
RTE: 0.053m # Overlap Ratio: 14.8%

# Dense Corrs: 500
Inlier Ratio: 84.4%

RRE: 2.596°
RTE: 0.108m # Overlap Ratio: 12.0%

# Dense Corrs: 500
Inlier Ratio: 86.6%

RRE: 2.237°
RTE: 0.059m # Overlap Ratio: 11.6%

# Dense Corrs: 500
Inlier Ratio: 86.8%

RRE: 3.121°
RTE: 0.027m # Overlap Ratio: 13.1%

(a) (b) (c) (d) (e)
Fig.7. More qualitative results on 3DLoMatch. (a) illustrates the input point cloud. (b) shows the predicted overlap region. (c)
represents the established correspondences. (d) demonstrates the registration results. Green/red lines indicate inliers/outliers.
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# Dense Corrs: 500
Inlier Ratio: 75.8%

RRE: 0.140°
RTE: 0.015m

# Dense Corrs: 500
Inlier Ratio: 76.6%

RRE: 0.253°
RTE: 0.060m

# Dense Corrs: 500
Inlier Ratio: 78.0%

RRE: 0.169°
RTE: 0.045m

# Dense Corrs: 500
Inlier Ratio: 82.0%

RRE: 0.156°
RTE: 0.059m

# Dense Corrs: 500
Inlier Ratio: 82.2%

RRE: 0.069°
RTE: 0.054m

# Dense Corrs: 500
Inlier Ratio: 84.0%

RRE: 0.147°
RTE: 0.043m

# Dense Corrs: 500
Inlier Ratio: 85.2%

RRE: 0.233°
RTE: 0.064m

(a) (b) (c) (d) (e)
Fig.8. More qualitative results on KITTI. (b) shows the predicted overlap region, (c) represents the established correspondences, and
(d) demonstrates the registration results. (f) represents the ground-truth. Green/red lines indicate inliers/outliers.
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# Dense Corrs: 250
Inlier Ratio: 92.0%

RRE: 1.684°
RTE: 0.018m
CD: 0.0024m

# Dense Corrs: 250
Inlier Ratio: 100.0%

RRE: 0.933°
RTE: 0.009m
CD: 0.0007m

# Dense Corrs: 250
Inlier Ratio: 97.6%

RRE: 1.933°
RTE: 0.026m
CD: 0.0009m

# Dense Corrs: 250
Inlier Ratio: 97.6%

RRE: 1.985°
RTE: 0.025m
CD: 0.0009m

# Dense Corrs: 250
Inlier Ratio: 100.0%

RRE: 0.835°
RTE: 0.041m
CD: 0.0018m

# Dense Corrs: 250
Inlier Ratio: 100.0%

RRE: 1.339°
RTE: 0.011m
CD: 0.0008m

# Dense Corrs: 250
Inlier Ratio: 100.0%

RRE: 0.494°
RTE: 0.010m
CD: 0.0005m

(a) (b) (c) (d) (e)
Fig.9. More qualitative results on ModelLoNet. (a) illustrates the input point cloud. (b) shows the predicted overlap region. (c)
represents the established correspondences. (d) demonstrates the registration results. Green/red lines indicate inliers/outliers.
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# Dense Corrs: 1000
Inlier Ratio: 0.0%

# Dense Corrs: 2500
Inlier Ratio: 0.0%

RRE: 13.617°
RTE: 1.451m

RRE: 12.893°
RTE: 1.419m

RRE: 21.626°
RTE: 1.817m

# Overlap Ratio: 13.5%

# Dense Corrs: 500
Inlier Ratio: 0.0%

# Dense Corrs: 500
Inlier Ratio: 5.2%

# Dense Corrs: 1000
Inlier Ratio: 3.1%

# Dense Corrs: 2500
Inlier Ratio: 2.7%

# Overlap Ratio: 12.0%

RRE: 28.453°
RTE: 1.207m

RRE: 24.083°
RTE: 1.028m

RRE: 12.505°
RTE: 0.512m

# Dense Corrs: 500
Inlier Ratio: 5.0%

# Dense Corrs: 1000
Inlier Ratio: 5.0%

# Dense Corrs: 2500
Inlier Ratio: 5.3%

# Overlap Ratio: 11.3%

RRE: 179.108°
RTE: 2.974m

RRE: 179.463°
RTE: 2.976m

RRE: 179.858°
RTE: 2.981m

(a) (b) (c) (d) (e)
Fig.10. Failed cases on 3DLoMatch. (a) illustrates the input point cloud. (b) shows the predicted overlap region. (c) represents the
established correspondences. (d) demonstrates the registration results. Green/red lines indicate inliers/outliers.




