
A Tiny Example-Based Procedural Model for Real-Time Glinty
Appearance Rendering

Youxin Xing1, Haowen Tan2, Yanning Xu1, Lu Wang1
1Shandong University, 2NetEase (Hangzhou) Network Co., Ltd

Abstract The glinty details from complex microstructures significantly enhance rendering realism. However, the previous
methods use high-resolution normal maps to define each micro-geometry, which requires huge memory overhead. This
paper observes that many self-similarity materials have independent structural characteristics, which we define as tiny
example microstructures. We propose a procedural model to represent microstructures implicitly by performing spatial
transformations and spatial distribution on tiny examples. Furthermore, we precompute normal distribution functions
(NDFs) by 4D Gaussians for tiny examples and store them in multi-scale NDF maps. Combined with a tiny example-based
NDF evaluation method, complex glinty surfaces can be rendered simply by texture sampling. The experiment shows that
our tiny example-based microstructure rendering method is GPU-friendly, successfully reproducing high-frequency reflection
features of different microstructures in real-time with low memory and computational overhead.

Keywords real-time, reflectance modeling, glinty materials, rendering

1 Introduction

The microstructure of the material surface exhibits

sparkling effects in the real world when illuminated by

sharp light sources. Traditionally, the microfacet model

relies on aggregate statistical distribution to describe

these complex and spatial varying micro-geometries, re-

sulting in smooth highlight and loss of high-frequency

reflection effect. The microstructure’s reflection char-

acteristics are taken into account by highly realistic

rendering methods to enhance the visual realism of

computer-generated imagery (CGI). However, real-time

rendering still lacks a general and efficient microstruc-

ture rendering method.

The representation of microstructures is a criti-

cal factor in microstructure rendering. First, a com-

plete and thorough representation of different micro-

geometries is needed to keep detailed features. Second,

it is supposed to be lightweight and introduce no ex-

cessive storage overhead. Yan et al. [1] define all geo-

metric details of microstructures by the high-resolution

normal mapping. However, at the same time, it intro-

duces high memory overhead and an extended perfor-

mance burden, making it difficult to be applied directly

in real-time scenarios that require immediate feedback.

Several recent approaches, such as Zhu et al. [2] and

Wang et al. [3] use example-based approaches to implic-

itly represent microstructures, which can dramatically

decrease the memory cost. However, these methods are

still time-consuming since they need complex hierar-

chies to evaluate the normal distribution. Tan et al. [4]

optimized it for real-time implementation on GPUs by

prefiltering microstructures based on MIP-map. All

those methods need to use a proper example, which is

still difficult to present varied structures of materials.

We have a key observation that microstructures are

generally self-similar and can be abstracted into a tiny

example (represented by a tiny normal map). There-

fore, this paper assumes that a material’s macroscopic

surface is composed of many tiny example microstruc-

tures, and the global micro-geometry is determined by

many tiny examples together after spatial transforma-

tion and spatial distribution operations. Based on this

assumption, this paper proposes a tiny example-based

real-time microstructure representation and rendering

method with the following contributions:

2

• a tiny example-based discretization representa-

tion that combines multi-scale NDF maps for ma-

terials with self-similarity or independent patch

features, which has high expressiveness.

• a tiny example-based spatial transformation and

spatial distribution method to enhance the struc-

tural diversity of macroscopic surfaces while

maintaining only a small amount of data, which

significantly reduces memory overhead.

• a tiny example-based NDF evaluation formula-

tion enables real-time rendering of complex mi-

crostructures with high performance and low

memory cost.

2 Related work

As an essential part of photorealistic rendering,

glinty microstructure representation and evaluation

have received significant attention from researchers. In

this section, we review previous work on glinty mi-

crostructure representation for offline rendering and

real-time rendering.

2.1 Offline microstructure rendering

There are two prominent families of approaches

for microstructure representation. One is the explicit

representation based on high-resolution normal map-

ping, and the other is the implicit representation of

microstructure by analytical formulas or stochastic dis-

tribution models.

Explicit representation. The explicit representa-

tion of microstructure mainly relies on normal mapping

or heightfield, which is a methodology inherited from

Yan et al.’s [5] mathematical framework. Yan et al. [1]

employed the 4D Gaussian mixture to model the typical

distribution of the microstructure, achieving better per-

formance than prior research. They also explored the

glinty appearance under wave optics [6]. However, these

approaches have high storage requirements, and the 4D

position-normal query is costly. Gamboa et al. [7] rep-

resented microstructures via discrete 2D texture his-

tograms and applied a filtering technique combining

environmental lighting and normal mapping, which de-

mands significant memory. Atanasov et al. [8] presented

the “inverse bin map”–an advanced integral histogram,

to speed up the filtering of the bidirectional reflectance

distribution function (BRDF) with Beckmann distribu-

tion for microstructures in persistent storage. Based on

the normal map, explicit representation acquires spatial

and directional features directly, providing more flexi-

bility.

Implicit representation. Jakob et al. [9] proposed

a stochastic approach to simulate temporally stable

sparkling effects. In their method, the proportion of

spatially randomly distributed metallic flakes is ob-

tained by an efficient evaluation method. Atanasov et

al. [10] optimized the sampling process for better overall

performance. Wang et al. [11] made the rendering pro-

cess more efficient by deriving the method in a separable

and filterable form. Some methods for the microstruc-

ture of specific scratches [12, 13] have also been pro-

posed. Deng et al. [14] developed a prefiltering method

relying on precomputation, aggregating data into a 3D

NDF tensor to accelerate spatial-angular range queries

during rendering. Nevertheless, it incurs the high cost

of NDF generation and compression overhead. To ad-

dress memory issues, Zhu et al. [2] and Wang et al. [3]

extended the work of Yan et al. [1]. They generated

stationary microstructures through a by-example ap-

proach. Zhu et al. [2] generated microstructure through

texture syntheses and reduced memory overhead by

clustering structural elements. Meanwhile, Wang et

al. [3] employed texture blending to extend the exam-

A Tiny Example-Based Procedural Model for Glints 3

ple normal map infinitely and maintain constant mem-

ory overhead. Different from the traditional methods

above, Kuznetsov et al. [15] first introduced a deep

learning method to generate glinty patches that enable

the synthesis of glinty results without significant spatial

repetition.

2.2 Real-time microstructure rendering

For real-time rendering, most methods use implicit

representations to generate ultra-high-resolution nor-

mal maps, and our method is the same. Zirr et al. [16]

proposed a method to accelerate the estimation of prob-

ability distribution using the MIP hierarchy and achieve

real-time performance based on Jakob et al. [9]. Deliot

et al. [17] reduced the number of texels falling under a

pixel footprint by combining a counting method with

an anisotropic parameterization of the texture space to

accelerate the runtime performance. In contrast, Cher-

main et al.’s method [18] is more physically based and

can converge to the Cook-Torrance model [19] when

the flake density is high enough. Wang et al. [20] simu-

lated randomly discrete microfacet under environment

lighting and point light in real-time by prefiltering. Fur-

thermore, Velinov et al. [21] proposed a scratch appear-

ance method under wave optics based on their previous

work [13]. Tan et al. [4] introduced a real-time prefilter-

ing approach for microstructures that employed MIP-

maps to select microstructures at the suitable level of

details (LODs) for storage-stable and efficient render-

ing.

Implicit representation methods are limited in their

ability to convey the fine details of micro-geometry ac-

curately. Our approach preserves rich details based on

tiny examples and improves the diversity of microstruc-

tures through the spatial transformations of tiny exam-

ples.

fP(ωi,ωo) Surface BRDF

P Footprint

ωh Half vector of reflection

ωi,ωo Light and view directions

n Surface normal

u 2D global texture coordinate

u′ 2D local texture coordinate

s Query direction

DP (s) Patch normal distribution function

N (u, s) Position-normal distribution

GP (u) Gaussian approximating to a footprint

Gi(u, s) 4D Gaussian lobes

n(u) Normal map function

J Jacobian of n(u)

Σ−1
i Inverse of 4× 4 covariance matrix

σh Std. deviation of seed Gaussians

σr Intrinsic roughness

l Level of multi-scale NDF maps

T Example tile

NT Number of texels in an example tile T
t Local texture coordinates in a NDF map

t′ Transformed t

M Spatial transformation matrix

Φ(u) Tile position in NDF map space

Bl(u
′) NDF map function at level l

Table 1. Notations

3 Background

In this section, we first introduce the surface BRDF

and then provide the evaluation of the normal distribu-

tion function.

3.1 Surface BRDF

During rendering, the surface BRDF fP for the foot-

print P is defined as:

fP(ωi,ωo) =
DP(ωh)G(ωi,ωo,ωh)F (ωi,ωh)

4(ωi · n)(ωo · n)
,

where ωi and ωo denote the light and view directions,

the term ωh refers to the half vector of reflection, n

represents the surface normal, F is the Fresnel term,

G is the masking-shadowing function [22]. DP(ωh) is

the patch normal distribution function (P-NDF) over a

spatial footprint P according to the querying direction,

also known as the half vector ωh. The evaluation of

For Review Only

4

DP(ωh) is a major difficulty in microstructure render-

ing and is the core of the discussion in this paper.

3.2 Evaluation of the normal distribution func-

tion

Our P-NDF evaluation builds upon the method of

Yan et al. [1], where the evaluation of DP can be writ-

ten as follows:

DP(s) =

∫
GP(u)N (u, s)du,

where s is the query direction (also represents the 2D

normal with implicit z-coordinate), GP is Gaussian ap-

proximating to a spatial footprint, u represents the 2D

texture coordinate. N is the position-normal distri-

bution which can be approximated by Gaussian lobes.

Yan et al. [1] used a large number (k) of 4D Gaussian

lobes Gi obtained by traversing each texel in the normal

map to approximate N , i.e.,

N (u, s) ≈
k∑

i=1

Gi(u, s).

After defining δui = (u−ui)
T , δsi = (s−si)

T , each

Gaussian lobe Gi is represented as:

Gi(u, s) = cie
(− 1

2 (δui,δsi)
TΣ−1

i (δui,δsi)),

where ci is a constant for normalization. With the Ja-

cobian J of the 2D normal n(u) (sampled from a normal

map, n(u) = (nx, ny)), the inverse of 4 × 4 covariance

matrix Σ−1
i is expressed as:

Σ−1
i =

1

σ2
h

(
I 0

0 0

)
+

1

σ2
r

(
JTJ −JT

−J I

)
,

where, σh is the deviation of seed Gaussians, σr is the

intrinsic roughness.

Therefore, for the given P and s , the P-NDF is

defined as:

DP(s) ≈
k∑

i=1

∫
GP(u)Gi(u, s)du. (1)

4 Overview

The representation of microstructure (Section 5)

and the corresponding shading process, particularly the

example transformation, distribution, and NDF evalua-

tion (Section 6), are crucial for depicting high-frequency

details.

For the issue of microstructure representation, we

propose to use a tiny normal map to represent the over-

all characteristics of the microstructure and define it as

an example in Section 5.1. We then compute multi-

scale NDF maps for the tiny example in precomputa-

tion (Section 5.2) so that real-time applications can pro-

cess complex specular surfaces through simple texture

sampling at different LODs.

The core issues related to microstructure render-

ing are example transformation, distribution, and the

NDF evaluation. Based on the geometry characteris-

tics of materials, we classify the tiny examples into

stochastically distributed and tiled examples. In or-

der to enrich the diversity of materials, we determine

the corresponding spatial transformation (Section 6.1)

for stochastically distributed examples and distribu-

tion (Section 6.2), thereby generating a large-scale mi-

crostructure that describes the overall material. We

evaluate NDF based on stochastically distributed and

tiled tiny examples and reproduce the glinty appear-

ance in Section 6.3. Furthermore, we also discuss the

multi-microstructure-layer case in Section 6.4.

We illustrate the overall pipeline of our method in

Fig. 1, which mainly consists of the precomputation and

real-time shading stage.

5 Tiny example-based microstructure repre-

sentation and precomputation

A normal map that stores the tangent space normals

of objects is often used to describe the geometric struc-

ture characteristics of materials. The explicit method

A Tiny Example-Based Procedural Model for Glints 5

Precomputation

LOD 0

LOD 1

LOD 2

LOD 0

LOD 2

LOD 3

Tiny example

Precompute

...

Real-time shading

Or

Case 1: example
transformation

Case 2: tiling
+ example distribution

+

Tiny example Tiny example

Noise map

Implicitly generated high
resolution normal map

Implicitly generated high
resolution normal map

... ...

Precomputed multi-scale NDF maps
Implicitly generated

examples in a footprint

Query:

Footprint

Surface

...

Multi-scale NDF maps

Fig.1. The pipeline of our method includes two major parts: precomputation and real-time shading. During precomputation, we com-
pute NDF at various LOD levels for the input tiny example and save them into multi-scale NDF maps. In the real-time shading stage,
we use a procedural model to implicitly generate large-scale microstructures by performing spatial transformations and distribution on
the tiny example with a noise map. While shading, we identify examples partly covered by the footprint and divide them into tiles of
varying LODs. For the examples entirely covered by the footprint, we select the top LOD. Finally, we employ a tiny example-based
NDF evaluation method to enable a fast and accurate approximation of the NDF by summing up the tiles of precomputed NDF maps.
The entire shading process is carried out in real-time and is compatible with GPU to ensure the method’s efficiency.

utilizes an arbitrary high-resolution normal map to

specify the microstructure with heavy storage overhead.

In our method, the global microstructure is implicitly

generated by tiny examples that are defined by the ex-

ample normal map.

5.1 Discrete representation

Most of the materials exhibit similar structural

characteristics and corresponding light transport.

Therefore, we assume that a structural element exhibit-

ing self-similarity and its variants form a macroscopic

surface under a spatial distribution function. We define

a small scale of microstructures with the same charac-

teristics in the spatial domain as a tiny example.

We use an example normal map (usually smaller

than 32×32), called the tiny example, to represent the

example microstructure of a specific material. Given a

tiny example, we precompute approximate NDFs and

store them in multi-scale textures.

5.2 Multi-scale NDF maps precomputation

For a tiny example with n × n resolution, we com-

pute the highest level of LOD for its corresponding

multi-scale NDF maps by log2n− 1, and the NDF map

resolution m×m at each level l by n/(2l+1)×n/(2l+1).

For instance, the input tiny example in Fig. 1 has a

resolution of 16×16. Therefore it can build NDF maps

with 4 layers of LOD, and their resolutions are 8 × 8,

4× 4, 2× 2, and 1× 1.

While precomputing the NDF for each level based

on the tiny example, we divide the tiny example into

m × m tiles equally. Each tile in the example con-

tains a set of explicitly specified normals which are used

to compute its NDF value. In a similar way to Yan

et al. [1], we assume the NDF of a tile is an equally

weighted average of these micro-scale normals, which is

6

defined as follows:

DP(s) =
1

NT

∑
u∈T

Gi(u, s), (2)

where NT is the number of texels in an example tile T .

Each discrete NDF is computed per tile using Eq. 2

and encoded into NDF maps at each level. Besides,

we also save the Gaussian lobes used to describe the

microstructure more precisely if needed. Attributes in-

clude the position, normal, Jacobian matrix, etc..

6 Real-time shading

In this section, based on the representation of a

single discrete tiny example presented above, we pro-

vide the corresponding spatial transformations, distri-

butions, and NDF evaluation methods. Moreover, we

apply these methods to explore the visual effects of a

multi-layer microstructure with a simplified multi-layer

microstructure material model.

6.1 Spatial transformation

Distributing the same tiny example-based mi-

crostructure on the surface directly by tiling may result

in noticeable visual errors, such as repetitive features.

We obtain more examples by spatial transformations

during real-time shading.

For texels in the multi-scale NDF maps, we

transform their local texture coordinates t (t =

(tx, ty,
√
1− tx

2 − ty
2)) in local texture space by a 3×3

matrix M to get transformed local texture coordinates

t′, which is defined as:

t′ = Mt.

The spatial transformation matrix M is defined as

follows:

M =


sx hx tx

hy sy ty

0 0 1

 ,

where, sx and sy are scaling coefficients that control the

transformation at the microstructure scale, allowing us

to obtain isotropic or independent scale transformations

in different directions. hx and hy represent the stretch-

ing coefficients along the x-axis or y-axis, which allows

us to control the macroscopic diffusion direction of the

highlights by sheer transformations. Besides, rotation,

symmetry, and other spatial transformations are also

achieved through M , as shown in Fig. 2.

Example

Transformed examples

y y

y y

x x

x x

M

Scale Shear

Offset

y

x

Symmetry

Rotate

y

x

Fig.2. Spatial transformations for tiny examples through differ-
ent transformation matrices.

6.2 Spatial distribution

Based on microstructure characteristics, we classify

tiny examples into stochastically distributed type (e.g.,

scratches) and tiled type (e.g., brushed metal), and dis-

tribute them in different ways.

Stochastically distributed type. For stochasti-

cally distributed microstructures, their overall struc-

tural characteristics are not prominent. Further-

more, their appearance characteristics can be enriched

through examples of spatial transformations during dis-

tribution. Therefore, we encode examples’ random cen-

ter positions and coefficients of transform matrices M

(Section 6.1) into a noise map first. During the shad-

ing stage, for each example, the noise map implicitly de-

picts the example area in the global texture space by its

A Tiny Example-Based Procedural Model for Glints 7

global center position and coefficients of M , thereby en-

riching the overall appearance diversity of macroscopic

materials.

Tiled type. For tiled microstructures with self-

similarity and inapparent seams after tiling, such as

brushed metal, the random transformation of a single

tiny example leads to the loss of the original structural

characteristics at a macroscopic scale. Thus we use spe-

cific transformations (such as isometric scaling, etc.)

to maintain macro-consistency and control the macro-

scopic high-frequency appearance features. Then we

tile the examples directly in the global texture space.

The tiled examples are closely arranged, and there is

no overlap between them.

6.3 NDF evaluation of tiny example-based mi-
crostructure

For a shading point in pixel space, it is essential to

determine its footprint P in texture space. We use the

same Gaussian representation method as Heckbert [23]

to approximate the footprint with a parallelogram in

texture space. In this way, we obtain the texture posi-

tions u covered by P in the global texture space.

Because we have already encoded examples’ center

positions in the global texture space and corresponding

transformation matrix M into a noise map. Therefore,

for a texture position u, we can traverse all examples’

information in the noise map and determine if u is in-

side the examples. Because the number of examples

covered by P is small and the parallelism of the GPU

is fully utilized, the processing is very fast.

For the tiled example type, we get only one example

at u. But for stochastically distributed example type,

we get several examples due to the multiple examples

that may overlap with each other. It is necessary to

define the occlusion relationship of the overlapping re-

gion first. We divide the overlapping region into four

sub-regions of equal size. For a single sub-region, we

compare the Euclidean distance between the center of

the sub-region and the centers of each example, and

always use the nearest example to define the occlusion

relationship. The details are shown in Fig. 3.

Example 1

Example 2 Overlapping region

Remove overlap

Result

CE1

CE1

CSr1

1 2

3 4

CSr2

CSr3 CSr4

CE2
CE2

Fig.3. Examples overlapping case. We divide the overlapping
region into four sub-regions equally first. CE1 and CE2 are the
center positions of example 1 and 2. CSr1-4 are the center posi-
tions of sub-regions. For the sub-region 1 in the upper left part,
the distance |CSr1 − CE1| is smaller than |CSr1 − CE2|. There-
fore we consider example 1 to override sub-region 1. We use the
same strategy to deal with the other sub-regions.

Using this strategy, we determine a unique example

that covers the position u. Because we have distributed

and transformed the examples onto the global texture

space, we can obtain the local query position u′ in NDF

maps by back-projecting u based on the center position

and the transformation matrix M of the example. We

define this computation processing as Φ(u).

The P-NDF is accumulated by the NDF contribu-

tions of examples covered by the footprint P, which

can be queried from the precomputed multi-scale NDF

maps. Bl(u
′) represents the NDF contribution of each

example at LOD level l (under the query direction s).

When a tiny example is entirely covered by a footprint,

we sample and accumulate its normal distribution term

from the highest LOD NDF map. When it is partially

covered by P, the LOD of the NDF map reduces grad-

ually from the highest level to determine whether the

current tiles in the NDF map are totally covered by P

until the NDF map is subdivided to the lowest LOD

level. This spatial subdivision is shown in Fig. 1.

At the same time, when the footprint is smaller than

the lowest LOD tile, we directly compute NDF with the

precomputed Gaussian lobes instead of sampling from

8

the precomputed NDF maps, as shown in Eq. 1.

Base Layer

Clearcoat Layer

Light

Fig.4. The visualization of the multi-microstructure-layer case.
The microstructure of the material surface includes a base layer
and a clearcoat layer above it. We simulate complex reflection
effects by combining the lobes of two layers.

6.4 Multi-microstructure-layer rendering

To gain efficiency in real-time rendering, we approx-

imate the resulting light transport by two BRDF lobes

at the shading point. This section discusses the multi-

microstructure-layer case (as shown in Fig. 4) without

explicitly evaluating the complex light transport of in-

terlayer scattering. The first BRDF lobe fc accounts

for the top layer (or a clearcoat layer), and the second

lobe fb accounts for the bottom layer (or a base layer).

The light transport passing through the clearcoat

and reaching the base layer is approximately propor-

tional to 1 − Fc, where Fc represents the Fresnel term

of the clearcoat. The resulting BRDF fs of the multi-

layer model is expressed as Eq. 3:

fs = fb (1− Fc) + fc. (3)

At the same time, different normals are used to eval-

uate the Fresnel term and masking-shadowing term for

the clearcoat and base layer, which is typically done

in production and works with our method. NDFs at

different layers are also computed independently.

Fig. 5 compares the results of two different mi-

crostructures on the Bent quad scene under different

layer orders, which lead to significant differences in the

visual characteristics of microstructures.

(a) 11.2 ms (b) 14.5 ms (c) 11.8 ms (d) 14.5 ms

Base Base Clearcoat Base Base Clearcoat

Fig.5. Rendering results of the multi-microstructure-layer case.
In the Bent quad scene, two groups of identical microstruc-
tures with different layer orders present different visual effects
(b, d), but the rendering time is consistent. At the same time,
the multi-layer microstructures (b, d) exhibit more detailed fea-
tures than the single-layer microstructure (a, c).

The high-frequency effects in Fig. 5 (b, d) are mixed

with scratches and anisotropic noise, but they look dif-

ferent. The high-frequency effects in Fig. 5 (b) are

more visually shown as bright flakes, and the less en-

ergy distribution on the clearcoat leads to discontinu-

ous scratches. In contrast, scratches in Fig. 5 (d) are

more obvious and continuous. In addition, computing

the NDF of the microstructure for each layer in a single

shading point also incurs a certain degree of additional

performance burden, but it is still affordable for real-

time rendering.

7 Results

We have implemented our method in OpenGL 4.6

and compared it with other typical methods (include

Yan et al. [1], Wang et al. [3], Zhu et al. [2], Tan et

al. [4]) using our unified platform in terms of visual ef-

fects, memory consumption, and rendering speed. Be-

sides, We treat the result of Yan et al. [1] as the correct

value and use their method as the reference. All statis-

tics in this section are performed on a PC with a 3.6-

GHz Intel (R) i9-9900K CPU, 32 GB of main memory,

and an NVIDIA TITAN RTX GPU. Measurements are

For Review Only

A Tiny Example-Based Procedural Model for Glints 9

(a)
Ours

(b)

(c)

(d)

(e)

38.58 MB
13.7 ms

Reference

4134.4 MB
91.8 ms

Examples

Fig.6. The comparison between our method and the reference method [1] on the Desktop scene with various types of microstructures.
The high-frequency effects are almost identical. Our method only consumes 1% of memory overhead and significantly improves the
rendering speed compared to the reference.

made for FHD (1920 × 1080) image resolution using

forward rendering without postprocessing.

We use four sharp point lights and an environment

light to illuminate the microstructure and the entire

scene. The environment light is encoded through dis-

tance light probes, which is an image-based lighting

method that simulates the diffuse reflection of ambi-

ent light by precomputing the irradiance into a cube

map and approximating the specular reflection part by

prefiltering the environment light map and combining

it with a BRDF lookup table.

In our experiments, we use tiled tiny examples

for structured materials, brushed metal, leather, and

other microstructures with unique geometric features.

Stochastically distributed tiny examples are applied to

microstructures of scratches and noise.

7.1 Comparison with previous work

Desktop scene. In this scene of Fig. 6, we compare

the result of our method with the reference [1]. The

scene contains five common types of microstructures,

including (a) anisotropic noise, (b) brushed metal, (c)

isotropic noise, (d) leather, and (e) structured materi-

als. The normal map resolution of each microstructure

in the reference method is 2K × 2K. The two methods

are almost equivalent regarding high-frequency detail

features, but our method significantly reduces memory

and computational overhead. For this complex scene

composed of multiple microstructures, our method only

takes 13.7 ms, which reduces memory overhead by tens

of times compared to the reference method (91.8 ms).

This makes our method more suitable for the real-time

rendering pipeline.

Coffee machine scene. We compare our method

with other microstructure rendering methods in a more

complex scene, as shown in Fig. 7. For zoomed-in local

details, our method is consistent with other microstruc-

ture representation methods and can well represent

the characteristics of different types of microstructures.

10

Zhu et al.Wang et al.

1464.5 MB592.0 MB
142.8 ms142.7 ms

Tan et al.

149.2 MB
16.3 ms

Reference

17364.4 MB
142.8 ms

Examples Ours

(a)

(b)

(c)

(d)

113.2 MB
14.5 ms

Fig.7. The comparison of our method with other microstructure rendering methods [3, 2, 4, 1] on the Coffee machine scene contain-
ing four types of microstructure, including (a) brushed metal, (b) scratch, (c) structured materials, and (d) isotropic noise. Compared
to these methods, our method is faster and significantly reduces memory overhead while rendering visually identical results.

Whether the tiny examples are tiled in Fig. 7 (a, c, d) or

randomly distributed in Fig. 7 (b), our method main-

tains the continuous characteristics of the structure

without visually significant duplication while providing

a good approximation of the reference method [1]. Our

method directly focuses on structural patterns, avoid-

ing the generation of redundant microstructure unre-

lated to micro-geometry features, which is common in

example-based approaches [3, 2, 4]. Our method signif-

icantly reduces the memory cost and enhances perfor-

mance.

Other scenes. In Fig. 9, there are three simple

scenes: Sphere scene (noise), Shoes scene (leather), and

Bent quad scene (scratch), corresponding to different

microstructure types. For the leather type in Shoes

scene, we generate the results using our method of tiled

examples, which is comparable to the visual effect of

other methods without any structural discontinuity.

Ours:
85.25 MB, 11.8 ms

Reference:
3307.5 MB, 90.9 ms

Difference visualization

Fig.8. Comparison between our method and reference [1] on
the Bent quad scene under the same scratch microstructure.

For noise and scratch materials in the Sphere scene

and the Bent quad scene, we adopt stochastically dis-

tributed examples and increase the diversity of mi-

crostructure through spatial transformations. The mi-

crostructure presents continuous high-frequency effects,

specifically showing continuous scratches in the Bent

A Tiny Example-Based Procedural Model for Glints 11

ReferenceWang et al.

SP
H

E
R

E

Zhu et al. Tan et al.Ours

91.3 ms, 3307.5 MB91.4 ms, 148.0 MB 91.3 ms, 408.0 MB

SH
O

E
S

11.7 ms, 27.4 MB12.0 ms, 5.32 MB

76.9 ms, 3307.5 MB76.7 ms, 148.0 MB 76.8 ms, 408.0 MB

B
E

N
T

 Q
U

A
D

12.2 ms, 27.4 MB11.6 ms, 5.32 MB

90.9 ms, 3307.5 MB90.9 ms, 148.0 MB 90.8 ms, 624.0 MB 12.7 ms, 95.8 MB11.8 ms, 85.25 MB

Fig.9. The comparison of rendering results using our method and other microstructure rendering methods [3, 2, 4, 1] on three different
scenes. We compared the glint effect generated by anisotropic noise microstructures using different methods in Sphere scene, the
continuous highlight of leather type microstructures in Shoes scene, and the scratch effect generated in Bent quad scene.

quad scene and disorderly distribution of noise in the

Sphere scene. Compared with the method of Wang et

al. [3] based on texture blending, our method does not

cause the blur of highlight details.

7.2 Quality analysis

Algorithm validation. In Fig. 8, we compare the

method of Yan et al. [1] to verify the correctness of

our method and show the visualization of the results

errors. To ensure that the geometric information of

the two methods on the Bent quad scene is consistent,

we explicitly export the microstructure generated by

our procedural method and apply it to the reference

method. Our proposed method is a fast approximate

estimate of the correct value with low memory cost and

is visually comparable to the reference [1]. The visu-

alized error between our method and the reference [1]

is mainly displayed in the overlapping regions of the

examples.

Table 2. Comparison of Precomputation Time

Microstructure
Pre. time (s)

Reference [1]

Pre. time (s)

Ours

Leather 1565.7 6.2

Structure 3531.1 2.3

Brushed metal 1569.7 49.7

Isotropic noise 1568.9 6.2

Anisotropic noise 1559.8 6.1

Scratch 1567.3 72.4

Note: Pre. time is an abbreviation for precomputation time.

Microstructure representation range. Our

method can simulate a lot of glossy materials under

12

(d) (d) (d)

(a) 9.3 ms (b) 13.3 ms (c) 13.9 ms (d) 12.0 ms

Fig.10. Comparison between our results (b-d) and the result (a) under the GGX statistical distribution [22] on the Deer statue
scene. Our method depicts the microstructure with the example normal map ((b-d) top right) and gets (b) structural highlight, (c)
scratched effects, and (d) glittery effects.

Table 3. Performance and memory cost for the scenes of our method and reference [1]

Scene Material

Input res. Rendering time (ms) Memory (MB)

Ours Reference Ours Reference Speedup Ours Reference

Deer statue

Scratch 322 4K2 13.9 71.4 5.1× 85.25 3307.5

Anisotropic 162 4K2 12.3 62.5 5.1× 5.32 3307.5

Isotropic 162 4K2 12.0 71.2 5.9× 5.32 3307.5

Structure 82 6K2 13.3 80.7 6.1× 1.31 7441.9

Brushed metal 162 4K2 13.2 76.9 5.8× 21.31 3307.5

Coffee machine

Scratch 322 4K2

14.5 142.8 9.8×

85.25 3307.5

Isotropic 162 4K2 5.32 3307.5

Structure 82 6K2 1.31 7441.9

Brushed metal 162 4K2 21.31 3307.5

Bent quad

Scratch 322 4K2 11.8 90.9 7.7× 85.25 3307.5

Anisotropic 82 4K2 11.2 76.9 6.9× 5.32 3307.5

Scratch & anisotropic 322 & 162 4K2 14.5 166.7 11.5× 90.57 6615.0

Sphere Anisotropic 2562 4K2 12.0 91.3 7.6× 5.32 3307.5

Shoes Leather 162 4K2 11.6 76.9 6.6× 5.32 3307.5

Desktop

Isotropic 162 2K2

13.7 91.8 6.7× 38.58 4134.4

Anisotropic 162 2K2

Leather 162 2K2

Structure 82 2K2

Brushed metal 162 2K2

Note: Input res. denotes the resolution of the input normal maps (i.e. tiny examples in our method) used to represent the
microstructure.

different structural features. In the Deer statue scene

of Fig. 10 (b, c, d), the upper right corner shows the in-

put tiny examples of our method, and Fig. 10 (a) shows

the result under the GGX statistical distribution [22].

For tiled examples, we obtain structured highlights in

Fig.10 (b). For stochastically distributed examples, we

get disordered scratch effects in Fig. 10 (c) and shiny

flakes under isotropic noise in Fig. 10 (d).

7.3 Performance and storage analysis

Precomputation time. Yan et al. [1] traverse a

high-resolution normal map with the fixed texture sam-

pling rate to obtain the Gaussian lobes. The prepro-

cessing time depends on the resolution of the input nor-

mal map. Unlike the time-consuming high-resolution

normal map, the time for sampling the tiny example is

A Tiny Example-Based Procedural Model for Glints 13

negligible. Moreover, the precomputation time of our

method mainly depends on the resolution of NDF im-

ages. Compared with previous work, we only need to

precompute the multi-scale NDF approximation of a

single tiny example. Thus the preprocessing speed has

been significantly improved, as shown in Table 2.

Rendering time. Table 3 shows the rendering time

comparison between our method and the reference [1]

on different types of microstructures in test scenes.

Our method reduces memory overhead and efficiently

completes the originally time-consuming NDF evalua-

tion, significantly improving the frame rate and meet-

ing real-time rendering requirements. For the multi-

microstructure-layer case, separately evaluating NDF

for each layer results in almost double the performance

cost.

Memory cost. In Table 3, we report the memory

cost of our method and the reference during real-time

shading. The memory cost of our method mainly de-

pends on the resolution and LOD level of multi-scale

NDF maps. The additional saved Gaussian lobes of the

example require negligible memory consumption. Our

method only uses a fraction (up to 0.05%) of memory

cost compared to the reference. To describe leather,

noise, and structured materials, the resolutions of tiny

examples are usually smaller than 16 × 16, which are

used along with NDF maps at resolutions of 8×8, 4×4,

2× 2, and 1× 1. Larger example sizes are used for mi-

crostructures with strong discrete characteristics such

as brushed metal and scratches. For scratches, a 32×32

example is enough, corresponding NDF maps with res-

olutions of 16× 16, 8× 8, 4× 4, 2× 2, and 1× 1, which

result in higher memory usage.

(d)(d)

(b)

(d)

(c)(a)

Fig.11. Results of the different example spatial transformations.
The brushed metal microstructure exhibits different visual ef-
fects under different spatial transformation matrices in Deer
statue scene.

(d)

Fig.12. Results of the different example spatial distribution.
The shiny glints of anisotropic noise microstructure are visually
similar under different spatial distribution noise maps (shown in
the upper right corner) in Deer statue scene.

7.4 Parameter analysis

We analyze the impact of examples’ spatial transfor-

mation on high-frequency appearance for tiled brushed

metal in Fig. 11. Compared to Fig. 11 (a), we obtain

the effect of different highlight diffusion directions in

Fig. 11 (b) through a unified rotation transformation

matrix for each example. Fig. 11 (c) shows the coarser

highlights under the unified scaling matrix.

We also discuss the macroscopic visual effects of the

different spatial distributions of examples by different

noise maps for randomly placed anisotropic noise in

Fig. 12. Although the noise maps differ, the effects and

time costs of different example distributions are highly

similar.

We analyze the impact of the example resolu-

tion on rendering results and performance in Fig. 13.

For brushed metal, examples with low resolution

(Fig. 13 (a)) can not represent the overall geometric

information of the material, and the results show obvi-

ous visual seam patterns after tiling.

For Review Only

14

8 × 8, 1.33 MB, 13.8 ms 32 × 32, 21.31 MB, 13.2 ms
(a) (b)

Fig.13. Comparison of different example resolutions on Deer
statue scene. Tiling different resolutions of brushed mi-
crostructure examples yields different effects. The low-resolution
setting in (a) causes visual errors.

(a) (b)

Fig.14. Limitation of our method. The rendering result for
wood grain in (a) exhibits a loss of macro features due to the
challenge of extracting structural examples from the strongly
spatial correlated patterns in the continuous microstructure
shown in (b).

7.5 Discussion and limitations

Our proposed method has several limitations due

to our assumptions. We identify scenarios in which our

method can be improved.

Absence of macroscopic features. We assume

that the micro-geometry is composed of numerous mi-

crostructures described by the input tiny example.

Therefore, our method does not support the simula-

tion of global features in macro-geometry, such as the

growth patterns of wood, as shown in Fig. 14.

Absence of generality of the representation. We

assume that the examples have tiled and stochasti-

cally distributed types based on prior knowledge. Our

method can not handle all microstructures uniformly,

resulting in a lack of generality.

8 Conclusion and future work

We have presented a practical real-time method

that efficiently renders a glinty appearance in a GPU-

friendly manner with lower memory and computational

overhead. We define the structural microstructures of

micro-geometry as a tiny example, encoding its multi-

scale NDF maps in a precomputed manner. Addi-

tionally, the overall geometry of the microstructure is

obtained from example spatial distributions, and the

structural diversity is enhanced through example spa-

tial transformations. Eventually, high-frequency reflec-

tion features such as glints are reproduced in real-time

with low memory cost using our method.

In the future, optimizing our method by integrat-

ing a more efficient example representation without the

normal map, would be interesting. Additionally, the

extension of our method for wave optics could lead to

valuable advancements.

Conflict of Interest

The authors declare that they have no conflict of

interest.

References

[1] Yan L Q, Hašan M, Marschner S, Ramamoorthi R. Position-

normal distributions for efficient rendering of specular mi-

crostructure. ACM Transactions on Graphics (TOG), 2016,

35(4):1–9.

[2] Zhu J, Xu Y,Wang L. A stationary svbrdf material modeling

method based on discrete microsurface. Computer Graphics

Forum, 2019, 38(7):745–754.

[3] Wang B, Hašan M, Holzschuch N, Yan L Q. Example-

based microstructure rendering with constant storage. ACM

Transactions on Graphics (TOG), 2020, 39(5):1–12.

[4] Tan H, Zhu J, Xu Y, Meng X, Wang L, Yan L Q. Real-

time microstructure rendering with mip-mapped normal

map samples. Computer Graphics Forum, 2022, 41(1):495–

506.

A Tiny Example-Based Procedural Model for Glints 15

[5] Yan L Q, Hašan M, Jakob W, Lawrence J, Marschner S, Ra-

mamoorthi R. Rendering glints on high-resolution normal-

mapped specular surfaces. ACM Transactions on Graphics

(TOG), 2014, 33(4):1–9.

[6] Yan L Q, Hašan M, Walter B, Marschner S, Ramamoor-

thi R. Rendering specular microgeometry with wave optics.

ACM Transactions on Graphics (TOG), 2018, 37(4):1–10.

[7] Gamboa L E, Guertin J P, Nowrouzezahrai D. Scalable ap-

pearance filtering for complex lighting effects. ACM Trans-

actions on Graphics (TOG), 2018, 37(6).

[8] Atanasov A, Wilkie A, Koylazov V, Křivánek J. A multiscale

microfacet model based on inverse bin mapping. Computer

Graphics Forum, 2021, 40.

[9] Jakob W, Hašan M, Yan L Q, Lawrence J, Ramamoorthi R,

Marschner S. Discrete stochastic microfacet models. ACM

Transactions on Graphics (TOG), 2014, 33(4):1–10.

[10] Atanasov A, Koylazov V. A practical stochastic algorithm

for rendering mirror-like flakes. In Special Interest Group

on Computer Graphics and Interactive Techniques Confer-

ence, SIGGRAPH ’16, Anaheim, CA, USA, July 24-28,

2016, Talks, 2016, pp. 67:1–67:2.

[11] Wang B, Wang L, Holzschuch N. Fast global illumination

with discrete stochastic microfacets using a filterable model.

Computer Graphics Forum, 2018, 37(7):55–64.

[12] Raymond B, Guennebaud G, Barla P. Multi-scale render-

ing of scratched materials using a structured sv-brdf model.

ACM Transactions on Graphics, 07 2016, 35.

[13] Werner S, Velinov Z, Jakob W, Hullin M B. Scratch

iridescence: Wave-optical rendering of diffractive surface

structure. ACM Transactions on Graphics (TOG), 2017,

36(6):1–14.

[14] Deng H, Liu Y, Wang B, Yang J, Ma L, Holzschuch N, Yan

L Q. Constant-cost spatio-angular prefiltering of glinty ap-

pearance using tensor decomposition. ACM Transactions

on Graphics (TOG), 2022, 41(2):1–17.

[15] Kuznetsov A, Hašan M, Xu Z, Yan L Q, Walter B, Kalan-

tari N K, Marschner S, Ramamoorthi R. Learning generative

models for rendering specular microgeometry. ACM Trans.

Graph., nov 2019, 38(6).

[16] Zirr T, Kaplanyan A S. Real-time rendering of procedu-

ral multiscale materials. In Proceedings of the 20th ACM

SIGGRAPH Symposium on Interactive 3D Graphics and

Games, 2016, pp. 139–148.

[17] Deliot, Thomas, Belcour, Laurent. Real-time rendering

of glinty appearances using distributed binomial laws on

anisotropic grids, 2023.

[18] Chermain X, Sauvage B, Dischler J M, Dachsbacher C.

Procedural physically based brdf for real-time rendering of

glints. Computer Graphics Forum, 2020, 39(7):243–253.

[19] Cook R L, Torrance K E. A reflectance model for computer

graphics. ACM Transactions on Graphics (TOG), 1982,

1(1):7–24.

[20] Wang B, Deng H, Holzschuch N. Real-time glints rendering

with pre-filtered discrete stochastic microfacets. Computer

Graphics Forum, 2020, 39(6):144–154.

[21] Velinov Z, Werner S, Hullin M B. Real-time rendering of

wave-optical effects on scratched surfaces. Computer Graph-

ics Forum, 2018, 37(2):123–134.

[22] Walter B, Marschner S R, Li H, Torrance K E. Microfacet

models for refraction through rough surfaces. In Proceedings

of the 18th Eurographics Conference on Rendering Tech-

niques, 2007, pp. 195–206.

[23] Heckbert P S. Fundamentals of texture mapping and im-

age warping. Technical Report UCB/CSD-89-516, EECS

Department, University of California, Berkeley, Jun 1989.

