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Abstract

The auxetic structure demonstrates an unconventional deployable mechanism, expanding in transverse directions while
being stretched longitudinally (exhibiting a negative Poisson’s ratio). This characteristic offers advantages in diverse
fields such as structural engineering, flexible electronics, and medicine. The rotating (semi-)rigid structure, as a typi-
cal auxetic structure, has been introduced into the field of computer-aided design because of its well-defined motion
patterns. These structures find application as deployable structures in various endeavors aiming to approximate and
rapidly fabricate doubly-curved surfaces, thereby mitigating the challenges associated with their production and trans-
portation. Nevertheless, prior designs relying on basic geometric elements primarily concentrate on exploring the
inherent nature of the structure and often lack aesthetic appeal. To address this limitation, we propose a novel design
and generation method inspired by dihedral Escher tessellations. By introducing a new metric function, we achieve
efficient evaluation of shape deployability as well as filtering of tessellations, followed by a two-step deformation and
edge-deployability optimization process to ensure compliance with deployability constraints while preserving seman-
tic meanings. Furthermore, we optimize the shape through physical simulation to guarantee deployability in actual
manufacturing and control Poisson’s ratio to a certain extent. Our method yields structures that are both semantically
meaningful and aesthetically pleasing, showcasing promising potential for auxetic applications.
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1. Introduction

Auxetic structure are characterized by a property
known as negative Poisson’s ratio (NPR). Traditional aux-
etic structures includes re-entrant, chiral, perforated and
rotating (semi-)rigid structures. Compared to the first
two structures, the rotating structure exhibits more basic
shapes and clearer kinematic mode, i.e., each unit rotates
around the connection point under external forces, result-
ing in an expansion effect of the whole structure, as shown
in the top row of Figure 1. This characteristic provides a
controlled range of properties, making rotating structure
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Figure 1: Left is a rotating (semi-)rigid structure based on squares, and
right is a rotating structure based on simply designed squares.

versatile for various applications. The perforated struc-
ture, on the other hand, can also be regarded as a special
type of rotating structure, and researchers can control its
mechanical properties by adjusting the slit shape and po-
sition.

In recent years, with advances in materials science and
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Figure 2: Top row: a failed case to deploy a ”fish and butterfly” dihe-
dral tessellation. Bottom row: two challenges for rotational deployable
structures: 1) features that express the meaning of the shape may hin-
der the rotation process when the basic units are deployed; 2) the frame
formed by the hinge points connected between the units is not a regular
shape and may not remain connected after deployment.

digital fabrication, attention has been poured into cre-
ative design explorations based on easily controllable ro-
tating (semi-)rigid structures. From the investigation of
the properties of different rotational structures based on
various polygons [1, 2, 3, 4, 5, 6, 7, 8] to the generation
of a variety of customized complex 2D structures [9, 10]
and 3D surfaces [11, 12, 13, 14, 15] based on designed
rotating (semi-)rigid structures.

However, these structures often rely on the rotation
of basic geometric elements, such as parallelograms and
rhombuses, which also present significant design oppor-
tunities, particularly in the realm of custom design and
manufacturing.

This paper delves into the exploration of introducing
meaningful contours to the fundamental units of rotating
structures, enhancing their visual appeal and creating a
sense of intuitive aesthetics. Specifically, we aim to char-
acterize these structures in their compact state as dihedral
Escher tessellations, where the intricate patterns, symme-
tries, and dual figure-ground arrangements evoke fascina-
tion and challenge conventional visual perception and cat-
egorization. By incorporating these captivating patterns
into the compact form of auxetic structures, we not only
enhance their aesthetic value but also explore the fascinat-
ing interplay between form and perception.

This introduces two primary challenges. Firstly, signif-
icant features of the input shapes may impede the smooth

rotation process when the basic units are deployed. Sec-
ondly, the frame formed by the connections between the
units may deviate from regularity, potentially leading to
issues with deployment and maintaining structural in-
tegrity, as shown in Figure 2. Overcoming these chal-
lenges necessitates the development of novel methods to
optimize the profile of these structures. This optimization
process involves leveraging a metric function that takes
into account both the rotational degrees of freedom and
shape semantics. The goal is to strike a delicate balance
between aesthetic appeal and deployability.

Our algorithm takes as input a given dihedral Escher
tessellation or a single shape (calculating its correspond-
ing dihedral tessellation) and conducts deformation op-
timizations based on this tessellation. Then we deform
and optimise the contour using the aforementioned metric
function to generate a manufacturable shape with practi-
cal utility.
Our contributions can be summarized as follows.

• We introduce the concept of auxetic dihedral tessel-
lation based on rotating (semi-)rigid structure with 
clear unit shapes, which can be deployed into a tar-
get developable surface through actuation.

• We propose an algorithm and a corresponding frame-
work that deform given dual shapes to create a de-
ployable dihedral Escher tessellation.

• We define a deployability metric function for this ro-
tational structure and propose a deployability opti-
misation method based on this function.

2. Related Work

2.1. Auxetic Structures
Traditional auxetic mechanical structures comprise

many different types including re-entrant structures [16],
chiral structures [17, 18], rotating (semi-)rigid structures
[1] and perforated structures [19]. Grima et al. [1, 2, 3,
4, 5, 6, 8] explored different kinds of rotational structures
based on various polygons, conducted a theoretical anal-
yses and discussed the relationship between different de-
ployment methods, structural parameters and correspond-
ing metamaterial properties. Choi et al. [9] proposed an
inverse design framework to generate a compact reconfig-
urable and rigid deployable Kirigami patterns for a given
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a target shape. Warisaya et al. [10] provided topological
variations of corner-connected kinematic tiling to gener-
ate novel auxetic structure based on irregular and aperi-
odic rhombic tiles. Attard [20] and Li et al. [21] explored
meta-materials composed of three-dimensional units and
the resulting material properties. Gatt et al. [22] extended
hierarchical rotating structure in order to obtain additional
benefits of a hierarchy while retaining the properties of a
negative Poisson’s ratio.

Grima et al. [19, 23] extended rotating rigid units into
perforated structures using a similar mechanism, contain-
ing diamond, star or triangular-shaped perforated sheets
that exhibit auxetic behaviour for tension and compres-
sion. Slann et al. [24], Pagliocca et al. [25] and Morvaridi
et al. [26] explored the influence of various parameters of
the perforations on the properties of the material. Mizzi et
al. [27], Shan et al. [28] introduced slit perforations within
sheets/blocks of the material and adapted the parameters
of the slits to create auxetic systems with different behav-
ior.

2.2. Deployable Surface
In the last few years, the focus of research has shifted to

inverse design optimization approaches which transform
or assemble fabricated components to produce a target
design surface. This is a very interesting but simultane-
ously challenging computational problem, since its solu-
tion usually depends heavily on the material behavior of
the individual components and the way how they are con-
nected together to form a flexible and deployable struc-
ture.

Konakovic [11, 12] and Jiang et al. [13] developed
novel deployable structures that can be deployed from
two-dimensional flat sheets, using slits or perforations,
to three-dimensional shapes via inflation or gravitational
loading. Inspired by ancient geometric motifs, Rafsanjani
et al. [14] proposed bistable mechanical meta-materials
that exhibit auxeticity and are able to keep stable in a spe-
cific deployment. Chen et al. [15] improved Rafsanjani’s
work by enabling bistable structures to be deployed into
3D surfaces. Schüller et al. [29] innovatively introduced
the concept of a ”zipper,” which can rapidly form a target
3D object by zipping up the boundaries. Ren et al. [30]
proposed an optimization-based method to generate pla-
nar curved ribbons to weave smooth freeform geometric
shapes.

In beam structure research, Panetta et al. [31] intro-
duced the ”x-shell,” an assembly of elastic deployable
beams with rotational joints. Pillwein et al. later de-
veloped the elastic geodesic grid structure for easy-to-
fabricate bent lamellas from a planar setup [32]. They
enhanced this with patch-based grids for high local cur-
vature features [33] and computational methods for pla-
narity [34]. Jiang et al. [35] and Liu et al. [36] delved
into quadrilateral grids for freeform buildings. Other in-
novations include deployable scissor linkages [37] and
umbrella meshes [38] to approximate diverse freeform
shapes.

The above work has mainly focused on calculating the
ability to approximate surfaces of the whole structure
and its kinematic mechanism, without considering adding
shapes with aesthetic properties to the structure.

2.3. Traditional Escher Tessellations
In recent decades, tessellations have become pivotal in

artistic expression, comprising repeating shapes without
gaps or overlaps. Notably, Dutch artist and mathematician
M.C. Escher’s works—distinguished by intricate patterns,
symmetries, and dual figure-ground compositions—have
profoundly influenced the field [39]. His creations high-
light visual perception ambiguities, intriguing computer
graphics enthusiasts.

Dress [40] presented a class of dihedral Escher tilings,
”Heaven and Hell patterns,” while Grünbaum and Shep-
hard [41] outlined the underlying mathematics. Ka-
plan and Salesin [42] coined ”Escherization” in computer
graphics and later detailed a method for ”dihedral Escher-
ization” [43]. Koizumi and Sugihara [44] approached Es-
cher tiling as a maximum eigenvalue problem. In con-
trast, Ono et al. [45] used genetic algorithms for shape
optimization. Nagata and Imahori [46] integrated an en-
ergy function with an as-rigid-as-possible (ARAP) defor-
mation scheme. Dual shape Escher tilings [47] focused on
enhancing shape perception, and Lin et al. [48] combined
matching and warping for Escher-like transformations.

Fabricable Escher tiles aim at being assembled practi-
cally: Yen and Séquin [49] devised a method for Escher
tiling on a spherical domain. Howison and Séquin [50]
explored 2.5D isohedral tilings via extrusion and mesh
editing and crafted 3D versions using predefined lattices.
Similarly, Liu et al. [51] generated printable tiles, lever-
aging solid and void areas. Unlike these studies that focus
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Figure 3: Starting with the dual shapes of a dihedral tessellation, we first deform them separately using a two-step ARAP-based deformation method
to transform their anchor frames into a regular geometric unit (here a rhombus). Then, we merge the two shapes and perform a deployability
optimisation based on a deployability metric function to obtain the final deployable dihedral Escher tessellation.

solely on shape constraints, our work also addresses the
rotational freedom during deployment.

3. Overview

The auxetic dihedral Escher tessellation generation
problem can be formulated as follows. Given target close
patterns S 1 and S 2, we compute T1 and T2, so that:

1. T1, T2 are “mutual surrounded”, and can tile the en-
tire plane without any gap or overlap;

2. T1, T2 can rotate and expand without obstructing
each other;

3. T1, T2 and S 1, S 2 are as similar as possible.

The first two constraints ensure that the target structure
can be driven to expand from a closed, undeployed state
in the plane to a deployed state. The third one ensures that
the result retains the contour features of the target shapes,
preserving their aesthetic and interesting properties.

The mutual surroundings constraint [51] refers that
each unit is surrounded by units of the other type and only
connect to its own kind through four points. To facilitate
the description of the whole algorithmic process, these
four connecting points of one unit are termed as anchor
points, and the frame formed by these points is called the
anchor frame. In this paper, the anchor frame is limited to
a quadrilateral since it have more segments and designing
freedom to fit complex input patterns with less deforma-
tion than triangles.

To ensure that the meaningful shapes rotate without ob-
structing and the entire structure can deploy under the
forces on the sides, our structure must adhere to the ”de-
ployable constraints”, including frame-deployable con-
straint and contour-deployable constraint.

The frame-deployable constraint mandates that each
shape’s anchor frame be regular, such as a parallelogram,
rectangle, rhombus, or square. In rotating structures, for
successful expansion at a four-unit intersection, the sum
angles of adjacent anchor frames must total 180◦. Non-
compliance risks deployment issues or fractures due to
alignment conflicts, as shown in Figure 2. Given the
shape’s periodicity, the anchor frame should at least be
a parallelogram.

The other is contour-deployable constraint. The anchor
points divide the contour into four segments, and based on
the kinematic motion of our structure, we can infer that
adjacent shapes deploy around a shared rotation axis (an-
chor point) from their shared edge segment. For a point
on a segment, its rotating path is a circle centered on the
axis of rotation with the distance between this point and
the circle center as the radius. If there are two or more
intersections between this path and the edge segment, it
indicates that on the forward rotational path of this point,
there exists points of a neighboring unit, and they will ob-
struct each other. Thus, the contour-deployable constraint
requires that on the forward path of each point on edge
segment, there are only points belonging to the same unit,
so that to ensure unobstructed rotation.

Based on the above constraints, we design a deploya-
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bility metric function and a pipeline for the generation of
the auxetic structure as shown in Figure 3. Our algorithm
takes an existing Escher dihedral tessellation consisting
of two shapes, denoted as S 1 and S 2, as the input. Alter-
natively, one can also input a single pattern and then em-
ploy the algorithm described in [51] to generate an initial
dihedral Escher tessellation as the input. Subsequently,
we employ a two-step deformation optimization process
for the dual shapes S 1 and S 2. Firstly, we deform them
using the ARAP (as-rigid-as-possible) method [52] to en-
sure that their anchor frames are deformed to fit a regular
template. Next, we merge the two shapes and perform de-
ployability optimization based on our deployability met-
ric. This optimization process allows us to obtain the final
dual shapes, denoted as T1 and T2.

4. Technical Details

In this section, we will sequentially introduce our de-
ployability metric function and the subsequent steps of
deforming and optimizing based on this function in de-
tail.

Figure 4: Based on [6], we choose four feasible templates and their
corresponding deploying ways for our project, then calculate the error
between the target framework and these template, and choose the one
with smallest error.

Beforehand, anchor points are initialized according to 
the arrangement of the two types of shapes in the input 
dihedral Escher tessellation. Each shape is represented by 
a point set with N points (in this paper, N is 100), where 
the points connecting each shape to its four counterparts 
are noted as anchor points. Once the anchor points are de-
termined, the subsequent distance calculation is also de-
termined.

4.1. Deployability Metric
Our deployability metric consists of two components, 

frame-deployable distance (FDD) and contour-deployable 
distance (CDD), corresponding to the frame-deployable 
constraint and the contour-deployable constraint, respec-
tively.

Frame-deployable distance (FDD). FDD describes 
the minimum distance between the anchor frame and the 
regular deployable template. Based on the previous def-
initions, it is known that only if the anchor frame is a 
regular geometric shape, can such rotating (semi-)rigid 
structures be ensured to deploy without obstruction, de-
formation, or buckling. Therefore, the FDD is defined as 
the minimum consumption required to deform the current 
irregular anchor frame to a regular shape.

Grima et al. [6] introduced nine deploying methods for 
four types of regular units. Type I systems have the char-
acteristic of always having a rhombus-shaped empty area 
between the shape units, while Type II systems do not. 
The α-type represents a system made from rhombus hav-
ing their smaller angle attached with the larger angle of 
adjacent rhombus, while the β-type represents a system 
with rhombus having their smaller angle attached with the 
smaller angle of adjacent rhombus and the larger angle be-
ing attached with the larger angle.

It is worth noting that in Type II structures, when they 
are in a tightly contracted state, the long edge of the unit 
is always aligned with a short edge and a portion of an-
other long edge. The high degree of coupling of the 
boundaries makes it difficult to design shapes for the units 
of a structure with such kinematic mode. Type β struc-
tures do not achieve a fully tiled state when they are un-
deployed. Therefore, four types of geometric elements, 
squares, rectangles, rectangles and parallelograms, and 
their corresponding four deploying methods are retained 
as the deployable templates for this paper, as shown in red 
box in Figure 4.
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For a pattern S , FDD(S ) describes the minimum dis-
tance between its anchor frame S f , and the regular geo-
metric template, whose shape parameters needs to be cal-
culated first. Here we will introduce how to determine a
corresponding template shape S t for a given template type
by controlling the anchor point movement:

1. Parallelogram: fix one pair of relative anchor points
and move another pair of relative anchor points so that the
diagonals are equal to each other.

2. Rhombus: rotate the diagonals so that they are per-
pendicular to each other.

3. Rectangle: extend the short diagonal so that it is
equal to the other one.

4. Square: do not require additional calculations.
Then, we use Procrustes analysis to align four different

templates with anchor frame S f respectively. Procrustes
analysis is a common tool in statistics and shape analysis
to align shapes by means of translation, scaling, and rota-
tion. For a shape composed of (p1, p2, ...pN), first aligned
with another shape’s centroid by translating its centroid
p. The two shapes are then scaled so that the root mean

square distance s =
√∑N

i=1(pi−p)2

N is equal. When ro-
tating, one shape is fixed as the reference direction, the
other shape is rotated around the center of mass, and then
traverse all angles to find the optimal rotation angle that
minimizes the sum of the squared distances (Euclidean
distances) between the corresponding points. The min-
imum value can be used as a statistical measure of the
difference between the two shapes, often also referred to
as Procrustes distance (PD) :

PD(A, B) =

√√√ N∑
i=1

|pAi − pBi|
2 (1)

We calculates the PD between four template shapes and
anchor frame and find the most similar template S t

min with
minimum PD. Then the ratio of the PD(S f , S t

min) to the
perimeter of S f is denoted as FDD(S ):

FDD(S ) =
PD(S f , S t

min)
Perimeter(S f )

(2)

Contour-deployable distance (CDD). CDD describes
the minimum consumption required to optimize an arbi-
trary contour to be deployable. If a contour shape is de-
fined as deployable, then the rotation path of each point

Figure 5: As the edge rotates around center c, point p moves along the
green path, which is the circle centered at c with a radius r. There are
three points that collide with p. We calculate in turn the angle of their
connecting line to the tangent line at point p and regard the sum of the
angles of all pairs of collided points as the deployability of this edge.

on the edge segment just have one intersection with this
segment, otherwise the unit will inevitably be obstructed
with neighboring unit during deploying. As shown in the
left of Figure 5, the gray areas of two adjacent units ob-
struct each other from rotating.

The area of the grey can reflect the consumption of
optimizing a shape into a deployable to a certain extent,
but sometimes different shapes having the same area face
completely different optimization difficulties. Therefore,
in this paper, we consider evaluating the consumption of
optimization through the geometric positional relation-
ship of points.

As shown in Figure 5, for each point pi on the edge,
check if there is an obstructed point pi+t, t > 0 within
the circular rotation path of pi, and if so, compute the an-
gle θ(i,i+t) < 90◦ between the line segment pi pi+t and the
tangent line of pi. The p in the case shown in Figure 5
has three obstructed points. Calculate the corresponding
angles of these three points, and the sum is denoted as
the contour-deployable distance of point p. Subsequently,
the entire edge is traversed and the value of all points is
computed to obtain the contour-deployable distance of the
edge e. Since the contour of shape S is divided into four
segments by four anchor points, the CDD(S ) can be fur-
ther defined as:

CDD(S ) =
4∑

j=1

Ne j∑
i=1

Npi∑
k=1

|θk |

πNpi

(3)

Here, Npi is the number of obstruction points encountered
by point pi, θk is the angle between the line connecting pi

and the kth obstruction point and the tangent line, and Ne j
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denotes the number of points on side e j.
Based on the above two metrics, we can obtain the de-

ployability score DepDis for shape S as:

DepDis(S ) = FDD(S ) +CDD(S ) (4)

Note that the computation of DepDis depends on the po-
sition of the anchor points which are determined as the
dihedral tessellation is input. Therefore, when there is a
large number of inputs, we can perform a quick filtering
of the input dihedral shapes with the help of the Equa-
tion 4. In addition, a difference in the direction of rotation
changes the position of the center of the circle, resulting
in a change in the rotation path, which in turn affects the
calculation of the contour-deployable distance. Users can
specify the direction of rotation for one type of shapes.

4.2. Deployable Optimization

In this section, a two-step optimization approach is em-
ployed to optimize shapes S 1 and S 2 respectively by min-
imizing their DepDis(∗), which consists of two compo-
nents: FDD(∗) and CDD(∗). Firstly, S is deformed such
that its anchor frame S f is simultaneously deformed into a
specific template S t

min. Subsequently, the deformed S ′ un-
dergoes a local contour optimization to obtain final shape
T satisfying the contour-deployable constraint.

Optimizing frame-depolyable distance: This step
aims to align the anchor frame S f with the template S t

min
by deformation. However, only the target positions of
the four anchor points are known, making it hard to de-
duce the complete deformed contour shape based on the
movements of anchor points and the original geometric
information of the contour. Traditional deformation meth-
ods rarely succeed in accurately transforming the anchor
frame into the target template while preserving the con-
tour features as much as possible. To address this issue,
we proposes a bounding box-based As-Rigid-As-Possible
(ARAP) method to deform the anchor frame. The ARAP
method [52] utilizes a point cloud representation and op-
erates on a triangular mesh generated by triangulating
points within the contour, ensuring a global shape con-
sistency that mimics the behavior of real objects under
deformation, the results are shown in Figure 6-(b).

However, deforming such a mesh by moving the an-
chor points usually leads to issues, as shown in the green

(a) (b) (c) (d)

Figure 6: Column (a) shows a triangulation after adding points within
the contour; column (b) shows the results after applying ARAP defor-
mation; (c) shows a triangulation obtained by scattering points within a
bounding box, and its deformation result using ARAP; and (d) shows S ′

after boundary recovering.

box in Figure 6-(b): triangles near the anchor points un-
dergo significant changes, while internal triangles change
very little. This may result in severe distortion or defor-
mation of contour features and, in some cases, even lead
to overlapping triangles. While this method achieves sat-
isfactory overall shape deformation, there is still room for
improvement in preserving the features of contours, for
this reason, the concept of bounding box-based ARAP is
introduced.

Different from the typical bounding box determined
by the minimum and maximum x and y coordinates, the
bounding box used here is expanded outward, leaving a
margin width of wmargin on all sides. Then triangulate all
points including the original contour points and the points
scattered in the entire bounding box. Subsequently, the
ARAP algorithm is performed and the result is shown in
Figure 6-(c).

In comparison to the results in Figure 6-(b), anchor
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points in the upper green box in Figure 6-(c) still maintain 
angles after movement without collapsing inward, and in 
the lower green box, the butterfly’s a bdomen n o longer 
collapses inward as before. This indicates that the trian-
gles outside the contour within the bounding box act simi-
larly to supports, and the deformation component suffered 
by the anchor point spreads to the nearby triangles, thus 
reducing the distortion.

To further preserve the features near anchor points, we 
propose a boundary recovery method to recover the geo-
metric features around the anchor point, through the local 
geometric information near the anchor points, as shown in
Figure 6-(d). Firstly, the angles ∠pi−t pi pi+t, t ∈ [1, tmax] 
between the anchor point pi and the adjacent points pi−t 
and pi+t on both sides are calculated and recorded be-
fore deformation. Here, we recommend setting tmax as 
0.05 ∗ N . Based on the difference and direction of the 
angles before and after the deformation, as well as the 
Euclidean distance between pairs of points, the points on 
both side are rotated around the anchor point and trans-
lates to the new position. This two-step approach allows 
for more precise control over the deformation from S 1, S 2 
to S , S with better visual appearance.

Optimizing contour-deployable distance: This step 
aims to deform the dual shapes so that they do not obstruct 
each other when deployed. Before optimization, S and 
S , the results of frame-deployability optimization for S 1 
and S 2, are supposed to be merged. The merged shape
S ′′1 , S ′′2            can be calculated by the interpolation function:

S(M) = λ ∗ S(A) + (1 − λ) ∗ S(B) (5)

S(∗) represents an contour composed of an ordered set 
of points, λ is used to adjust the interpolation weight of 
shape A and B.

This merging process is illustrated in Figure 7: the an-
chors of the two shapes are aligned, and the remaining 
points between two anchor points are always in one-to-
one correspondence, and then the positions of the merged 
points are calculated according to the above Equation 5.

1 , and the dual shape S ′′2The general merged result is S ′′ is
obtained by recombining the four edges.

To find a proper λ that makes the merged result S ′′1 and
S ′′2 to be as similar as possible to the initial shape S 1 and
S 2, we use the following function to measure the similar-

Figure 7: Shape merging: S ′1 and S ′2 are merged to obtain the interpo-
lated shapes S ′′1 and S ′′2 .

ity between two shapes:

S im(A, B) = ϕ(A, B) + ω(A, B) + Insec(A, B). (6)

Here, ϕ(A, B) is a shape similarity function based on TAR
descriptors, which is introduced in [53]. ω(A, B) is the
area function defined as:

ω(A, B) = Area(A ∩ B)/Area(A ∪ B). (7)

The last item Insec(A, B) is a penalty score to penalize
self-intersections in A or B, and the more severe the self-
intersections, the lower this value will be in the range
[0,1]. We can see that the larger S im(A, B) is, the higher
the similarity between the shapes. Therefore, we would
like to find a λmax to maximize the following equation:

Esim = min(S im(S 1, S ′′1 ), S im(S 2, S ′′2 )) (8)

When λ = λmax, S ′′1 and S ′′2 will obtain highest similarity
with S 1 and S 2.

After merging, we provide a deployability optimisation
method to ensure that the dual shapes satisfy the contour-
deployable constraint.

Based on the Equation 3, to minimize the CDD(S ), we
adopt an iterative method for deployability optimization,
as illustrated in Figure 8. For each edge of the shape, we
check each obstructive pair CP0

i (pil, pir) of points pil and
pir on the edge, calculate the angle θi between their con-
necting line and the tangent line at pil, then rotate this pair
CP0

i around its midpoint in the direction that decreases
the θi (clockwise in the Figure 8) for α0 ∗ θi, α0 = 0.5.
Then, we rotate the neighbour pairs CPt

i(pil−t, pir+t) of

8



Figure 8: We detect each collided pair CPi(pil, pir) of points pil and pir , calculate the angle θi between their connecting line and the tangent line at
pil, then rotate this pair CPi and its neighbour pairs CPi+t(pil−t , pir+t) around each pair’s medial point for a certain angle αt ∗ θi, and αt decreases
as t increases. The algorithm stops when there are no more colliding points on the edge or the number of iterations reaches the upper limit

CP0
i around each pair’s medial point for a certain angle

αt ∗ θi, where t ∈ [0, tmax], αt = α0/(t + 1)2 and here
tmax = 0.05 ∗ N .

Traverse and optimize all the obstructing point pairs
CP0

i+n on the edge and their neighborhoods, and perform
the next iteration after the traversal is completed until the
number of iterations reaches a predetermined threshold or
there are no more obstructive point pairs on the contour.

Note that only optimizing the obstructive point pair
CP0

i leads to significant cuts or distortions on the contour,
so even if the neighboring point pairs CPt

i(pil−t, pir+t) are
not obstructing each other, the algorithm still rotates them
so as to ensure the contour to be smooth. On the other
hand, when FDD is optimized, the anchor frame will
morph into a template and the anchor points will not move
again. At this point, a new contradiction arises: if the op-
timized point pairs are close to the anchor points, the op-
timization process will rotate the fixed anchor points; if
the anchor points are completely fixed and only the other
points are moved, it will also lead to severe cuts near the
anchor points. To solve this problem, our algorithm fur-
ther restricts the rotation range of the points near the an-
chor point based on their distance, i.e., the angle of ro-
tation at each optimization is preceded by the coefficient
∆index/ne, and ∆index is the subscripted distance from
this point to the anchor point.

Figure 9: Non-adjacent edges will also be collided.

4.3. Non-adjacent Edge Deployable Optimization
The shape deployability metric function utilized in this 

paper has been previously introduced. However, this met-
ric function takes into account the degrees of rotational 
freedom when rotating the units around the axis, which 
means it only takes into account the deployability opti-
mization of adjacent edges. When deploying our struc-
ture, obstructive situations may arise on the other side of 
neighboring edges or even opposite edges, as illustrated 
in the top row in Figure 9.

To detect potential collisions among these edges, the
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method described in the bottom row of Figure 9 are em-
ployed. For the case of opposite edges, when the rota-tion 
angle θ gradually increases from zero as the units deploy, 
it can be guaranteed that no collision will oc-cur if 
length(C1 p1) + length(C3 p2) is always smaller than the 
length(C1C3), i.e., length(C1 p1) + length(C3 p2) < 2a cos 
θ, here C1, C3 are rotation axis, and p1, p2 are the 
intersections of the line (C1C3) and the two units. 
Similarly, for the case of the other adjacent edges, 
length(C1 p1) + length(C3 p2) < 2a cos θ is what we ex-
pect.

It is a natural consideration to include all possible 
obstructing edge pairs in the contour-deployability con-
straint optimization framework of this chapter. How-
ever, these non-adjacent two edges are optimized indepen-
dently of each other, and only after determining the state 
of both edges can we know exactly whether there will be 
an obstacle or not. It is therefore difficult to optimize si-
multaneously to ensure that nearly no shape features are 
lost and exactly no collisions occur. We design a visual 
UI which is an intuitive solution to optimize these edges 
in real time as well as to better preserve the boundary fea-
tures.

4.4. NPR properties analysis

The Poisson’s ratio is the ratio of the transverse positive 
strain to the axial positive strain in a material subjected to 
unidirectional tension or compression, and is an inherent 
property of the material itself, calculated as

ν = −
ϵtrans

ϵaxial
.

In the field of microstructure design, a single material
can be made to have very different properties by designing
a complex geometry, and we can think of this periodic
structural unit as a new material. In general, the Poisson’s
ratio of such material is not constant and varies with strain
and the initial geometry parameters, and the researchers
usually adopt infinitesimally small strains to calculate the
Poisson’s ratio for a given state.

While the unit shapes of our auxetic structures are ir-
regular, they always rotate around the vertices of the an-
chor frame during the deploying process. Therefore, the
overall negative Poisson’s ratio property of the structure
is closely related to the shape of the anchor frame.

Figure 10: Negative Poisson’s ratio calculations for different types of
rotating structures.

According to [1, 6, 7], it is known that the negative
Poisson’s ratio of a square rotating structure is consis-
tently -1. Additionally, as shown in Figure 10, the for-
mulas for calculating the negative Poisson’s ratio values
of rotating (semi-)rigid structures with anchor frames in
the shapes of a rectangle, rhombus, and parallelogram are
as follows:

Rectangle type I:

νxy = (νyx)−1 =
a2 sin2( θ2 ) − b2 cos2( θ2 )

a2 cos2( θ2 ) − b2 sin2( θ2 )
(9)

Rhombus type α:

νxy = (νyx)−1 =
sin( θ−ϕ2 ) sin( θ+ϕ2 )

cos( θ−ϕ2 ) cos( θ+ϕ2 )
(10)

= tan(
θ − ϕ

2
) tan(

θ + ϕ

2
) (11)

Parallelogram type I α:

νxy = (νyx)−1

=
(a2−b2)(l22l21−l42−A2) sin(θ)+2abl22(l22+l21−l23) sin(θ+ϕ)+2ab cos(θ) sin(ϕ)(l23l22−A2)

[(a2−b2) sin(θ)+2ab cos(θ) sin(ϕ)]A2

(12)

These rotating structures have the property of
”contraction-expansion-contraction”, and will start con-
tracting when the rotation reaches a certain angle, e.g.,
the square structure starts contracting when the cell ro-
tates more than 45 degrees, while its Poisson’s ratio is al-
ways -1. The rectangular structure starts contracting after
an angle greater than 45◦, and its Poisson’s ratio changes
abruptly, i.e., jumps from negative to positive.

Compared to traditional work that focuses on exploring
the relationship between material structure and negative
Poisson’s ratio, this paper places greater emphasis on the
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Figure 11: Negative Poisson’s ratio of our structure during deploying.

utilization of specific negative Poisson’s ratio properties.
In this paper, different requirements can be met by choos-
ing a specific anchor frame template, such as restricting
the anchor frame to be a square to achieve a constant neg-
ative Poisson’s ratio.

Additionally, our structures are constrained by the
boundary correspondence problem, as a result, we in-
vestigates the structural properties during the ”contract-
expand” phase, specifically with a rotation angle of 45◦.

We also calculates the strain values of the structure
at both the initial state and a certain moment during the
deploying process. The visual results, as shown in Fig-
ure 11, indicate that the absolute value of the Poisson’s
ratio of this structure continues to increase during the rota-
tion process and then begins to decrease at approximately
45 degrees, consistent with the these structures with reg-
ular units.

5. Results and Discussions

We implemented our method and tested it on an Intel 
Core i7-11700F CPU @ 2.5 GHz and 16 GB RAM. We 
used a filtered database of about 200 shapes based on [51] 
to generate suitable dihedral Escher tessellation for a sin-
gle input pattern.

Performance analysis. When given a single shape as 
input, the algorithm [51] takes at least 20 minutes to gen-
erate a dihedral Escher tessellation. While with dihedral 
shapes, our algorithm takes an average of 13 seconds to 
generate an auxetic dihedral Escher tessellation. The ma-
jority of this time is consumed in the two stages of de-
ployability optimization: frame-deployability optimiza-
tion and contour-deployability optimization. The former, 
which does not require any iteration, typically takes 7 sec-
onds, while the latter involves iterative computation of the

Table 1: Statistics of the results. Frame types, FDD, λ and Esim of shape
merging, CDD and total time for optimization are listed, respectively.

Input Frame FDD λ Esim CDD Time
Swan&fish parall. 0.112 0.45 0.269 0.161 18.2s
Fish&boat rhombus 0.078 0.5 0.181 0.608 18.6s
Eagle&bird parall. 0.070 0.6 0.114 0.236 14.3s

Duck&flower parall. 0.102 0.35 0.186 0.076 15.5s
Bird&flower square 0.035 0.55 0.072 0.217 14.6s
Two birds I parall. 0.018 0.8 0.103 0.565 19.9s
Two birds II rhombus 0.070 0.55 0.121 0.363 15.1s

Bird&bat parall. 0.069 0.3 0.146 0.416 19.6s

coordinates of the points, reaching O(n2) in the worst case 
and taking 1 second on average.

Dihedral tessellation comparison. In contrast to tra-
ditional Escher dihedral tessellations, our auxetic tessella-
tions adhere to stronger constraints, significantly increas-
ing the challenge of preserving the meaning of the dual 
shapes. As indicated in the Figure 12, the first row dis-
plays the results of optimizing hand-drawn tessellations 
of Escher into auxetic structures. The subsequent three 
rows showcase the results of optimizing tessellations gen-
erated from a single input pattern. Statistical data for re-
sults in this paper are listed in Table 1. It is evident that 
auxetic tessellations, to some extent, compromise the rec-
ognizability of geometric features. Therefore, we utilized 
AI drawing tools such as Runway and Stable Diffusion 
to assist us in designing textures, aiming to enhance both 
the aesthetic appeal and recognizability of the deployable 
tessellations.

Fabricated results. Our deployable structures can 
be designed at various scales for application in diverse 
decorative scenes. This includes small-scale deployable 
structures that can be unfolded to fit decorative surfaces 
in three-dimensional space, such as artistic lampshades, 
and large-scale deployable structures that can be pre-
fabricated and assembled from shape templates. The lat-
ter is suitable for application on large-scale artistic curved 
surfaces, such as screens, windows, and other structures. 
To accommodate these different scales, we have designed 
various joints tailored for specific results.

For large-scale fabrication, a ring structure is added to 
each unit at the position of the rotation axis. Since there 
will be four joints stacked together at the same place, the
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two ring structures come with snaps, which should not be
more than 1/2 of the height of the unit. After fabricating
by 3D printing, each unit will be placed in the same state
as when it was deployed to allow for the combination of
joints. After all are assembled, the entire structure can be
easily contracted, as shown in Figure 13.

For small-scale structures, we can generally fabricate
them directly through 3D printing or laser cutting, as illus-
trated in Figure 14 and right column in Figure 3. Instead
of joints, the units are connected with each other directly,
and the rotational movements of the joints can be accom-
plished with the help of the elasticity and toughness of the
materials themselves, such as PLA and leather.

However, this can lead to stress concentrations in
the connecting parts of the structure, resulting in ma-
terial fracture or fatigue damage, as shown on the left
side of Figure 15. There is a need to occasionally in-
crease the thickness of the joints to ensure that the mate-
rial can withstand numerous ”contraction-expansion” pro-
cesses. However, this solution introduces another chal-
lenge: when the connection is excessively thick and the
material is soft, the concentrated stresses can cause the
connection to warp out of plane. This problem is particu-
larly evident in the work of this paper. Upon observing the
comparison in Figure 15, traditional rotating (semi-)rigid
structures exhibit regular contours of units, concentrating
stresses only in the connected parts. In contrast, the shape
units designed in this paper lead to stress dispersion to the
other weak areas on the contour, resulting in the outward
buckling of the weak areas. This not only significantly in-
creases the difficulty of driving the deploying of the struc-
ture, but also leads to serious failure to fully deploy the
structure.

The UI tools provided in this paper can be helpful in
addressing this challenge. By simulating the forces on
the structure, users can manually thicken the weak parts
using UI. After the modifications, the system will perform
a reevaluation to ensure the deployability of the results.

6. Conclusion

In conclusion, our study focuses on enhancing the aes-
thetics and deployability of rotating auxetic structures.
We propose a deployability optimization algorithm that
incorporates meaningful contours and Escher tessellations
to address the challenges of preserving rotational degrees

of freedom while ensuring deployability. Our algorithm 
is versatile, capable of handling existing tessellations and 
single input shapes, resulting in manufacturable products 
with practical utility.

Our contributions encompass the framework for de-
forming dihedral shapes into auxetic tessellations, the de-
ployability metric function, and the integration of aesthet-
ics with rotating (semi-)rigid structures. We believe that 
this work represents an effort to unlock new design possi-
bilities and applications in both artistic and practical do-
mains, thereby advancing the field o f d eployable struc-
tures.

Our method does have limitations. While our auxetic 
tessellations boast interesting and richly meaningful con-
tours compared to the rotating (semi-)rigid structures of 
regular geometric units, we acknowledge that we sacrifice 
a portion of the range of rotation. Moreover, in contrast to 
triangular rotating structure of [11], our quadrilaterals ro-
tating rigid structures exhibit a significantly lower degree 
of rotational freedom and a reduced ability to approxi-
mate the curvature of surfaces. This limitation arises from 
the structural difference: in triangular structure, six units 
form a ring, allowing a part of the units to rotate when 
another part is fixed. In contrast, in quadrilaterals, when 
any unit undergoes a rotation, the entire structure theo-
retically have to rotate simultaneously. Thus, relying on 
the properties of our structure, we can only approximate a 
developable surface or, relying on the elasticity of the ma-
terial, approximate some surfaces of lower curvature. Ad-
ditionally, our method still requires manual optimization 
of non-adjacent edges, incurring significant manual effort 
despite preserving features more effectively. Due to the 
deployability constraint, we impose stricter requirements 
on the position of anchor points (i.e. the arrangement po-
sition of the dihedral patterns), resulting in a smaller so-
lution space compared to traditional Escher dihedral tes-
sellations. Consequently, we lose more meaning of the 
contour, necessitating a greater reliance on texture.

One of the most intuitive directions for future work is 
to enhance the algorithm’s capability to handle obstruct-
ing non-adjacent edges. Upon detecting a collision, the 
algorithm could iteratively move the collision point and 
its surrounding points a certain distance in the opposite 
direction, similar to how we optimized adjacent edges, 
thus automatically separating the non-adjacent edges. An-
other avenue for future work involves designing shapes
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for the unfolded gaps to make them more interesting. Cur-
rently, each void space consists of two identical pairs of
edges, limiting the variety of shapes that can be accommo-
dated. Exploring innovative designs for these gaps could
broaden the aesthetic possibilities of the algorithm.

Acknowledgement

We thank all the anonymous reviewers for their valu-
able comments and constructive suggestions. This work is
supported by the grant No.61972232 from National Nat-
ural Science Foundation of China (NSFC) and the Key
Research and Development Plan of Shandong Province
of China (No.2020ZLYS01).

References

[1] J. N. Grima, K. E. Evans, Auxetic behavior from ro-
tating squares, Journal of materials science letters 19
(2000) 1563–1565.

[2] J. N. Grima, A. Alderson, K. E. Evans, Negative
poisson’s ratios from rotating rectangles, Comput.
Methods Sci. Technol 10 (2) (2004) 137–145.

[3] J. N. Grima, R. Gatt, A. Alderson, K. E. Evans, On
the auxetic properties of ‘rotating rectangles’ with
different connectivity, Journal of the Physical Soci-
ety of Japan 74 (10) (2005) 2866–2867.

[4] J. N. Grima, K. E. Evans, Auxetic behavior from ro-
tating triangles, Journal of materials science 41 (10)
(2006) 3193–3196.

[5] J. N. Grima, V. Zammit, R. Gatt, A. Alderson,
K. Evans, Auxetic behaviour from rotating semi-
rigid units, physica status solidi (b) 244 (3) (2007)
866–882.

[6] J. N. Grima, P.-S. Farrugia, R. Gatt, D. Attard, On
the auxetic properties of rotating rhombi and paral-
lelograms: A preliminary investigation, physica sta-
tus solidi (b) 245 (3) (2008) 521–529.

[7] D. Attard, E. Manicaro, J. N. Grima, On rotat-
ing rigid parallelograms and their potential for ex-
hibiting auxetic behaviour, physica status solidi (b)
246 (9) (2009) 2033–2044.

[8] J. N. Grima, E. Manicaro, D. Attard, Auxetic be-
haviour from connected different-sized squares and
rectangles, Proceedings of the royal society A:
mathematical, physical and engineering sciences
467 (2126) (2011) 439–458.

[9] G. P. Choi, L. H. Dudte, L. Mahadevan, Compact
reconfigurable kirigami, Physical Review Research
3 (4) (2021) 043030.

[10] K. Warisaya, H. Hamanaka, A. Tokolo, T. Tachi,
Auxetic structures based on rhombic tiling, in: In-
ternational Design Engineering Technical Confer-
ences and Computers and Information in Engineer-
ing Conference, Vol. 85451, American Society of
Mechanical Engineers, 2021, p. V08BT08A031.
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Figure 12: Auxetic dihedral Escher tessellations. The top row is obtained through deployability optimization on Escher’s hand-drawn artwork, and
the other three rows are based on the newly generated dual-shape tessellations.
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Figure 13: Assemblable joint design for large-scale manufacturing.

Figure 14: Auxetic leather tape fabricated through laser cutting.

Figure 15: Stress analysis for triangular rotating (semi-)rigid structure
and the structure proposed in this paper. It can be observed that the stress
in the triangular structure mainly concentrates at the connections, while
in our structure, stress is not only concentrated at the connection points
but also extends to the tail of ”fish”, even surpassing the connection
region at the tail. This undoubtedly leads to deformation in the structure
during the deploying process.
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