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Abstract

Image-text retrieval aims to capture the se-
mantic correspondence between images and
texts, which serves as a foundation and crucial
component in multi-modal recommendations,
search systems, and online shopping. Existing
mainstream methods primarily focus on model-
ing the association of image-text pairs while ne-
glecting the advantageous impact of multi-task
learning on image-text retrieval. To this end,
a Multi-task Visual Semantic Embedding Net-
work (MVSEN) is proposed for image-text re-
trieval. Specifically, we design two auxiliary
tasks, including text-text matching and multi-
label classification, for semantic constraints to
improve the generalization and robustness of vi-
sual semantic embedding from a training per-
spective. Besides, we also present an intra- and
inter-modality interaction scheme to learn dis-
criminative visual and textual feature represen-
tations by facilitating information flow within
and between modalities. Subsequently, we uti-
lize multi-layer graph convolutional networks
in a cascading manner to infer the correla-
tion of image-text pairs. Experimental results
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show that MVSEN outperforms state-of-the-
art methods on two publicly available datasets,
Flickr30K and MSCOCO, with rSum improve-
ments of 8.2% and 3.0 %, respectively.
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1. Introduction

Vision and language are fundamental informa-
tion patterns for people to understand the world.
The interplay between what we perceive visually
and how we communicate through language forms
the cornerstone of our experience. Image and text,
as the most direct reflections of vision and lan-
guage, serve as potent conduits through which we
exchange ideas, express emotions, and weave nar-
ratives. Exploring the relationship between them
has become a hotspot in the field of multimodal-
ity and spawned some specific applications, such
as image-text retrieval [39, 24], multimodal recom-
mendation [19, 32], and visual commonsense rea-
soning [15, 16]. In this paper, we focus on image-
text retrieval that aims to bridge the semantic gap
between images and textual descriptions. Despite



significant efforts in recent years, there remains a
challenge in measuring the relevance of images and
texts due to the heterogeneity and distributional dif-
ferences in the data of these two modalities.

To cope with the challenge, early approaches
for image-text retrieval project the whole visual
and textual information together into a shared sub-
space, where the correlations between images and
texts are easily measured. For instance, Wang et
al. [27] presented a two-branch embedding net-
work to model images and texts, respectively, while
employing a similarity network with element-wise
product operation followed by a fully-connected
layer to compute the correlations of image-text
pairs. Similar methods, such as [20, 12, 25, 23,

, 33], also design different networks to acquire
global semantic features of images and texts to
mine visual-linguistic associations. Although such
coarse-grained methods are impressive, they over-
look the details of image-text alignment, resulting
in poor performance. Intuitively, when observing
an image, people tend to pay more attention to
salient regions and less attention to non-salient re-
gions. Considering this, some works begin to ex-
plore fine-grained alignments between image re-
gions and text words to discover the connection be-
tween these two modalities. A common practice is
to use pre-trained object detection tools to identify
objects in an image and extract region-specific vi-
sual features using convolutional neural networks,
while adopting recurrent neural networks to ob-
tain word-level features. After that, the similarity
scores between images and texts are inferred using
paired region-word similarity matrices. SCAN [10]
is a typical representative of such methods, which
introduces a cross-modal attention network to ex-
plore the fine-grained relationship between im-
ages and texts. Subsequently, many attention-
based methods [17, 30, 8, 37, 38, 31, 29] are pro-
posed to realize fine-grained alignment. Compared
with coarse-grained methods, fine-grained methods
show great potential for cross-modal image-text re-
trieval.

However, the fine-grained methods are more
about improving performance from a model design
perspective and ignore the view of training opti-

mization. Therefore, we introduce two auxiliary
tasks to further enhance cross-modal retrieval per-
formance from the model optimization perspective.
Theoretically, the optimization of single-task learn-
ing moves toward loss reduction during training. If
a model is trapped in a local minimum, it is diffi-
cult to be optimized further, which is not conducive
to finding the global optimum. Distinctively, multi-
task learning jointly trains multiple differentiated
tasks. Due to the differences between tasks, the
optimization directions between various tasks may
be different. When the target task falls into a lo-
cal optimum, it may jump out of the local optimum
under the action of other tasks, which provides a
possibility for finding the global optimum. Further-
more, some sub-networks or parameters are shared
in multi-task learning, which helps to learn general
feature representations and improve the model’s ro-
bustness and generalization ability.

Based on the above analysis and discussion,
a Multi-task Visual Semantic Embedding Net-
work (MVSEN) is proposed to explore cross-modal
image-text retrieval from both the model design
and optimization perspectives. Firstly, we present
an intra- and inter-modality interaction mechanism
from the model design perspective to obtain dis-
criminative transformed visual and textual features.
Subsequently, a similarity vector function is uti-
lized to acquire similarity matrix vectors that will
be used to infer the correlations between images
and texts through graph convolutional networks
with residual connection followed by two fully-
connected layers. Secondly, From the perspective
of training optimization, we design two semanti-
cally constrained auxiliary tasks, including text-
text matching and multi-label classification, to train
together with the target task cross-model image-
text retrieval to improve model’s performance. Fi-
nally, we employ a weighted approach to com-
bine the optimization objectives of these three tasks
as the optimization loss of the proposed MVSEN.
In brief, our contributions can be summarized as
threefold:

e We present a multi-task visual semantic em-
bedding network that exploits intra- and inter-
modality interaction strategy to enhance the



discrimination of visual and textual features,
as well as utilizes multi-task collaborative
training to improve the performance of cross-
modal image-text retrieval.

* We introduce two auxiliary tasks into image-
text retrieval, which is beneficial for im-
proving the robustness and generalization of
visual-semantic embedding. To the best of our
knowledge, we are the first time to introduce
the task of text-text matching as a semantic
constraint into cross-modal retrieval.

* We conduct extensive experiments on two
benchmarks, Flickr30K and MSCOCO, and
the experimental results show that the pro-
posed MVSEM achieves advanced perfor-
mance compared to the state-of-the-art meth-
ods, with improvements of 8.2% and 3.0% on
evaluation metric rSum, respectively.

2. Related Work

2.1. Image-text Retrieval

According to the way of image-text modeling,
existing methods can be roughly divided into two
categories: global-based methods [20, 25, 23, 4, 2]
and local-based methods [17, 18, 3, 37, 38, 31].
The global-based methods aim to project hetero-
geneous multimodal data into a joint embedding
space, generating corresponding global feature rep-
resentations for each modality and then measur-
ing their correlation using a distance metric func-
tion. Liu et al. [20] utilized ResNetl52 and
RNN to encode visual and textual information,
and learned consistent visual-semantic embedding
through deep mapping and reconstructed mapping.
Sarafianos et al. [25] developed an adversarial net-
work to learn discriminative feature representations
in these two modalities jointly. Chen et al. [2]
proposed an effective generalized pooling strategy
to learn optimized visual-semantic features. Since
these methods only consider the global semantic
information of image-text pairs, it is not advanta-
geous in the face of complex scenes. Compared
with global-based methods, local-based methods
pay more attention to the details of image-text

alignment. Lee et al. [10] presented a stacked atten-
tion framework to identify the potential alignment
between visual regions and textual words. Con-
sidering that different fragment-level features con-
tribute differently to inferring the correspondence
between vision and language, Liu et al. [17] pro-
posed a bidirectional focal attention approach to fo-
cus on relevant regions and words and eliminate ir-
relevant ones. Wu et al. [3 1] adopted the method of
reassigning region-word attention weights to alle-
viate the impact of unimportant fragment-level fea-
tures on model performance. Additionally, some
methods consider global- and local-based strategies
to explore the correlation of image-text pairs from
different perspectives. For example, Diao et al. [5]
exploited graph convolutional networks to perform
similarity inference on fused global-based align-
ment and local-based alignment. Wang et al. [28]
designed a global-local alignment strategy that con-
siders both global semantic and local segment in-
formation. Analogously, similar approaches such
as [9, 14] and [11] also optimized the whole net-
work in a joint manner.

2.2. Multi-task Learning

Different from single-task learning, multi-task
learning learns a shared feature representation by
jointly modeling multiple associated single tasks,
where each task can act as a semantic constraint
for other tasks, which is beneficial to improve the
performance of models. In recent years, multi-task
learning has been applied to various computer vi-
sion and natural language processing tasks, such
as dense prediction [35], emotion recognition [6],
and biomedical relation extraction [22] and so on.
Vandenhende et al. [26] proposed a multi-scale task
interaction framework to determine the informa-
tion interaction between different tasks in multi-
task learning through distillation units. Xu et al.
[35] presented a shared encoder-decoder strategy
to jointly model multi-task learning and capture
task-specific features via cross-task attention mech-
anisms. Similarly, Moscato et al. [22] also designed
shared encoder layers, including lexicon encoder
and transformer encoder, and task-specific layers
to realize biomedical relation extraction. Foggia



et al. [6] developed a convolution-based shared
encoding layer and a task-specific layer, while
employing an independent classification layer to
make predictions for different tasks. Similarly,
there are also some works [12, 21, 36, 34, 13]
that adopt multi-task learning in the field of cross-
modal image-text retrieval, but the difference is that
cross-modal retrieval is the target task, and other
tasks are auxiliary tasks. For example, Luo et al.
[21] presented correlation recognition and context
reconstruction tasks combined with two regulariza-
tion terms to jointly improve the performance of
cross-modal image-text retrieval. Xu et al. [34] in-
tegrated image and text multi-classification tasks
into cross-modal retrieval to constrain the global
semantic features. Lietal [12, 13] exploited the im-
age captioning task to model the ground-truth cap-
tion and the generated caption association through
the log-likelihood function. Analogously, Yuan et
al. [36] also adopted the joint training of image cap-
tioning and image-text retrieval to improve the per-
formance of cross-modal retrieval.

2.3. Differences with existing methods

The proposed MVSEN is a multi-task learning-
based method. However, it differs from previous
methods as follows: (1) Compared with existing
multi-task learning approaches, such as [12, 21, 36,

, 13], we introduce a new auxiliary task text-
text matching into cross-modal retrieval. Theoreti-
cally, if an image has a high correlation with a text,
then other texts that are highly related to the text
will be related to the image. Considering this, we
employ a text-text matching task to constrain the
global semantic information to improve the perfor-
mance of cross-modal image-text retrieval. To the
best of our knowledge, we are the first time to in-
troduce the text-text matching task into image-text
retrieval. (2) Although CASC [34] also employs a
multi-label classification task, it treats images and
texts as separate multi-label classifications. In con-
trast, our approach performs multi-label classifica-
tion on the fused visual and textual information.
Furthermore, we consider the interaction within
each modality to preserve shared information be-
tween images and texts before the multi-label clas-

sification, while CASC ignores this. Based on the
above analysis, it can be observed that our method
MVSEN is different from existing cross-modal re-
trieval approaches.

3. Methodology

In this section, we will present the proposed
Multi-task Visual Semantic Embedding Network
(MVSEN) in detail. As illustrated in Figure 1, the
overall framework of MVSEN mainly consists of
two components: feature representation for encod-
ing shared visual and textual features, and multi-
task learning for jointly learning and optimizing
various tasks. Specifically, we first introduce the
feature representation module in Section 3.1. Then,
we explain the multi-task learning in Section 3.2.
Finally, we introduce the optimization objective of
MVSEN in Section 3.3.

3.1. Feature Representation

Visual Feature Representation. Given an im-
age I, we employ v = {v1,va, ..., V;, ..., Uk } to TEP-
resent the features of image I, where v; € Rlxd
denotes the i-th regional feature and k indicates the
number of salient region. Concretely, a well-known
object detection tool Faster-RCNN pre-trained by
Anderson et al. [I] on Visual Genome, is used
to detect visual regions. Then, we select top-k
(k = 36) salient regions with the highest confi-
dence scores and utilize ResNet [7] to extract the
feature of each region. This process can be formal-
ized as

v = frn(ffr(lvelfr%er’n% (1)

where fr,(-) and f¢.(-) denote the Faster-RCNN
and ResNet functions, respectively, and 6,.,, and 0 ,.
are the corresponding learnable parameters.
Textual Feature Representation. Given a text
T containing n words, since each word in the text
is not isolated, we utilize a Bidirectional Gated Re-
current Unit (Bi-GRU) to model the sequential in-
formation of the text. The Bi-GRU consists of a for-
ward GRU to capture semantic features in the for-
ward direction and a backward GRU to capture se-
mantic features in the reverse direction. Therefore,
for the given text T’ = {w, wa, ..., w;, ..., wy }, the
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Figure 1: The overall framework of the proposed MVSEN.

encoding using Bi-GRU can be expressed as

hj = f?(hj+17wj70—g>ru)7 (2)
hj = fg(hj+17wj79§)7

where I j and h ;j indicate the j-th hidden state rep-
resentations from the forward f3 (+) and backward

f?(~), respectively. Hym and 6. are the learn-

g
able parameters. To better exploit the encoding
information of Bi-GRU, we adopt the average of

ﬁj and Ej as the feature representation ¢; of the
word w;, ie., t; = (h; + h;)/2 € R Sub-
sequently, the features of text 7" can be written as
t = {t1,t2,...,t,...t, }. Similarly, the features of

the positive sample 7'+ of text T can be denoted as
th = {53, ot )

3.2. Multi-task Learning

In this subsection, we will illustrate the
proposed multi-task learning module, including
image-text retrieval, text-text matching, and multi-
label classification tasks. We will first discuss the
intra- and inter-modality interaction module since
it is adopted in image-text retrieval and multi-label
classification.

Intra-modality Interaction. Intuitively, when
describing an image, people will focus on some
salient regions according to their preferences and
enrich the image with words that have no real
meaning. As shown in Figure 1, some contents
such as “buildings” and “people” in the image can-
not find the corresponding semantics in the sen-
tence “A busy street with a bridge and a clock
tower”. Also, the words “a” and “with” in the
sentence have no real meaning. Obviously, these
will affect the performance of image text retrieval.
Therefore, we adopt the self-attention mechanism
to strengthen meaningful words and weaken mean-
ingless words. At the same time, we integrate
self-learned “external information” into the self-
attention mechanism to alleviate the inconsistency
between visual and textual information.

Specifically, taking textual feature ¢ as an ex-
ample, we first map the textual feature ¢ into the
query matrix @ = tW, € R" %, key matrix
K =tW,, € R"*% _ and value matrix V = tW,, €
R™*dv where Wy, Wy, and W, are learnable pa-
rameters. Subsequently, we employ Gaussian dis-
tribution to initialize two matrices K,, € R'*dv
and V,,, € R'™% as self-learned “external infor-
mation” to extend K and V. A weighted output of



text feature ¢ can be formalized as

Qfee(K, Kn)"
Vd

where fq,(+) denotes the softmax function. fe..(-)
means a function that performs a concatena-
tion operation on the first dimension, such as
feoe(K, K,,) € R™TDxdv  Finally, we adopt H
(d = H xd,) substructures in Eq. 3 to ensure the di-
versity and robustness of the encoded information,
ie,t = concat(hi, ha, ..., hi, ..., hg) € R 9,
For simplicity, we utilize the function fL, . (-) to
represent the intra-modality interaction within the
text T', and the entire above process can be rewrit-
ten as

hi - fsm( )fcc(V7 Vm)a (3)

t = fh et 080, )

ntra intra

where 07, . is learnable parameter.  Analo-
gously, we can obtain visual feature Vo=

L ra(0,08 Y € REX? after performing the
intra-modality interaction.

Inter-modality Interaction. Unlike the intra-
modality interaction, the inter-modality interac-
tion primarily focuses on the information correla-
tion between different modalities, which is crucial
for enhancing the performance of cross-modal re-
trieval. As we can see from Figure 1, some vi-
sual regions in the image can be matched with cor-
responding textual fragments and vice versa. To
quantify this, we adopt the dot product followed by
the “softmax” function to calculate the correlation
scores between different visual regions and textual

words. The process can be formalized as

arzi = fom(a- fir (0 (t)T)), (5)

where a;5; € RF*™ denotes the correlation score
matrix between visual regions and textual words. «
is a control factor used to regulate the correlation
scores. fi,(-) indicates the “LeakyRelu” activation
function.

After that, we can consider this question: can
textual information be converted into visual infor-
mation? Actually, the j-th column of the score
matrix a;o; can be interpreted as the importance
of word w; to each visual region. Therefore, an
approximate approach is to obtain the transformed

features through matrix multiplication. Formally,
the visual feature v;9; transformed from textual fea-
ture ¢ can be denoted as vy = ago;t € RFX4.
For convenience, we employ the function f{2_  to
represent the inter-modality interaction from text to
image direction and the above process can be for-

malized as
t2i "
Ut2i = inze’r'(v Ny ,Oé). (6)

Similarly, we can acquire the textual feature t;o;
transformed from visual feature v/, ie., tioy =

2t (v, a) € R4, Theoretically, the trans-
formed features retain some common information
in both modalities, preventing the model from fo-
cusing on non-important information and helping
improve the model’s performance.

Image-text Retrieval. As discussed earlier,
the transformed features are beneficial to main-
taining common information between these two
modalities. Considering this, we utilize the trans-
formed and original features to explore the cor-
relations between images and texts. Specifically,
taking the features v;2; and v as an example, we
first calculate the similarity matrix vector Mo, =
{my,ma,...,mp} € RF*d between v;o; and v by

|vgas — v|?w

Migi = 75— @)
[vi2i = v[Pwl]2
where | - |2 denotes element-wise square. w €
R®¥de is learnable parameter matrix, and || - ||2 is
Lo-norm.

Subsequently, we treat Mo, as a fully connected
graph Gyo; containing k£ nodes, where each row
in M;s; contributes to a node. To enhance the
representation of these nodes, we utilize stacked
graph convolutional networks (GCN) followed by
residual connections to establish the association be-
tween them. We implement the update of node fea-
tures of the [-th (I > 0) layer by

Mtl;rtl = fgcn(MtlQia Whos Oh;) + My, (8)
Why; = (Mipawh 4+ b4)(Migwh +65)",  (9)
My, = Mo, (10)

where M/,, € RF*? denotes the node features of
the I-th layer, and w!,; € R*** is corresponding



edge weight matrix. w} € Rde*de gl € Rlexde,
b} € R%*! and b}, € R4*! are learnable parame-
ters. Then, two cascaded fully connected layers are
employed to infer semantic relevance score Ss; of
image-text pairs.

St = fm((fth(Mtlziwl +b1))ws +b2), (11)

where f,,(x) means averaging all elements in the
matrix z. fy,(+) indicates the “tanh” activation
function. wy € R¥%Xdv qpy € RI:X1 p; € Rdex1
and by € R%*! are learnable parameters. Like-
wise, we can get S;o;.

To optimize image-text retrieval, following pre-
vious approaches [3, 5, 10], we employ the bidirec-
tional triplet loss as the optimization objective, that
is

‘C'r': Z [AI_S(IaT)+S(IvT_)]+
(I,T) (12)
+[)‘1 - S(I,T) + S(I_aT)]+7

where \; is a margin. I and 7" are matched image-
text pair, and I~ and 7'~ are corresponding neg-
atives, respectively. For each batch size B, the
top C/B + 1 most relevant examples are selected
as negatives, where C' indicates the number of
S, T) + M — faiag(S(I,T)) > 0, S(I,T) €
{St2i, Siot}

Text-text Matching. Different from image-text
retrieval, we view the text-text matching task as an
auxiliary task to perform semantic constraint from
a global perspective. As shown in Figure 1, the
texts 7" and 7" are the ground-truth captions of the
image I. Theoretically, if the text 7" and image [
exhibit a high degree of semantic similarity, and
text T+ and image I also show a solid semantic
correspondence, then it can be inferred that there
exists a high semantic correlation between text T’
and text 7", Based on the above analysis, we can
improve the performance of image-text retrieval by
constraining the semantic consistency of these two
texts to alleviate the semantic bias that may occur
during the model’s training process.

Specifically, we first utilize the intra-modality
interaction module to capture textual semantics in-
formation. It is worth noting that the intra-modality
interaction module here differs from Eq. 4. In

Eq. 4, the matrices K and V' are extended, but
this operation is not performed here, constituting
the sole distinction between them. To avoid dupli-
cation and distinguish them, we employ the func-
tion g7 ,..(+) to represent the intra-modal interac-
tion here. Taking text T' as an example, the feature
t7,intre Of text T after intra-modality interaction
can be written as

tT,intra = gij;Ltra (t7 9T,int7’a)a (13)

where tT,intra = {tl,intra7t2,int'ra7 ---7tn,intra}
and 07 ;ntrq is learnable parameter. Then, we ob-
tain the global semantic feature ¢, of text " through
the mean operation, i.e.,

n

1

tg - n ;t],znt'ra (14)

Analogously, the global semantic feature of text
T can be denoted as t/. Subsequently, we ex-
ploit cosine similarity to measure the correlation
score between ¢, and t;, that is, S(T,TT) =
cos(ty, t}). Similar to image-text retrieval, we also
employ bidirectional triplet loss as the optimization

objective of text-text matching, i.e.,

L= > [M—S(T,T% +S(T, TJF)]Jr
(T,77+) R
+[)‘2 - S(T7 T+) + S(T7 T+)]+a
L (15)

where Ay is a margin. 7' and 7" are text negatives
of T and T, respectively, obtained in the same
manner as described in Eq. 12 for negatives.

Multi-label Classification. Similar to the text-
text matching task, the multi-label classification is
also considered an auxiliary task for implementing
global semantic constraint. Intuitively, each image
or text will display some semantic information. For
example, the image and texts in Figure 1 contain
significant semantic features such as “street” and
“clock tower”. By constraining the shared seman-
tic information between image and text, it can be
ensured that the matched images and texts always
maintain semantic consistency during the model
training process. Since existing image-text retrieval
datasets such as Flickr30K and MSCOCO do not



contain semantic label information, a straightfor-
ward approach is to build semantic labels directly
from these datasets. Given that nouns can em-
body the semantic information of images better
than other types of words, we adopt nouns to con-
struct semantic labels for image-text pairs.

Concretely, we first employ NLTK' to identify
nouns in the text and then form the semantic label
vector L € R'™¥ by selecting the top-N nouns
with the highest frequencies. Then, a “0-1" en-
coded semantic label y € R is assigned to
each matched image-text pair (I, T'), where “1” in-
dicates that the semantic information at the same
position in the label dictionary L is present in the
image-text pair. Subsequently, we adopt the trans-
formed features vy, = {tllyv, t;yv, - t;c,v} and
tiot = {U/Lt,v;’t, ...,v;,t} to perform the multi-
classification task. Formally, a mean function and
two fully connected layers are utilized to predict
the semantic labels y € RN . The process can
be formalized as

k n
v =(((1-8) % Zl trwtB- L 21 Uy ) W11
r= s=
+b11)waz + bz,

(16)
where 3 is a balancing factor. wy; € RN,
Wo2 € RNXN, b1 € R4*1 and boo € RNx1
are learnable parameters. Then, for the matched
image-text pair (I,T), the predicted label y =
{yll, ylz, vy y;, ey y}v} and ground-truth label y =
{y1,Y2, -y Yu, ---, YN } can be viewed as N binary
classification problems, and the optimization ob-
jective can be written as

N

Lo=— yulogoly,) + (1 —vu)logo(l—y,),
u=1

(a7

where o indicates the Sigmoid activation function.

3.3. Optimization Objective

As discussed in the section “Introduction”,
multi-task learning is beneficial to enhance the gen-
eralization and robustness of the model. Therefore,
we adopt a joint approach to optimize these three

Thttps://www.nltk.org/

Algorithm 1: Model training process of
the proposed MVSEN.

Input: Matched image-text pairs (I,T);
Positive sample T+ of T'; Parameters: q,
A1, B, Ao, B, 6, v; Optimized network
parameters: 0.

Output: 6.
1 for epoch = 1,2, ..., E do
2 for each batch size B do
3 Initial feature representations: v, t, tt
via Egs. 1 and 2;
4 Perform intra- and inter-modality
feature interaction via Egs. 3 and 6;
5 Compute loss £, for image-text
retrieval via Eq. 12;
6 Obtain loss £, for text-text matching
via Eq. 15;
7 Calculate loss £, for multi-label
classification via Eq. 17;
8 end
9 Get losses L., L., and L. ;
10 Compute £ via Eq. 18;
11 0 + Backward (£).

12 end

tasks, consisting of image-text retrieval, text-text
matching and multi-label classification, and the op-
timization objective is defined as

£:£r+§' (’Yﬁm"f'(l _W)Ec% (18)

where J is a balancing factor used to balance the
weights between the target task and the auxiliary
task. ~y is employed to balance the weight between
these two auxiliary tasks.

Additionally, it should be noted that all three
tasks participate in the model training process, but
the auxiliary tasks are not involved during the test-
ing stage. Algorithm 1 is the entire training pro-
cess, where 6 is the parameter that the proposed
MVSEN needs to be trained and optimized.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate the proposed approach
MVSEN and all baselines on two publicly avail-



able datasets Flickr30K [17] and MSCOCO [30].
Flickr30K consists of 31,000 images in total and
each image is associated with five matched textual
descriptions. Following the split protocol in [10],
we adopt 29,000 images for training, 1,000 im-
ages for validation, and 1,000 images for test-
ing. MSCOCO includes 123,287 images, and each
image is manually annotated with five sentences,
where 11,3287 images are employed for training,
5,000 images for validation, and 5,000 images for
testing. It should be noted that the performance of
MSCOCO is evaluated by averaging 5-folds of 1K
and all 5K test images.

Evaluation Metrics. Following previous meth-
ods [3, 18], we utilize Recall at K (RQK, K =
1,5,10) as an evaluation metric to assess the per-
formance of cross-modal retrieval. Also, a com-
prehensive evaluation metric 7Sum, indicating the
sum of RQK in cross-modal retrieval, is also
adopted to evaluate the model’s performance.

Implementation Details. The proposed model
MVSEN is implemented using Python 3.7.0 and
PyTorch 1.7.0 frameworks and trained on an
NVIDIA GeForce RTX 3090 GPU with the Adam
optimizer. We set the training epoch to 30
with a learning rate of 0.0002 on Flickr30K and
MSCOCO, where the learning rate is reduced by
10% after 10 epochs. The batch size is set to 64.
The control factor « in Eq. 5 is 10, ie., « = 10.
The margins A; in Eq. 12 and A, in Eq. 15 are set
to 0.2 and 0.1, respectively. The balancing factor
B in Eq. 16 is set to 0.99 and ¢ in Eq. 18 is set
to 0.01. Additionally, some detailed settings can
be found in our code: https://github.com/
FlyCuteBird/MVSEN.

Results on Flickr30K.> Table 1 reports the
quantitative results on Flickr30K dataset. It can
be observed that the proposed MVSEN exceeds all
baseline models in the evaluation metric rSum,
with a gain of 8.2% ~ 26.2%. Compared with
the state-of-the-art method NAAF [38], the pro-
posed MVSEN obtains performance improvements
of 0.4% and 2.3% on RQ1 for text retrieval and
image retrieval, respectively. Also, compared with

2« indicates that we reproduce the results by the publicly
available code.

Table 1: Quantitative results on Flickr30K dataset.

Text Retrieval Image Retrieval
RQ@1 RQ5 RQ10|R@1 R@5 RQ@Q10
SGRAF3021 [5] |77.8 941 974 |58.5 83.0 88.8 | 499.6
MEMBERgg21 [111|77.5 94.7 973 |59.5 84.8 91.0 | 504.8
CGMN3 5, [3] | 779 93.8 96.8 [59.9 85.1 90.6 | 504.1
UARDA 2022 [37] | 77.8 95.0 97.6 |57.8 829 89.2 | 500.3
NAAF;,, [38] |81.3 95.6 98.1 [60.8 84.8 90.7 | 511.3
GLFN2g23 [39] [75.1 93.8 97.2 | 545 828 89.9 | 4933
RAAN2g23 [29] |77.1 93.6 97.3 |56.0 824 89.1 | 4955
VSRN++2023 [13]1(79.2 94.6 975 [ 60.6 856 91.4 | 5089

MVSEN (ours) |81.7 95.6 982 |63.1 88.0 929 | 519.5

Methods rSum

Table 2: Quantitative results on MSCOCO dataset
(1K).

Text Retrieval Image Retrieval
RQ1 RQ5 RQ10|R@1 R@5 RQ10
SGRAF2021 [5] [79.6 96.2 985 [632 90.7 96.1 | 524.3
MEMBER2021 [11]] 78.5 96.8 985 |63.7 90.7 95.6 | 523.8
CGMN3 5, [3] | 76.8 954 983 |63.8 90.7 95.7 | 520.7
UARDA2g22 [37] | 78.6 96.5 989 | 639 90.7 96.2 | 524.8
NAAF3 5, [38] [79.7 964 98.6 |63.0 89.5 952 | 5224
GLFN2g23 [39] | 784 96.0 985 |62.6 89.6 954 | 520.5
RAAN3g23 [29] | 76.8 96.4 983 |61.8 89.5 95.8 | 518.6
VSRN++2023 [13]| 779 96.0 98.5 |64.1 91.0 96.1 | 523.6
MVSEN (ours) |80.5 96.5 98.7 |64.6 91.1 964 | 527.8

Methods rSum

Table 3: Quantitative results on MSCOCO dataset
(5K).

Text Retrieval Image Retrieval
RQ1 RQ5 RQ10|R@1 R@Q5 R@Q10
MEMBERsg2; [11]54.5 823 90.1 |40.9 71.0 81.8 | 420.6
CGMN3,, [3] |53.4 813 89.6 [412 719 824 | 4198
UARDA2g22 [37] | 562 83.8 91.3 |40.6 69.5 80.9 | 4223
NAAF3 5, [38] |58.1 85.5 92.0 [42.1 70.7 80.8 |429.2
VSRN++2023 [13] | 547 829 90.9 |42.0 722 82.7 | 4254

MVSEN (ours) |58.7 84.0 91.7 [42.5 72.0 827 | 431.6

Methods rSum

other baseline models, such as SGRAF [5], MEM-
BER [11], CGMN [3], etc. MVSEN continues to
demonstrate notable performance enhancements in
terms of RQ@I, exhibiting improvements ranging
from 2.5% to 6.6% for text retrieval and from 2.5%
to 8.6% for image retrieval, which confirms the ef-
ficacy of MVSEN in the realm of image-text re-
trieval.

Results on MSCOCO. Tables 2 and 3 show the
experimental performance on MSCOCO (1K) and


https://github.com/FlyCuteBird/MVSEN
https://github.com/FlyCuteBird/MVSEN

Table 4: Ablation studies on Flcikr30K and MSCOCO (1K) datasets.

Settings Flickr30K dataset MSCOCO dataset (1K)
Models Text Retrieval Image Retrieval Text Retrieval Image Retrieval
rSum rSum
R M C t2i i2t| RQ1 RQ5 R@10|RQl1 RQ5 RQ@10 RQ@Q1 R@5 RQI10| RQ1 R@5 RQ10

#1 |V v 769 935 969 606 857 91.6 5052 | 780 958 982 63.0 905 96.0 5215
#2 |V v 7677 930 969 586 845 906 5003 | 76.1 957 986 613 901 958 517.6
#3 |V v v | 791 945 979 617 874 924 5130 | 79.1 962 985 644 912 964 52538
#4 |V v 77.1 942 980 604 852 915 5064 | 77.8 955 983 63.0 905 96.0 521.1
#5 |V Vv v | 755 942 976 586 851 90.7 5017 | 77.5 960 985 623 905 958 5206
#6 | v Vv v v | 80.2 955 979 622 869 926 5153 | 797 963 986 643 915 965 5269
#7 |V v v 772 932 97.1 614 858 91.8 5065 | 77.8 953 984 62.1 90.7 96.1 520.4
#8 |V v v | 754 935 969 589 852 90.8 5007 | 77.1 957 985 614 902 959 5188
#9 |V v v v | 797 939 978 636 874 927 5151 | 80.0 963 985 644 913 965  527.0
#10 |v v v 795 946 977 612 866 91.7 5113 | 775 960 983 627 903 958  520.6
#11 |v v V v [ 778 933 972 592 850 905 5030 | 777 958 985 616 903 959 5198
#12 |v v v v v | 8.7 956 982 631 880 929 5195 | 805 965 987 646 91.1 964 5278

MSCOCO (5K), respectively. From Table 2, we
can observe that the proposed MVSEN obtains the
best results RQ1 = 80.5% for text retrieval and
RQ@1 = 64.6% for image retrieval compared with
all baseline models. At the same time, MVSEN
also achieves the best performance in terms of eval-
vation metric rSum, with rSum = 527.8%. In
addition, when the test set data increases, it can be
seen from Table 3 that MVSEN still has advantages
on the evaluation metric RQ1 compared with base-
line models, which indirectly shows that the pro-
posed MVSEN can handle cross-modal image-text
retrieval under different data scales well.

4.2, Effect of Different Network Modules

To assess the influence of different modules
on the model’s performance, we conduct ablation
studies on Flickr30K and MSCOCO datasets, as
shown in Table 4, where “v"” indicates that the cor-
responding module is adopted. R, M and C' rep-
resent image-text retrieval, text-text matching and
multi-classification tasks, respectively. ¢2¢ and ¢2¢
denote that we employ S;o; and S;o; to measure the
semantic correlation of image-text pairs, respec-
tively. From Table 4, we can see that the model
(#12) achieves the best performance on the eval-
uation metric 7Swm when all auxiliary tasks are
employed, with improvements of rSum = 6.5%
on Flickr30K and rSum = 2.0% on MSCOCO
compared to the baseline model (#3). Addition-

ally, when only one auxiliary task M or C'is used,
the model’s performance is still enhanced, with a
boost of 2.3% (#6 vs. #3) and 2.1% (#9 vs. #3)
in terms of rSum on Flickr30K dataset. Similarly,
we can observe similar properties on MSCOCO
dataset, which indicates that both text-text match-
ing and multi-label classification tasks contribute
to improving the performance of cross-modal re-
trieval. Moreover, their combined use yields even
better results. Furthermore, it can be seen that the
multi-label classification task contributes more to
Flickr30K than to MSCOCO. One possible reason
is that Flickr30K describes people’s daily lives, and
the images share many similarities. The multi-label
classification task effectively constrains sentences
with high similarity. In contrast, MSCOCO encom-
passes diverse categories, and the images exhibit
more considerable variations. In this case, the role
of the multi-label classification task is relatively di-
minished, resulting in slight performance improve-
ment on MSCOCO dataset.

4.3. Effect of Different Parameters

In this subsection, we select two representative
hyper-parameters, | and ~y, to explore the impact
of different parameter settings on the model’s per-
formance, where [ indicates the number of GCN
layers, ranging from 1 to 5, and is critical for the
overall performance of image-text retrieval. The
hyper-parameter v is employed to balance the loss
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Figure 2: Effect of the number of GCN layers (/) on
Flickr30k and MSCOCO (1K) datasets, where 12T
and T2I indicate text retrieval and image retrieval,
respectively.

weights between the target and auxiliary tasks, fa-
cilitating the training of multi-task learning. The
value of + is set from 0.1 to 0.9 with a step of 0.2.

The influence of parameter ! on Flickr30K and
MSCOCO is depicted in Figure 2. From these re-
sults, it can be observed that increasing the param-
eter [ from 1 to 3 can enhance the performance
of image-text retrieval on evaluation metrics RQ1
and RQ5. The possible reason is that increasing
the parameter | explores deep feature representa-
tion, which is beneficial to improving the model’s
performance. However, the performance decreases
when the parameter [ is larger than 3, suchas [ = 4
or! = 5. One possible explanation is that the “over-
smoothing” problem occurs when the number of
GCN layers increases to a certain level, resulting
in performance degradation.

Figures 3 and 4 show the impact of parameter ~y
on Flickr30K and MSCOCO, respectively, where v
(0), 0 € {t24,42t}, indicates that we employ S, to
measure the similarity of image-text pairs. Clearly,
when the value of « increases from 0.1 to 0.9 (step
size is 0.2), the experimental results also change,
which indirectly shows that when the weight of
the auxiliary task changes, the optimization direc-
tion of the model will also be different, resulting
in the performance difference. When ~(t21)=0.5
and ~(i2t)=0.1, MVSEN obtains the best RQ1 =
81.7% for text retrieval and rSum = 519.5% for
cross-modal retrieval on Flickr30K. Analogously,
it can be seen from Figure 4 that MVSEN achieves
the best text retrieval (y(t2i)=0.3 and ~(i2t)=0.5)

and image retrieval ((t2i)=0.1 and v(i2t)=0.1) by
taking different values of ~.

By analyzing the impact of parameters [ and ~y
on experimental results, we can discern that dif-
ferent parameter configurations substantially influ-
ence the model’s performance. An appropriate
parameter is helpful to improve the model’s effi-
ciency. Furthermore, it can be seen that when the
model achieves the best performance, the same pa-
rameter, such as the parameter -y, may have differ-
ent values on different datasets due to differences
in data distribution.

4.4. Analysis of Retrieval Time

To validate that the proposed method achieves a
good balance between performance and efficiency,
we compare the retrieval time with three advanced
approaches, including SGRAF [5], CGMN [3], and
NAAF [38] based on the publicly available codes
they provide. For a fair comparison, we obtain
a bidirectional retrieval time by averaging the re-
trieval time of 5,000 image-text pairs, and all ex-
periments are performed on an Intel(R) Core(TM)
19-10920X CPU@3.50GHz, 64G memory and an
NVIDIA GeForce RTX 3090 GPU with 24G mem-
ory.

As shown in Figure 5, we can observe that
when performing a bidirectional retrieval, the pro-
posed approach MVSEN is significantly lower than
SGRAF and NAAF in retrieval time but higher than
CGMN. Furthermore, we can observe that the re-
trieval time of NAAF is the longest among these
four methods. The reason is that NAAF employs
the correlations between all visual regions and tex-
tual words to assess the semantic similarity of the
entire image and text, resulting in a significant time
overhead. In contrast, CGMN utilizes cosine to
measure the similarity of image-text pairs, so the
cost is minimal. Although the retrieval time of the
proposed MVSEN is higher than that of CGMN, it
is still within the same order of magnitude. More-
over, the performance of MVSEN on the evaluation
metric rSum exceeds CGMN by a large margin,
with 15.3% on Flickr30K and 7.1% on MSCOCO
(1K). Therefore, the proposed approach performs
better in balancing performance and retrieval effi-
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ciency.

4.5. Visualization and Analysis

To further assess the performance of the pro-
posed MVSEN, we visualize the retrieval results
and compare MVSEN with the advanced method
NAATF. For text retrieval, we offer the ground-truth
caption (GT), and the top-ranked text retrieved by
MVSEN and NAAF. Also, we report the top-2 re-
sults for image retrieval, where the correct result is
marked with a green box.

Figures 6 and 7 are the results of text re-
trieval on Flickr30K and MSCOCO datasets, re-
spectively. As can be seen from these retrieval re-
sults, MVSEN performs better than NAAF. Taking
the third example on Flcikr30K as an illustration,
although NAAF identifies some vital elements such



GT: Man taking a photograph of a well dressed group
of teens.

MVSEN: Man taking a photograph of a well dressed
group of teens.

NAAF: Many men in suits waiting , one man is on his
cellphone.

GT: Two men stand beneath a tree as they watch the
sunset over the ocean.

MYVSEN: Two men stand beneath a tree as they watch
the sunset over the ocean.

. NAAF: Two people silhouetted against a lake at
sunset.

GT: A woman in white clothing is holding a rope.
MVSEN: A woman in white clothing is holding a

rope.
QK o R NAAF: A blond woman holding a white statue.
RN

Figure 6: Qualitative results of text retrieval on
Flickr30K.

GT: White and blue buses parked on the side of the
@ city road to let passengers in.

MVSEN: White and blue buses parked on the side of
the city road to let passengers in.

NAAF: A bus pulls into a bus stop on the street.

GT: A grey cat peers at a computer keyboard.
MVSEN: A grey cat peers at a computer keyboard.
NAAF: Cat sitting right next to keyboard on laptop.

~ GT: A photo taken in a car looking at a dog in the
back seat.

MVSEN: A photo taken in a car looking at a dog in
the back seat.

NAAF: A blissful dog laying against a windscreen of
acar.

~ N

Figure 7: Qualitative results of text retrieval on
MSCOCO.

as “blond woman”, “holding” and “white”, it mis-
takes “rope” for “statue”, leading to a wrong judg-
ment. In contrast, MVSEN can detect these small
gaps, which also verifies the effectiveness of multi-
task learning in text retrieval.

Figures 8 and 9 show qualitative results of im-
age retrieval on Flickr30K and MSCOCO datasets,
respectively. From these retrieval results, we can
observe that for any given query text, all the images
retrieved by NAAF and the proposed MVSEN ex-
hibit high similarity. The difference is that MVSEN
can distinguish them well and retrieve the ground-
truth in the top-ranked result. However, NAAF is
confused by these similar results, leading to “in-

Query 1: A woman gives a small child a piggyback ride.

T &

MYVSEN NAAF

Figure 8: Qualitative results of image retrieval on
Flickr30K.

Query 1: Young boy with T-ball and bat pointing at ball.

Figure 9: Qualitative results of image retrieval on
MSCOCO.

correct” choices. Therefore, it can be inferred from
these results that the proposed MVSEN can make
sound judgments when facing high-similarity im-
ages.

5. Conclusions

In this paper, we propose a Multi-task Visual Se-
mantic Embedding Network (MVSEN) that lever-
ages the collaboration of different tasks to ex-
plore the semantic relevance of image-text pairs.
Experimental results on two publicly available
benchmarks, Flickr30K and MSCOCO, show that
MVSEN performs better than state-of-the-art ap-
proaches. Furthermore, through ablation experi-
ments, it can be observed that both text-text match-
ing and multi-label classification tasks contribute
to improving the performance of cross-modal re-



trieval. In fact, the two auxiliary tasks designed
for semantic constraints are more suitable for han-
dling highly similar images. The effects are not as
pronounced for images with significant differences,
which is also a limitation of the proposed multi-task
scheme. Additionally, qualitative results also con-
firm the effectiveness of the proposed method. In
future work, we will explore the feasibility and ef-
ficacy of multi-task learning in other cross-model
tasks.
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