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Abstract

Feature lines play a pivotal role in the reconstruc-
tion of CAD models. Currently, there is a lack of a ro-
bust explicit reconstruction algorithm capable of achiev-
ing sharp feature reconstruction in point clouds with
noise and non-uniformity. In this paper, we propose a
feature-preserving CAD model surface reconstruction
algorithm, named FACE. The algorithm initiates with
preprocessing the point cloud through denoising and re-
sampling steps, resulting in a high-quality point cloud
that is devoid of noise and uniformly distributed. Then,
it employs discrete optimal transport to detect feature
regions and subsequently generates dense points along
potential feature lines to enhance features. Finally, the
advancing-front surface reconstruction method, based
on normal vector directions, is applied to reconstruct the
enhanced point cloud. Extensive experiments demon-
strate that, for contaminated point clouds, this algo-
rithm excels not only in reconstructing straight edges
and corner points but also in handling curved edges and
surfaces, surpassing existing methods.

Keywords: surface reconstruction, feature lines, point
cloud enhancement, CAD models

1. Introduction

The technique of CAD surface reconstruction finds
widespread application in various industries, including me-
chanical, electronic, architectural, and aerospace. Its pri-
mary objective is to transform point clouds obtained from
CAD models into triangular meshes. These models typi-
cally exhibit distinctive geometric features, such as corners,
edges, and sharp details, which require careful preservation
during reconstruction.

However, several factors, such as instrument precision,
lighting variations, occlusions, and human errors, introduce
noise, outliers, data missing, and uneven point cloud dis-
tribution into the acquired data. Consequently, achieving
high-quality results while preserving these sharp features
proves challenging when attempting to perform surface re-
construction directly on the raw point cloud data.

In prior research, efforts to faithfully replicate model
geometry have primarily revolved around two core as-
pects: point cloud processing and reconstruction. The key
to achieving reconstruction results that preserve geometric
features lies in having high-quality input point clouds. Raw
input point clouds tend to be sparse, typically containing
only a few points situated along the edges of geometric fea-
tures. Some existing techniques [18, 39, 29, 28, 23] attempt
to enhance these features by increasing point density in edge
regions. However, they often fall short of clearly defining
feature lines due to imprecise or insufficient point additions.

In the reconstruction phase, the effective utilization of
feature lines proves paramount. Traditional reconstruc-
tion methods fall into two categories: implicit and ex-
plicit. Implicit methods [11, 4, 3] represent surfaces us-
ing implicit functions and then construct results using iso-
surfaces. While robust against noise, they struggle to pre-
serve sharp features. Explicit methods [37, 40], conversely,
explicitly connect scattered input points following specific
rules. Although they can recover geometric structures, they
are sensitive to noise and require a minimum point density
to reconstruct sharp features along feature edges.

Hence, the prevailing approach for feature-preserving re-
construction involves using processed point clouds. While
some improved methods [36, 14] prioritize connecting
points within feature regions, they still encounter challenges
when reconstructing intricate structural areas, leading to
certain deficiencies in the final outcomes.

In this paper, we propose a novel approach for feature-
preserving CAD model surface reconstruction, named
FACE, which consists of two parts: point cloud consolida-
tion and surface reconstruction. Initially, we preprocess the
point cloud to obtain a clean and uniformly resampled ver-
sion, effectively removing noise. Subsequently, we employ
discrete optimal transport to identify feature regions within
the point cloud. We then update point normals and posi-
tions within these regions using information from neighbor-
ing points, generating new points to increase point density
along feature lines. Finally, we apply an advancing-front
surface reconstruction method, incorporating normal direc-
tion conditions, to reconstruct the enhanced point cloud, re-
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sulting in a mesh that faithfully preserves sharp features.
In summary, our contributions are as follows:

1. We propose a novel feature-preserving framework that
enhances and enriches input point clouds, enabling the
reconstruction of model surfaces with distinct geomet-
ric features.

2. We devise preprocessing operations for point cloud de-
noising and resampling, which improve point cloud
uniformity, providing high-quality, noise-free point
clouds for subsequent feature enhancement and pre-
venting uneven reconstruction results.

3. We incorporate normal direction conditions into the
advancing-front surface reconstruction method that do
not consider normals, enhancing the algorithm’s adapt-
ability to various geometric structures in models and
significantly boosting overall performance and effi-
ciency.

The rest of this paper is structured as follows. Section 2
provides a review of previous studies in the field. In Sec-
tion 3, we describe the proposed framework. Implementa-
tion details and experimental results are shown in Section 4,
then we draw a conclusion in Section 5.

2. Related work

2.1. Point cloud consolidation

The raw point cloud obtained from scanning is fre-
quently disordered, sparse, and irregular. Previous meth-
ods relies on parameter-heavy approaches such as local
mappings [1] and network-based solution [23]. In pur-
suit of parameter-free solutions, the locally optimal projec-
tion operator (LOP) [26] and the improved weighted LOP
(WLOP) [17] are developed to accommodate non-uniform
data. Additionally, low-rank matrix approximation algo-
rithms [28] and objective functions grounded in winding
number requirements [35] are employed to estimate robust
normals and enhance point cloud quality. However, these
methods struggle with both noise and non-uniform point
clouds. In our approach, we address this issue during point
cloud preprocessing by selecting denoising levels based on
noise intensity and creating uniform point clouds through
resampling.

Feature lines within point clouds provide vital geo-
metric information for various applications. Prior re-
search employs multi-scale clustering operators by Pauly
et al. [30] and refinement techniques like robust moving
least squares and Newton’s method [7]. Some methods
enhance edge density but are sensitive to normal accu-
racy [18]. Deep learning approaches, such as EC-Net [39],
Self-sample [29], and PCED-Net [16], have been intro-
duced to analyze shapes and detect edges. PIE-NET [34]

and PC2WF [27] focus on edge detection with region pro-
posal and feedforward modules, respectively. Other meth-
ods like MFLE [2] use anisotropic contraction and dual-
branch structures for feature refinement. Similarly, SED-
Net employs a dual-branch structure to fuse extracted edge
and corner features, creating straightforward and distinct
feature lines [24]. However, existing methods face chal-
lenges with sparse and scattered points along feature lines.
We adopt a discrete optimal transport approach to accu-
rately identify feature regions and generate dense points
along edges, enhancing subsequent reconstruction.

2.2. Feature preserving surface reconstruction

Reconstructing feature-preserving meshes from complex
point clouds is a well-explored challenge. Researchers
extended moving least squares (MLS) with robust statis-
tics [13] and non-linear kernels [41] to model sharp sur-
faces. Salman et al. used Voronoi cell covariance matrices
and modified Delaunay refinement for sharp edge preserva-
tion [33]. Fast locally optimal projection (LOP) operators
via kernel density estimation (KDE) also maintain features
effectively [25]. Dey et al. combined Gaussian-weighted
graph Laplacians with weighted Delaunay triangulations for
feature safeguarding [9].

Network-based methods employ strategies like deforma-
tion [15], local/global priors [11], and 2D Delaunay tri-
angulation properties [31] for mesh construction. Neu-
ral marching cubes (NMC) [4] and neural dual contour-
ing (NDC) [3] enhance traditional techniques, with NDC
excelling in sharp feature preservation. ComplexGen uses
neural networks for probabilistic structure prediction [14].
It optimizes B-Rep chain complexes under structural valid-
ity constraints. SECAD-Net generates compact CAD mod-
els but suits specific structures [22]. A recent implicit neu-
ral network employs a two-stage training process with tai-
lored loss functions to learn input point sharp features and
surface details effectively [12]. For symmetrical models,
global alignment can fit the input point cloud while preserv-
ing constraint relationships, but its application is somewhat
limited [38].

Compared to prediction-based methods, RFEPS is a
recent algorithm that optimizes points and normals ini-
tially [36]. It then detects feature regions, enhances feature
lines, and interpolates polygonal surfaces using restricted
power diagrams. In addition, feature-preserving reconstruc-
tion also employs optimal transport theory [10, 37] and
quadratic error metrics [40]. However, these methods have
various strengths and weaknesses, including robustness is-
sues, limited suitability for small point clouds, and difficul-
ties preserving sharp features in complex areas. In contrast,
our approach leverages enhanced feature points, enabling
the creation of sharp features in intricate regions, with su-
perior efficiency due to straightforward connectivity rules.



Figure 1. Pipeline of the proposed method. (a) Non-uniform input point cloud with noise; (b) preprocessed point cloud with noise-free and
uniformity; (c) detected feature region (in purple points); (d) extracted feature lines; (e) enhanced point cloud with distinct feature lines;
(f) reconstructed result.

3. Method

The utilization of feature lines and feature points in CAD
models is essential to achieving the reconstruction of sharp
features. Given a point cloud with noise and uneven dis-
tribution, preprocessing yields a point cloud with noise-
less, uniform distribution and dense points on feature lines.
Then, a triangular mesh with sharp features is created by
employing an explicit reconstruction method. The overall
algorithm is depicted in Figure 1, and the following is a
brief description of the process.

1. Initialize the normal vectors, denoise the point cloud,
and remove outliers. Then, resample the point cloud
using the centroidal Voronoi tessellation method. Fig-
ure 1(b) displays the preprocessed point cloud.

2. Detect point cloud features using optimal transport
theory, as shown in Figure 1(c) (in purple points). Af-
ter that, update point normals and positions based on
neighborhood information, and generate new points
for feature lines, which are presented in Figure 1(d).

3. The optimized point cloud after the above steps is
shown in Figure 1(e). Reconstruct the point cloud us-
ing the advancing-front method with the normal con-
dition, and the result is provided in Figure 1(f).

3.1. Point cloud preprocessing

To mitigate the impact of low-quality data on reconstruc-
tion results, it is crucial to conduct denoising, outlier re-
moval, and resampling operations during point cloud pre-
processing. We utilize the method described in [36] to de-
noise the data, which enables the selection of an optimal
denoising level based on noise intensity.

In addition to noise, outliers in the input point cloud also
can introduce additional structure into the results. To re-
move these outliers, we define points with fewer than five
neighbors as outliers. The neighborhood is often defined us-
ing a spherical region with a radius of r, adjusted for point
density. Uniform point clouds utilize a consistent neigh-
borhood definition, but non-uniform cases require distinct
definitions for sparse and dense regions. To prevent inad-
vertent removal of points in sparse regions, we employ an
adaptive method to identify neighborhood points. Initially,
we use a kNN tree to search for the 50 nearest points to
pi. For the 50 points found, calculate the average minimum
distance di by computing the distance between each point
and its nearest neighbor. Next, use a sphere with a radius
ri = 2di to search for neighbors of pi. After calculating the
number of neighbors, check whether the number of neigh-
bors at any point reaches a threshold, typically set between
80 and 120. If yes, stop the search. Otherwise, increase the



Figure 2. Procedure of resampling. (a) Initial point cloud; (b) ini-
tial resampling points; (c) final resampling points.

search radius by 0.5di and initiate a new round of search un-
til the point count in any point’s neighborhood reaches the
threshold. After stopping the search, classify points with
fewer than 5 neighbors as outliers based on the number of
neighbors per point.

Furthermore, the density of the point cloud has an im-
pact on the reconstruction of sharp features. To address
non-uniform point clouds, this algorithm employs a method
proposed by Chen et al. to resample the denoised point
cloud, thereby improving the uniformity of point distribu-
tion [5]. Initially, this method generates sampling points on
the restricted Voronoi diagram of the point cloud. Subse-
quently, it applies Lloyd’s algorithm to calculate the cen-
troid Voronoi diagram and relocates point p to the centroid
of its Voronoi cell. Repeated iterations of this process result
in resampling, typically requiring fewer than 5 iterations to
obtain high-quality points. The results of each step are dis-
played in Figure 2. We only utilized uniform sampling to
enhance the quality of the point cloud. For more complex
structures, adaptive sampling can also be employed to en-
sure a more rational distribution of points.

3.2. Feature enhancement

Clear and continuous feature lines are essential for the
successful reconstruction of features in CAD models. De-
spite the uniform and noise-free distribution of the prepro-
cessed point cloud, its feature lines may not be readily ap-
parent, and point arrangements can appear somewhat scat-
tered. To enhance the point cloud’s features, we draw in-
spiration from [36]. We detect the feature regions by us-
ing discrete optimal transport followed the idea from [36],
and optimize and densify the points within these areas, ulti-
mately achieving well-defined feature lines.

In Figure 1(c), the identified feature points are displayed,
closely matching the actual feature edges. To enhance these
features, we initially used the method shown in [36] to up-
date point normals and positions, generating dense points
along feature lines. However, during the update process,
this method exhibited issues of incorrect point displacement
in some complex regions. Upon further investigation, we
identified the root cause as the improper selection of spher-
ical neighborhoods.

Figure 3. Comparison of different neighborhood selections. (a)
Spherical neighborhood points; (b) neighborhood points obtained
by restricted Delaunay triangulation; (c) restricted Delaunay trian-
gulation of resampling points. The blue point is the neighborhood
point of the yellow point.

Spherical neighborhoods have limitations as they can
mistakenly group points based solely on spatial proximity,
disregarding topology. For example, in the corner region
outlined in Figure 3(c), defining neighborhoods as shown
in Figure 3(a) can lead to an erroneous update of yellow
points’ normal vectors. Since there are more neighbor-
hood points on the side, more mass is transferred to the
side normal vector. This can cause the normal vector of
the yellow point to be incorrectly updated in the outward
direction, affecting the update of the position of subsequent
points. Thus, a more thoughtful approach to determining
point neighborhoods is necessary.

The restricted Delaunay triangulation (RDT) obtained
from resampling provides topological connectivity. To en-
sure precise normal vector updates, point neighborhoods are
defined as follows: Initially, for a point pi, its neighborhood
Neigh(pi) includes 1-ring neighbors in the RDT. Then, for
each pj ∈ Neigh(pi), any point within pj’s 1-ring neigh-
borhood, with a normal vector angle to pi less than π/3,
is added to Neigh(pi). This iterative process expands the
neighborhood until the count of points reaches a threshold,
typically between 80 and 120. Figure 3(b) illustrates these
neighborhoods for yellow points, preventing incorrect nor-
mal vector updates.

After updating normal vectors, we optimize points simi-
larly to the denoising part in Section 3.1. Since the number
of points along these edges is limited, making it possible to
project points within the feature region onto the plane inter-
sections to generate new feature points. For points p ∈ F in
the feature region, each neighboring point pj ∈ Neigh(p)
generates a tangent plane passing through point pj and per-



pendicular to the normal vector nj. These tangent planes
intersect at the CAD model’s feature edges. Optimizing the
distance from point p to the tangent planes of its neighbor-
ing points creates new points at the intersections of these
tangent planes.

To prevent excessive point density around feature points
hindering sharp feature reconstruction, we remove non-
feature points within 2l distance, with l as the average point
spacing. In the feature-rich region, where points are densely
distributed, elongated triangular facets can occur after the
removal operation. To improve mesh quality, we down-
sample feature points using a spatial threshold. In the down-
sampled point cloud, the minimum distance between two
points must meet or exceed the threshold, typically set at
0.0025.

Figure 4. Comparison of results (a) before and (b) after the post-
processing step for point generation between corners and neigh-
bors.

The method mentioned above for generating feature
points still has a problem: all feature points around corners
project onto the corners, creating a shortage of points along
the adjacent feature lines, as seen in Figure 4(a). To solve
this, we introduce a post-processing step. It identifies fea-
ture points at corners and generates new ones between these
corners and their neighbors.

Suppose the newly generated points are denoted as F ′.
For each q in F ′, we search for the nearest m points within
F ′, typically setting m between 20 and 25. If three points
q1, q2, and q3 are found among these m points, forming any
two vectors qqi and qqj (i, j ∈ {1, 2, 3} and i ̸= j) with
angles between them ranging between 80° and 110°, it indi-
cates a corner point. New feature points are sampled along
the line segment between q and qi, generating a new point
every 5w, where w is the average spacing of the resampled
point cloud, as depicted by the blue lines in Figure 4(b).

Additionally, dense points are added on planes around
inflection points to ensure enough points for sharp feature
reconstruction. For the three nearest points to the corner

point q identified earlier, any two points qi and qj among
them exist in the same plane as the corner point q. Similar
to Section 3.1, the average spacing z of the existing point
cloud is calculated. Within an area of ∥qqi∥×∥qqj∥, starting
from q, we alternate along the directions of qqi and qqj ,
adding a point every kz distance (where k is a coefficient
controlling the density of added points, typically set to 10).
This ensures an even and dense distribution of points within
the specified range, thereby preserving the reconstruction of
sharp features.

3.3. Surface reconstruction

In the last phase of this framework, we reconstruct
the model surface with well-defined feature lines from
the processed point cloud data. Explicit methods, such
as advancing-front surface reconstruction (AFSR) [8], are
highly effective for this purpose.

Figure 5. Main process of AFSR. Initiate with the seed face and
incorporate selected faces from candidate faces along the recon-
structed boundary until the process is complete.

Figure 5 demonstrates the primary process of AFSR. The
approach initially computes the Delaunay tetrahedron of
the input point cloud, obtaining a triangular faces set D =
{T1, T2, . . . , Tn}. For every triangle Ti = {pi1, pi2, pi3}
within D, the method calculates its radius ri, where ri is
the radius of the smallest sphere that passes through the
vertices of Ti and enclosing no other sampling points. The
method then chooses the triangular face with the smallest
radius from D as the initial seed face.

Since the traditional AFSR method favors smaller trian-
gles, this may lead to errors in subsequent reconstruction
results, especially in models like those shown in Figure 6,
where closely spaced points create connectivity challenges
between double-layer thin surfaces. In order to tackle this
issue, we introduce a normal condition during the selection
of triangles. This condition necessitates prior knowledge of
vertex normals and involves calculating the initial normal of
the triangle based on vertex coordinates. When choosing a



triangle, if its initial normal or its reverse normal orients on
the same side as the normals of the three vertices of the tri-
angle, then the final normal of the triangle is the one that is
oriented on the same side as the vertex normal. Otherwise,
we do not calculate the normal of the triangle and discard
it. By integrating information on radius and normal, we can
accurately select the correct seed triangle.

Figure 6. Illustration of double-layer connection. The double-layer
thin surface is mistakenly connected as a single-layer thin surface.

After selecting the seed triangle, it is added to the
reconstruction result S, and the three edges constituting
the seed triangle are included in the boundary set ∂S =
{e1, e2, . . . , en}. For each edge ei on the boundary, if the
normal of the selected triangle to which ei belongs forms an
angle smaller than a threshold (usually set to 5π/6) with the
normals of the unselected triangles adjacent to ei in D, then
from these unselected triangles satisfying the angle condi-
tion, the triangle with the smallest radius is chosen as the
most suitable candidate triangle for that edge. The candi-
date triangles chosen for each edge form the set of candidate
triangles.

Afterward, from the set of candidate triangles, we care-
fully select the most reliable triangle as the newly added tri-
angle and integrate it into the reconstruction result S. When
choosing the new triangle, to prevent connectivity errors,
we consider not only the plausibility grade condition and
extension types outlined in [8] but also the previously men-
tioned condition where the triangle’s normal aligns with the
vertex normal on the same side. The boundary set and the
set of candidate triangles undergo updates based on S, ini-
tiating a new round of selection and addition. This itera-
tive process continues until all candidate triangles have been
considered, indicating the conclusion of the reconstruction
algorithm.

Figure 7 illustrates the comparison. The original method,
ignoring normal vector conditions and favoring smaller tri-
angles, fails to achieve accurate reconstruction. Conversely,
the improved method, guided by normal directions, accu-
rately selects triangles, achieving proper reconstruction for
thin structures while preserving sharp features.

4. Experiments

Our algorithm was implemented in C++ on a computer
with a 3.2GHz ARM-based 8-core CPU, 16GB RAM, and
an NVIDIA RTX 3090Ti graphics card for some deep learn-
ing experiments. Experimental data were obtained from

Figure 7. Comparison of reconstruction results (a) before and (b)
after the improvement. The traditional AFSR [8], lacking consid-
eration of normals, tends to favor smaller triangles, resulting in
unnecessary connections. In contrast, the improved AFSR, guided
by normals, achieve accurate reconstruction results.

the ABC dataset, which includes diverse CAD models. We
used noise and non-uniformly sampled point clouds gener-
ated by Huang et al. [19] from the ABC dataset, normaliz-
ing all data to the [0, 1] range.

To evaluate the precision of consolidated point clouds,
we randomly selected 50 models from the ABC dataset.
We utilized the one-sided Chamfer Distance (OCD) and
one-sided Edge Chamfer Distance (OECD) [36] to mea-
sure the proximity of the consolidated point cloud to the
ground-truth surface. Regarding the accuracy of recon-
structed meshes, three metrics are utilized, including Cham-
fer Distance (CD) [11], F-score (F1) [21], and Normal Con-
sistency (NC) [32].

4.1. Improved advancing-front reconstruction

The traditional advancing-front surface reconstruction
method did not take into account surface normals. In or-
der to extend the applicability of this approach to a broader
range of models, the enhanced version of this method in-
corporates normal considerations. Figure 8 provides a vi-
sual comparison between the original and enhanced meth-
ods. Since the purpose is to verify the validity of the recon-
struction, the input point cloud is guaranteed to be uniform
and noise-free. As the complexity of model reconstruction
increases, it becomes evident that the improved method not
only preserves the capabilities of the original one but also
effectively addresses more complicated scenarios. In the
case of models featuring thin-sheet structures, the original
method would erroneously connect certain points due to the
lack of normal vector information, leading to inaccuracies
in the resulting faces along edges and gaps. However, with
correct normals as a prerequisite, the enhanced version can
accurately determine whether new faces can be generated
based on the orientation of triangles, thus enabling the suc-
cessful reconstruction of challenging models.

4.2. Sharp feature-preserving

Figure 9 illustrates the outcomes of point cloud process-
ing and reconstruction achieved by our comprehensive al-
gorithm applied to CAD models. It is obvious that this al-



Figure 8. Comparison of reconstruction results on the model with complicated structure.

Figure 9. Reconstruction process of our algorithm on CAD models. From left to right: feature points acquired through feature enhancement,
point clouds following feature enhancement, reconstruction results, local details, and reconstruction errors.

gorithm possesses the capability to effectively reconstruct
sharp geometric features and smooth surfaces, while also
accommodating high-genus data. Following multiple pro-
cessing stages, the point cloud exhibits well-defined feature
lines and a uniform point distribution. Moreover, dense fea-
ture points are generated in corner regions, bolstering sub-
sequent reconstruction efforts.

During CAD model reconstruction, our algorithm fo-
cuses on two main types of sharp features: sharp edges
and corner points. Sharp edges result from plane intersec-
tions, and our algorithm enhances features in the feature re-
gion, generating points along the intersection lines of cut-
ting planes within point neighborhoods to reconstruct them
effectively. Corner points, which consist of corners de-
picted in Figure 9(b) and sharp points shown in Figure 9(c),
formed by the intersection of three or more planes, pose

a greater challenge. While our optimization can generate
corner points, it reduces the number of surrounding feature
points. However, our post-processing methods effectively
restore corner point features.

To evaluate reconstruction accuracy, we randomly sam-
pled 200,000 points from the true model and measured their
distances to the reconstructed mesh. Figure 9’s final column
displays the error distribution. Despite non-uniform input
data with minor noise, the algorithm exhibits minor errors
and most of the sharp features can be reconstructed.

4.3. Comparisons

The framework comprises two parts: point cloud con-
solidation and surface reconstruction. The former aims to
achieve a uniform point cloud with clear feature lines, while
the latter leverages feature points to preserve sharp features.



Figure 10. Comparison of results from different point cloud consolidation methods, where points on feature lines are highlighted in red.

4.3.1 Point cloud consolidation quality

The effectiveness of point cloud consolidation is evaluated
based on the uniformity of the processed point cloud and the
clarity of feature lines, which are crucial for subsequent re-
construction. In experiments with non-uniform point cloud
inputs, we compared our method with EAR [18], Self-
sample [29], and RFEPS [36], using the authors’ provided
code. Figure 10 illustrates the results, and the statistics for
OCD and OECD can be found in Table 1.

EAR struggles to achieve uniform point density in non-
uniform regions and may lead to point cloud loss due to its
base selection mechanism. Although increasing the size can
address this issue, the main limitation of EAR is its feature
point generation scheme. EAR gradually upsamples points
on both sides of the edge and projects them onto the poten-
tial surface, arranging them uniformly and densely in the
vicinity of sharp edges. However, there is no assurance that
they can align perfectly with feature lines, leading to chal-
lenges in reconstructing sharp edges.

Self-sample, while effective at densifying points in fea-
ture areas, can lead to blurry feature lines and lack clarity in
corner points and sharp edges. On the other hand, RFEPS
struggles with non-uniform scenarios due to the sparsity of
the lower part of the point cloud, leading to unclear edges on
the lower curved edge of the cylinder. Additionally, RFEPS
tends to converge newly generated points at corner points
after optimization, leaving no feature points around them.

In contrast, our method incorporates a resampling step
that generates a uniform point cloud and precisely identi-
fies feature regions to enhance the sharp features of straight
edges, curved edges, and corner points. It excels not only
in handling low-density point clouds, ensuring continuous
feature lines and the presence of feature points around cor-
ner points, but also in generating point clouds closest to the
ground-truth.

Table 1. Accuracy assessment of various point cloud consolidation
methods.

Methods OCD ↓ OECD ↓

EAR 0.649 0.151

Self-sample 0.783 0.228

RFEPS 0.554 0.147

Ours 0.445 0.143

4.3.2 Surface reconstruction quality

The main advantage of this framework lies in its capacity
to seamlessly combine point cloud consolidation methods
with reconstruction techniques, resulting in model surfaces
that retain sharp features. Consequently, the meticulous
selection of the optimal combination becomes paramount.
Diverse point cloud processing methods may exhibit vary-
ing levels of compatibility with distinct reconstruction tech-
niques. Figure 11 demonstrates the outcomes achieved
through various method pairings. The input point cloud is
non-uniform and noisy. The “w.o.” denotes cases where no
point cloud consolidation was applied.

The reconstruction methods compared in this study com-
prise RIMLS [41], screened Poisson surface reconstruction
(SPSR) [20], Point2Mesh (P2M) [15], and RFEPS [36].
RIMLS and SPSR are both implicit methods, implemented
and yielding results through MeshLab [6]. P2M employs
deep learning techniques to iteratively simplify the convex
hull towards the target model, while RFEPS is an explicit
method. The results for both methods were obtained by ex-
ecuting the code provided by their respective authors.

The insights from Figure 11 are compelling, showing
that point cloud consolidation consistently enhances recon-
struction quality compared to untreated data. When paired
with more suitable methods, it further improves feature



Figure 11. Comparison of results obtained by the combination of various point cloud consolidation methods with different reconstruction
methods.

preservation. However, P2M is an exception, better suited
for void-free structures and specific point cloud quantities,
making it less effective for larger datasets. It successfully
reconstructs some corner points but struggles with most
straight and curved edges.

When applying RIMLS and SPSR to data processed by
EAR and our method, respectively, they exhibit the ability
to retain certain feature regions, but their implicit recon-
struction nature tends to yield smoother results, making it
arduous to fully recover sharp features.



Figure 12. Comparison of error distributions in different reconstruction results.

RFEPS relies heavily on feature line point density, which
our method enhances. However, simply increasing a certain
of density still does not meet the demands of RFEPS. Ex-
cessive density can lead to elongated triangles and surface
irregularities. Combining RFEPS with point cloud process-
ing methods designed for it remains challenging due to its
spherical neighborhood approach, which can include irrele-
vant points, causing inaccuracies in updates.

In contrast, our method calculates neighborhoods using
the RDT of resampled point clouds, effectively mitigating
the issue of erroneous point updates. After processing the
point cloud with our algorithm and performing reconstruc-
tion, it consistently and accurately restores various features
while ensuring a smooth and uniform surface.

For a quantitative comparison, we employed color cod-
ing to visualize disparities between ground truth and re-
constructed surfaces. Figure 12 presents reconstruction er-
rors. Our approach outperforms others, excelling visually
and quantitatively, including global and local evaluations.
Although certain results may exhibit potential competitive-
ness with our method in overall metrics, they frequently fall
short when subjected to detailed local scrutiny, encounter-
ing difficulties in faithfully reconstructing sharp features.

To further highlight the method’s superiority, Table 2

provides more specific and detailed comparative results at
the numerical level. It is evident that our proposed combi-
nation method outperforms others in terms of the Chamfer
Distance and F-score, closely approximating the ground-
truth mesh. Regarding normal consistency, the point cloud
reconstructed by applying SPSR to the output of RFEPS ex-
hibits a slight advantage over our combination method, but
the difference between the two is minimal.

Additionally, we applied uniform denoising to miti-
gate noise impact, enhancing the clarity of the feature en-
hancement’s effectiveness. In Figure 13, reconstruction re-
sults are compared after using the same denoising method.
RIMLS and SPSR utilize enhanced point clouds processed
through EAR, while RFEPS and our method employ their
respective frameworks. The input point cloud processed by
EAR has undergone denoising before enhancement, result-
ing in smooth mesh surfaces reconstructed by RIMLS and
SPSR. Despite their improvements, the absence of targeted
feature line handling in corner regions hinders the accurate
reconstruction of sharp corner features. Due to the use of in-
correct neighborhood determination rules, RFEPS exhibits
surplus facets in corner regions, preventing it from accu-
rately reconstructing sharp features, unlike our method.



Table 2. Accuracy evaluation of reconstruction results for different combination methods. The point cloud consolidation section includes
w.o. (representing no consolidation method), EAR, RFEPS, and our consolidation method. The surface reconstruction section comprises
RIMLS, SPSR, P2M, RFEPS (RVD/RPD), and ours (advancing-front).

Methods
CD ↓ NC↑ F1↑

w.o. EAR RFEPS Ours w.o. EAR RFEPS Ours w.o. EAR RFEPS Ours

RIMLS 0.824 0.475 0.593 0.513 0.847 0.903 0.912 0.915 0.396 0.435 0.498 0.461

SPSR 0.223 0.126 0.095 0.643 0.988 0.986 0.992 0.985 0.405 0.486 0.521 0.480

P2M 1.302 0.649 0.616 0.645 0.457 0.437 0.436 0.448 0.263 0.147 0.239 0.221

RFEPS 0.646 0.647 0.555 0.644 0.905 0.889 0.951 0.955 0.554 0.525 0.524 0.569

Ours 0.268 0.126 0.095 0.065 0.921 0.911 0.955 0.991 0.486 0.376 0.554 0.630

Figure 13. Comparison of reconstruction results after using the
same point cloud denoising method.

4.4. Robustness analysis

4.4.1 Robustness to parameter setting

The proposed framework requires configuring multiple pa-
rameters, and different values can impact the results. Fig-
ure 14 illustrates the effects of two main parameters: the
maximum number of nearest neighbors n and the angle α
that corner points should have. For models with fine and
small structures, setting n too high not only affects outlier
removal during preprocessing but also causes some points
to be incorrectly moved during subsequent feature process-
ing, leading to the neglect of local structures. Smaller an-
gle ranges are more effective in recognizing acute corner
points, while larger ranges are better at identifying obtuse
corner points.

Table 3 provides the impact of various parameter values
on quantified accuracy. Although the performance is opti-
mal when n is 40, which is suitable for models with various
small local structures, a value of 60 for n can meet basic re-
quirements in general scenarios. The selection of the angle
range directly influences the effectiveness of corner point
identification. For points with smaller angles, it is neces-

Figure 14. Impact of different parameter settings. Top row: n is
used to define the maximum number of nearest neighbors; bottom
row: the range of angle α influences corner point recognition. The
identified corner points are marked with red, initial feature lines
are represented by purple points and yellow points denote points
added during post-processing step.

sary to decrease the lower limit of the range, and vice versa
for points with larger angles. After multiple experiments,
we set the default value for the angle range to be 80 to 110
degrees. The influence of different parameter values on the
overall results is minor, indicating that our method is rela-
tively robust to parameter variations. However, for specific
models, parameter adjustment based on experience may be
required to achieve the best results.



Table 3. Impact of parameters n and α on the reconstruction re-
sults.

Parameters CD ↓ NC↑ F1↑

n = 40 0.973 0.989 0.577

n = 60 0.982 0.989 0.573

n = 80 0.984 0.988 0.512

20 < α < 90 1.008 0.982 0.504

80 < α < 110 0.982 0.989 0.573

90 < α < 150 0.991 0.989 0.527

4.4.2 Robustness to noise degree

Figure 15. Reconstruction results for different noise data. Top:
input point cloud; middle: extracted feature lines; bottom: recon-
struction results.

To assess algorithm robustness to noise, experiments
with synthetic point clouds containing varying Gaussian
noise levels were conducted. The noise data was introduced
by applying a random offset, drawn from a Gaussian dis-
tribution with a mean of 0 and a standard deviation of σ,
to each point within the original point cloud. The point
cloud, containing 80,000 points, was standardized within
the [0,1] range. Figure 15 shows results for noise-free and
noisy data (standard deviations σ of 0.6% and 1.2%). It
is evident that the algorithm maintains strong performance
even in the presence of noise, preserving sharp features and
delivering smooth surface reconstructions.

While this algorithm is robust to moderate noise, exces-
sive noise can lead to imperfect reconstruction of sharp fea-
tures. Figure 15(c) demonstrates that when the noise stan-
dard deviation σ reaches 1.2%, features near dihedral an-
gles close to π may not be fully reconstructed, resulting in
the absence of sharp features in that region.

Table 4. Execution times for different point cloud consolidation
methods.

Point size EAR Self-sample RFEPS Ours

20K 11.24s 8267.03s 37.61s 30.22s

40K 13.53s 23483.36s 39.95s 38.57s

60K 19.39s 26674.17s 60.67s 53.50s

80K 30.26s 30687.79s 85.63s 71.08s

100K 80.36s 44378.21s 249.81s 145.27s

120K 91.65s 69251.47s 263.15s 197.41s

4.4.3 Robustness to real-world object

To provide a comprehensive assessment of our algorithm’s
resilience and applicability, we conducted experiments on
real-world scanned point clouds. The reconstruction re-
sults using scan data (a) generated by the EinScan-SE 3D
scanner, as well as scan data (b) and (c) generated by the
Artec 3D scanner, are depicted in the Figure 16. Draw-
ing from previous comparative results, we chose two frame-
works that demonstrated superior performance for compari-
son with our method. Evidently, our method can effectively
reconstruct sharp features and retain intricate details even in
noisy scanned point clouds.

4.5. Runtime performance

In addition to assessing result accuracy, the program’s
runtime stands as a crucial metric to consider. Table 4 and
Table 5 display execution times for various point cloud con-
solidation and reconstruction methods across scales from
20K to 120K points, using 50 randomly selected models
in Section 4.3 with a maximum neighborhood size of 60
points.

Table 4 shows that while our method excels in enhancing
point cloud features, its runtime is inferior to EAR, which
performs best due to its simpler process.

Regarding reconstruction time, our approach showcases
superior efficiency compared to alternative methods. It
maintains a runtime of approximately 5 seconds, even as
the point cloud scale increases. Thus, our algorithm out-
performs existing method combinations in terms of runtime
efficiency.

5. Conclusion

In this paper, we propose a feature-preserving CAD
model surface reconstruction algorithm. The procedure of
this algorithm is to procure high-quality point clouds by
means of point cloud preprocessing and feature enhance-
ment, then generate dense points along feature lines. Fi-
nally, we employ an improved advancing-front method to



Figure 16. Comparison of reconstruction results from the real-world scanned objects.

Table 5. Execution times for different surface reconstruction meth-
ods.

Point size RIMLS SPSR P2M RFEPS Ours

20K 3.18s 2.35s 1524.38s 17.80s 0.21s

40K 4.42s 3.68s 1790.41s 38.04s 0.36s

60K 4.76s 4.28s 1916.32s 41.39s 0.64s

80K 4.90s 4.72s 2163.07s 52.48s 0.83s

100K 5.23s 5.18s 2745.83s 76.14s 4.75s

120K 6.05s 5.31s 2963.44s 95.34s 5.67s

construct a triangulated mesh. Experimental results sub-
stantiate the algorithm’s proficiency in reconstructing var-
ious sharp features and its compatibility with point cloud
data featured by noise and non-uniform sampling densities.

While our proposed method has demonstrated its effec-
tiveness, it does have some limitations. It can successfully
detect feature regions with dihedral angles within the range
of [π/6, 5π/6] but struggles with regions close to π. For
regions with dihedral angles smaller than π/6, feature de-
tection and point generation can lead to erroneous enhance-

ment due to the thinness. Although these issues can be
alleviated by iteratively adjusting parameters, the current
method’s dependence on manual parameter tuning poses in-
convenience. Additionally, there is a lack of rules to ensure
that the generated points can form smooth curves, especially
for various complex curve features. Therefore, future re-
search could delve into exploring adaptive parameter con-
trol schemes, whether to address these marginal cases or to
fit curves and generate feature points along them.
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[41] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature pre-
serving point set surfaces based on non-linear kernel regres-
sion. Computer Graphics Forum, 28(2):493–501, 2009. 2,
8


