Continual few-shot patch-based learning for anime-style colorization
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Abstract

The automatic colorization of anime line drawings is
a challenging problem in production pipelines. Recent
advances in deep neural networks have addressed this
problem; however, collecting many images of coloriza-
tion targets in novel anime work before the coloriza-
tion process starts leads to chicken-and-egg problems
and has become an obstacle to using them in produc-
tion pipelines. To overcome this obstacle, we propose a
new patch-based learning method for few-shot anime-
style colorization. The learning method adopts an ef-
ficient patch sampling technique with position embed-
ding according to the characteristics of anime line draw-
ings. We also present a continuous learning strategy
that continuously updates our colorization model using
new samples colorized by human artists. The advan-
tage of our method is that it can learn our colorization
model from scratch or pre-trained weights using only a
few pre- and post-colorized line drawings that are cre-
ated by artists in their usual colorization work. There-
fore, our method can be easily incorporated within ex-
isting production pipelines. We quantitatively demon-
strate that our colorization method outperforms state-
of-the-art methods.

Keywords: anime, colorization, few-shot learning, con-
tinuous learning strategy

1. Introduction

Anime is a limited animation technique drawn by hand
or sometimes using computer graphics. It may use exag-
gerated and simplified artistic expressions in a character’s
face and motion that are physically inaccurate. Thus, its
production relies entirely on manual labor. Because the
number of anime works has increased over the past decade,
studios have explored improving their production pipelines
while preserving the quality of the work. In a traditional
anime production pipeline (see Fig. | and Appendix A), the
colorization of draft line drawings is a tedious and time-
consuming process, in which colorization artists carefully
fill each region surrounded by contour lines with a single
color (see Fig. 2) specified on a color palette designed by
a color director. We refer to this style of colorization as
anime-style colorization.

The anime-style colorization process is often formulated
as a region correspondence problem that is solved using
graph matching [8, 18, 12, 1], region tracking [29], or a
data-driven approach using deep neural networks [2]. Re-
gion correspondence approaches may achieve precise col-
orization, but the computational cost may increase quadrat-
ically with respect to the number of regions. This is some-
times problematic in a production pipeline that needs to pro-
cess complex line drawings (e.g., see Fig. 3).

As a different approach, several researchers have formu-

lated the colorization problem as a semantic segmentation
task using deep neural networks [7, 16]. The computational
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Figure 1: Example of a common anime production workflow from layout to the composition process for a sequence. Images

originate from Deadline © OLM Asia SDN BHD.

cost of such methods depends on the resolution of the image
and the number of colors corresponding to the class labels,
not the number of regions. In most cases, the number of
colors is less than the number of regions in all frames to be
colorized. Therefore, we attempted to use this approach in
production, but encountered a substantial issue: sufficient
training data are difficult to collect

It is technically possible to prepare a large-scale dataset
from existing anime works for model training. However, we
would need to discuss whether this is acceptable for stake-
holders with regard to intellectual property and copyright
management. Even if we could obtain a large-scale dataset
and train a colorization model, we are not certain that the
model would function correctly on novel anime work be-
cause the drawing styles of each anime work are quite dif-
ferent. Another issue concerns the requirements for the col-
orization model used in production: accuracy must match
production-ready quality and the overall processing time
must be sufficiently short to avoid disturbing the production

pipeline. To address the aforementioned issues, we propose
a practical anime-style colorization method that uses a few
pre- and post-colorized line drawings inspired by the patch-
based learning approach [24]. A naive (random) patch sam-
pling method leads to ambiguous correspondence between
patches from such line drawings, which is inefficient and
causes accuracy degradation in model training. We solve
this problem using novel patch sampling with position em-
bedding that is specialized for anime. The advantage of our
method is that it is able to learn a colorization model for
every target sequence from scratch. We also introduce a
learning strategy that continuously updates the colorization
model using new samples colorized by human artists. This
strategy gradually improves the performance of the model
by slightly inheriting current network weights after every
colorization process while considering intellectual property
and copyright management. As a result, this makes the col-
orization process faster while maintaining accuracy.

Our contributions in this study can be summarized as fol-
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Figure 2: Different painting styles: (a) line drawing, (b) watercolor painting-style colorization, and (c) anime-style coloriza-
tion. (d) The anime-style image is colorized with limited colors from a character-specific color palette. Images originate

from Deadline © OLM Asia SDN BHD.

lows:

* We propose an anime-specific few-shot patch-based
learning method with a continuous learning strategy
for faster colorization while maintaining production-
ready accuracy.

e We quantitatively demonstrate that our method
achieves state-of-the-art colorization accuracy within
acceptable processing time for artists, and it can be ap-
plied to characters that appear in novel anime works.

* We found that colored indicator lines (commonly used
in a traditional production pipeline) are useful for pro-
viding guidance not only to human artists but also to
the colorization model, improving colorization accu-
racy.

2. Related work

The anime-style colorization of draft line drawings
is essentially different from the colorization of classic
monochromatic film, hand-drawn sketches, and manga. The
anime-style colorization is often formulated as a region cor-
respondence problem, and the others are essentially an op-
timization problem between a source image and constraints
provided by color scribbles, curves, reference images, or
priors. In the following, we classify existing coloriza-
tion methods into three approaches: color propagation via
region correspondence, color prediction, and colorization
methods based on color propagation with color scribbles.
Then we discuss how the proposed method differs from
those in each category.

2.1. Color propagation via correspondence

The methods in this category are based on propagating
colors via correspondence between components. They es-
sentially consist of three steps. First, they extract compo-
nents from an input and a reference (colorized) sketch and
then determine the correspondences between components.
Finally, they propagate colors or color labels from a ref-
erence to the input sketches according to the correspon-
dences. Such region correspondence can be computed by
solving a quadratic assignment problem or graph match-
ing [8, 18, 12, 11] with active learning [3], template match-
ing [22], patch match [1], globally optimal region track-
ing [29], using a model trained to induce correspondences
between input and reference components [4], or Animation
Transformer (AnT) [2].

The results of these methods are flat coloring that sat-
isfies the requirements of anime-style colorization. How-
ever, when many regions consist of a few pixels (so-called
micro-regions), the number of mapping errors tends to in-
crease, and the accuracy of colorization tends to decrease
as a result of the graph matching based approach. Accu-
racy is also degraded when a region is either split, merged,
lost, or generated in successive frames. Our method learns
the mapping between pre- and post-colorized line drawing
patches, and infers per-pixel color labels for the input line
drawing patches. Hence, the aforementioned micro-regions
do not interfere with the correct mapping. Liu et al. [11]
addressed region correspondences involving significant de-
formation and topological change between two cel shapes.
However, they assumed that the input line drawings were
stored in vector image format. Vectorizing line drawings in
raster image format is not trivial and can contain reconstruc-
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Figure 3: Above: a complex line drawing example consist-
ing of approximately 1000 regions (painted with random
colors). Below: frequency of the number of regions for each
frame of 1881 sequences in 12 episodes of a TV Anime se-
ries. The example drawing above originates from Restau-
rant to Another World 2, © Junpei Inuzuka, IMAGICA IN-
FOS/Restaurant to Another World 2 Project.

tion errors unacceptable to artists. Globally Optimal Toon
Tracking (GOTT) [29] achieves highly accurate region cor-
respondence, however, the cost of precomputation of ap-
pearance and motion terms for every pair of regions from
two different frames increases quadratically with respect to
the number of regions. Depending on the style of anime
work, it may be necessary to address complex line drawings
that consist of hundreds to thousands of regions in a single
frame, as in Fig. 3. In such a case, it is difficult to run GOTT
within a reasonable time, regardless of the optimization.
AnT is a state-of-the-art colorization method in this cate-
gory and its implementation is available in the Cadmium
software package (see https://cadmium.app/).

We show in our quantitative study that, despite its sim-
plicity, our method achieves better accuracy than AnT.
Moreover, collecting training data for our method is much

easier. Specifically, it does not require the consistent label-
ing of segments across frames, the creation of 3D CG mod-
els for pseudo-data generation, or any rendering to create
training data.

2.2. Color prediction

The methods in this category predict colors or color la-
bels using priors derived from the correspondence between
pre- and post-colorized line drawings. cGAN-based manga
colorization [0] is a learning method that obtains a model
from a single image for colorizing frames in manga with
similar compositions. After it predicts the color for each
pixel, it achieves flat coloring by selecting the center value
of k-means clustering of pixel RGB values within each seg-
ment of the predicted image.

Shi et al. have proposed a temporally consistent
reference-based colorization method (called LAVC) for line
art video using color transform and temporal constraint
networks [20]. Li et al. also have proposed a reference-
based colorization method (SGA) for a line-art sketch us-
ing Stop-Gradient Attention [10]. These methods may pro-
duce colors that do not exist in the color palette. Ra-
massamy ef al. [16] and Ishii et al. [7] (referred to as U-
net) addressed the colorization task as semantic segmenta-
tion, and proposed a method that predicts color labels for
each pixel and then votes for color labels within regions
of an input line drawing as a post process. To train the
above models from scratch, LAVC, SGA, and U-net re-
quire a large-scale dataset that has already been manually
colorized. In general, fine-tuning pre-trained models is a
possible workaround for this issue; it adapts the models to
different drawing styles using a small-scale dataset repre-
senting a colorization target. In this paper, we assume that
only a few reference images are available for model train-
ing. Under this assumption, it is difficult to fill the gap be-
tween drawing styles by fine-tuning due to lack of training
data, and then the colorization accuracy does not satisfy the
artists’ requirements. Thus, such methods are not applica-
ble to a wide range of content.

Recently, patch-based learning methods using a small
number of reference images have been proposed and ap-
plied to interactive video style transfer [24]. An interesting
point is that they provide patches instead of whole images
as input to the network so that it trains a local mapping,
before and after stylization. Numerous patches can be ob-
tained from a single image by changing the position used to
cut out a patch. Thus, the stylization network can be trained
using only a few images. Like Ramassamy et al. and Ishii et
al., we address the colorization problem as a semantic seg-
mentation task; however, we make model training possible
using only a few pre- and post-colorized line drawings by
such patch-based learning.

We compare our method to U-net, LAVC and SGA, and
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demonstrate that our proposed learning method can cope
with above mentioned issues in Section 6.5.

2.3. Color propagation with color scribbles

The methods in this category also propagate colors of
user-defined scribbles by considering spatiotemporal co-
herency between neighboring pixels [9] that are interpolated
along with user-defined NURBS curves [14], a level-set
method with boundary optimization between colors [15],
or guide the output colors of deep neural networks [28,

, 9, 27]. These methods do not guarantee the reproduc-
tion of colors in the scribbles and can produce gradations
that do not achieve anime-style colorization (see Fig. 2(b)).
By contrast, Lazybrush propagates the color labels of the
scribbles by solving optimization problems with multi-way
cuts [23] and produces flat coloring. Zhang et al. [26] also
support flat-coloring using a split filling mechanism. The
last two methods achieve anime-style colorization; how-
ever, they require user-defined color scribbles to allow all
line drawings to be colorized. Our method requires manual
colorization for a few draft line drawings for each target se-
quence. Thus, these methods will help artists to paint such
frames by hand.

3. Terminology

Before we describe the methodology of our method, we
first define the terminology we use

Line drawing I ¢ RW*# >3 : a color image that has a
white background, black contour lines, and red, green,
or blue indicator lines that represent objects commonly
used in anime production (see Figs. 1 and 2(a)). W
and H are the width and height of the image, respec-
tively. The red, green, and blue lines indicate bound-
aries where artists need to paint using different colors,
for example, highlight or shadow colors. A set of line
drawings is denoted by Z.

Color palette C' : a dictionary that maps color IDs to ac-
tual RGB values (see Fig. 2(d)).

Label map L € NV *# : an image whose pixel RGB val-
ues are replaced with IDs corresponding to RGB val-
ues in color palette C'. It is derived from a colorized
line drawing. A set of label maps is denoted by L.

Patch : a small piece of an image. It can be extracted from
an image by cutting out a square of size M around a
specified point. We denote a patch by P € RM*Mx3
and a set of patches by P.

Reference frame(s) are manually colorized by users. Pre-
and post-colorized line drawings in reference frames
are used for model training. These line drawings are
denoted using superscript R by Z% and OF, respec-
tively.

4. Anime-specific patch-based learning

To achieve anime-style colorization in a few-shot setting,
we consider the colorization problem as a variant of style
transfer, and propose a learning method based on a method
of patch-based learning for style transfer for video proposed
by Texler et al. To adopt this in the colorization task, we
make two modifications to the network’s architecture: (i)
We make the generator network predict labels instead of
RGB values on patches using the cross-entropy loss func-
tion, and (ii) we include position embedding (PE) to reduce
location ambiguity between two pairs of line drawing and
label patches to distinguish similar line patterns in differ-
ent locations. The proposed learning method adopts an ef-
ficient sampling technique that considers the characteristics
of anime line drawings and a continuous learning strategy to
improve colorization accuracy and reduce processing time.
We introduce each component next.

4.1. Efficient sampling

Anime line drawings have two domain-specific charac-
teristics. First, uncolored line drawings have less color vari-
ation than real images because they are drawn using contour
lines with few colors representing objects such as anime
characters. Second, the color in the colorized line draw-
ing image only changes at the boundary between adjacent
regions or junctions with contour lines. Under these condi-
tions, random or regular patch sampling from a line drawing
may contain ‘blank’ patches with no line, particularly from
the background and large segments. Such blank patches
make both training and prediction difficult because of the
one-to-many mapping from them to background or large
segment labels. Of course we can sample patches from
everywhere on the image and reject those that are blank
patches after sampling. However, sampling only meaning-
ful (non-blank) patches is much more efficient than such a
trial and error approach.

We propose to determine sampling points based on clas-
sical corner detection [19] for contour lines. Then, the sam-
pling points are randomly selected from the detected cor-
ners, within the limit of the number of patches N which
is specified by the user. Finally, patches are extracted by
cutting out square regions around points on pre- and post-
colorized line drawings. As a result, our patch-sampling
helps to reject difficult samples and leads to successful
training and efficient prediction.

4.2. Position embedding

In patch sampling, some pairs of line drawing and label
patches sampled from different locations may have similar
line patterns but different labels. Such data may lead to
one-to-many mapping, which makes learning difficult. To
prevent this scenario, we provide spatial information to the
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Figure 4: Relative 2D coordinate computation for our PE. Purple crosses represent sampling points determined by our
method. Image originates from Deadline © OLM Asia SDN BHD.

colorization network to make line drawing patches unique.
We achieve this by embedding positional information into
sampled line drawing patches as additional channels. We
first compute the center of gravity g of all sampled points
in image coordinates and then compute the position of all
the pixels in each patch relative to g. Finally, we merge
the resulting relative 2D coordinates into each patch as two
additional channels before we input the patch into the net-
work (see Fig. 4):

P = merge(P,X,Y) € RM*Mx5 (1)

We show the effectiveness of this position embedding (PE)
in Section 6.4.2.

4.3. Learning strategy

Our system needs to continuously learn and colorize
line drawings with different visual styles. The uniqueness
of drawing styles often becomes noise that renders model
training unstable. To achieve stable model training in such
a scenario, we introduce the exponential moving average
(EMA) method. The EMA can be seen as an ensemble
of model parameters during training, and it prevents model
training from instability. Specifically, the EMA updates the
model parameters © of generator G by mixing the previ-
ous O©_; and current model parameters Oy at every k-th
iteration of training:

O = (1 - B)Ok—1 + 86y, 2

where ©) = ©,. We empirically set the hyperparameter
B to 0.001. The model parameters © can be reused, ex-
cept for the network’s last layer where the number of units

varies depending on the number of labels in the label maps.
Continuous learning begins from © and is initialized from
scratch or pre-trained. We assume that a collection to be
processed is stored in a data pool D. The collection con-
sists of a successive sequence of line drawing and label
map pairs on each shot. We denote the sequence as a set
7 for the line drawings and £ for the label maps. For each
training iteration, our continuous learning strategy samples
a shot (Z, £) from D, and samples patches (Pin, Pgt ), re-
spectively. Training for the sequence of a shot converts O
into O, where K > k, and K is the number of iterations
for a single sequence. O is used as O in training for the
next shot sequence continuously.

Our learning strategy improves colorization accuracy
and shortens the processing time when users continue to use
our colorization system. We demonstrate the effectiveness
of our learning strategy in Section 6.4.4.

5. Colorization

Given line drawings to be colorized and few pre- and
post-colorized line drawings in reference frames from data
pool D, the proposed colorization system is performed us-
ing the following procedure with the anime-specific patch-
based learning.

1. Regarding preprocessing, the system extracts colors
from the given post-colorized line drawings O and
assigns an ID to each extracted color to generate the
color palette C' for the target sequence. The system
also replaces the colors in the post-colorized line draw-
ings OF with their IDs according to color palette C' to
generate label maps £. Then, the system trains a col-
orization model G using only a few line drawings Z#
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Figure 5: Colorization procedures. Given a few pre- and post-colorized line drawings from reference frames in the target
sequence, the colorization model is trained using the proposed anime-specific patch-based learning. The line drawings of
the remaining frames are then colorized frame-by-frame using the colorization model. Note that all processes run on the
sequence to be colorized. Images originate from Deadline © OLM Asia SDN BHD.

and corresponding label maps £ using the proposed 6. The system replaces the IDs in the resulting label

continuous learning strategy. After training, the sys-
tem saves the resulting model parameters ©;, on the
disk. Oy, is used for the training in the next coloriza-
tion process.

. The system extracts line drawing patches Pi, from the
input line drawing I using anime-specific patch sam-
pling (see Fig. 5(2)).

. The colorization model predicts the labels of the line
drawing patches Pout = G(Pin, O), and the system
generates a label map L by pasting label patches Py
to their original position of the image and selecting the
most frequent ID from the IDs that originate from the
multiple patches overlapping the pixel (see Fig. 5(3)).

. The system computes closed regions in the line draw-
ing I by the leak-proof segmentation method using
trapped-ball filling [6] (see Fig. 5(4)).

. The system replaces the IDs of all pixels with the most
frequent ID for each closed region in the label map L
(see Fig. 5(5)).

map L with colors according to color palette C' (see
Fig. 5(6)) to complete the output colorized line draw-
ing O.

7. The system repeats steps (2)—(6) for the remaining line
drawings in the target sequence.

6. Experiments

To demonstrate the effectiveness of our method, we con-
ducted an ablation study and quantitative evaluation. First,
we present the datasets and metrics used in the experiments.
Then, we describe the tuning we conducted to determine the
optimal patch size that balances accuracy and processing
speed. Finally, we describe the details of the ablation study
and quantitative evaluation. We used the Adam optimizer
for model training with a batch size of 16 and learning rate
of 0.0004. We ran all experiments under Ubuntu 20.04 LTS,
on an Intel Xeon W-2133 3.6 GHz CPU (with six cores),
and a single NVIDIA Quadro RTX 8000 48GB GPU.



6.1. Datasets

Publicly available datasets for evaluating colorization
tasks either contain only single pre- and post-colorized
sketch pair for each character, not sequences (they are ori-
ented towards colorization of sketch illustration rather than
animation) or they are created from videos after the com-
position process (Fig. 1); the background has already been
composited, as in LAVC and AnimeRun [21]. Data from
these datasets does not represent a real situation in the col-
orization process. To the best of our knowledge, there is no
large-scale dataset which satisfies our requirements, due to
copyright issues. Like previous researchers [2, 3, 20], we
constructed two original datasets for evaluation.

Dataset-A consisted of 40 million pre- and post-
colorized line drawing patches with M = 64 sampled from
a TV anime series that had already been broadcast. We used
this dataset to simulate users continuously using our col-
orization system. Its details are described in Section 6.4.4.

Dataset-B consisted of pre- and post-colorized line
drawing sequences of 22 shots from another TV anime
series comprising on-air and unreleased in-house short
movies. The average length of all shots was 11 frames.
We used an average of two frames as the references for
each shot. Although Dataset-B had full HD resolution, be-
cause of hardware restrictions, we shrank it so that either the
height or width of the region of interest in the line drawing
was eight times larger than patch size M. As a result, small
closed regions may have disappeared. We discuss how to
address this issue in Section 7 We used this dataset for all
experiments in Section 6.

6.2. Metrics

Traditional anime-style colorizations have been per-
formed manually by filling blank regions of line drawings
with color. If the result of automatic colorization has some
errors, the artist should replace the wrong color with the
correct color for each region with an error. Thus, it would
be natural for the evaluation of automatic colorization to be
conducted using a region-level metric.

In this context, region-wise accuracy AcCregion, and
mean Intersection-over-Union (mloU) between automatic
and manually colorized images (as the ground truth) are
possible candidates for evaluation metrics. AcCregion 1S
more appropriate because it considers large and small re-
gions equally and evaluates the correctness of the label of
the region over all regions in the sequence; however, this
makes evaluation slow. By contrast, mloU can be evaluated
faster than Accyegion, but it does not provide a region-wise
evaluation in the case of multiple regions that have the same
label. Therefore in this study, as evaluation metrics, we used
mloU for ablation studies of our method, and both metrics
for comparison with other methods. Note that we averaged
IoU over the label classes for each frame, and then aver-
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Figure 6: mloU scores for Dataset-B using a colorization
model trained using patches of different sizes. Note that,
to focus on the impact of patch size variation, all curves
were derived using our method without PE. The dashed line
represents using a random sampling method as the Baseline
(BL). Solid lines represent using the anime-specific sam-
pling method for sampling.

aged the per-frame mloU over all frames. Additionally, we
measured IoU at region level.

6.3. Patch size selection

The patch size affects both the accuracy and speed of
colorization, in a trade-off relationship. Therefore, we as-
sessed the relationship to find the optimal patch size using
Dataset-B.

In Fig. 6, the vertical and horizontal axes represent mloU
for Dataset-B and the number of patches used for coloriza-
tion model training, respectively. Note that, to focus on the
influence of patch-size variation, we did not use PE. We also
show the processing time for each colorization procedure in
Table 1. Note that we measured the ‘model training’ time
when the number of patches reached 16,000 because mloU
seemed to converge at this point. These results indicate that
M = 64 is areasonable patch size providing a good balance
between accuracy and processing time.

6.4. Ablation study
6.4.1 Anime-specific patch sampling

To confirm the contribution of anime-specific patch sam-
pling, we observed the mloU of the results colorized by
the model trained with patches chosen by random sampling
(Baseline:BL) and anime-specific sampling (unmarked) for
Dataset-B. Fig. 6 illustrates the mIoU of the results for the



Table 1: Processing time (s) for each colorization proce-
dure. The ‘model training’ time was measured when the
number of patches reached 16,000. The processing times
for (2), (4), (5), and (6) were almost identical as they are
independent of patch size. —’ indicates the value was the
same as for patch size = 64.

Process / Patchsize | 32 48 64 80 96
(1) Training b8 60 64 72 83
(1) Training(+PE) 59 63 67 75 85
(2) Patch sampling | — — 0.02 — —
(3) Prediction — — 548 — —
(3) Prediction(+PE) | — — 6.00 — —
(4) Segmentation — — 380 — —
(5) Label voting — — 002 — —
(6) Label to color — — 023 — —

patch sizes M = 32,48,64,80,96. The solid and dashed
lines represent anime-specific and random sampling, re-
spectively; they clearly show that the proposed anime-
specific sampling method improved mloU by prioritizing
patches with color variations in the colorized line drawings.

6.4.2 Effect of Position embedding (PE)

To confirm the effect of PE, we observed the mloU of the
colorization results using our method with different patch
sizes M = 32,4864 with and without PE (indicated as
Baseline and With PE, respectively) for Dataset-B. The re-
sults are shown in Fig. 7. The vertical axis represents mloU
and the horizontal axis represents the number of patches
used for model training. Dashed lines represent the cases
without PE and solid lines represent the cases with PE.
When the patches were small (M = 32), PE improved
mloU because smaller patches are likely to lead to one-to-
many mappings, as discussed in Section 4.2. PE resolved
such ambiguous mapping of the patches. When larger
patches (M > 48) were used, PE also improved mloU but
less significantly because large patches reduce pattern sim-
ilarity. As a result, patches are likely to be unique without
PE. Fig. 12 later shows an example. In the shots that con-
tained two characters with similar local appearances, one-
to-many mapping often occurred and PE seemed to improve
mloU. The first column of Fig. 12 shows that the color of
self-shadows on the inner thigh of characters switched when
the Baseline method was used. The colors of the head and
the left-hand side of the character on the right are not correct
either. These results exemplify failures in training caused
by ambiguous mapping. Using With PE seemed to resolve
that ambiguity, as shown in the bottom rows of Fig. 12. As
Table 1 shows, PE requires approximately 3 s more process-
ing time in model training and label prediction. However, it
helps to improve colorization accuracy in such cases.

| -s-- 32 —e— 32+PE
31 48 48+PE
= -x- 64 —e— 64+PE

25

40‘00 80‘00 12600 16600 20600 24600
Number of patches used for training

Figure 7: mloU for Dataset-B using the colorization model
trained on patches with and without PE on Dataset-B.
Dashed lines represent no PE and solid lines represent PE.
Black error bars represent the standard deviation over five
repetitions of the evaluation.

6.4.3 Comparison to image-to-image translation

We addressed the colorization problem as a semantic seg-
mentation task. An alternative approach directly predicts
the color of input line drawing patches as per image-to-
image translation methods, then the color for each pixel is
mapped to the most similar color in the palette. To confirm
the validness of our approach, we also compared the mloU
of the colorization results of this method to our method.
Note that, the voting process is applied to the resulting im-
age to achieve anime-style colorization, as in our method.
This alternative approach is referred as “i2i”. In this study,
neither method used PE.

Fig. 8 shows the mloU of the results for patch sizes of
M = 32,48,64,80,96. The dashed and solid lines rep-
resent i2i and our method, respectively. It clearly shows
that our method is more accurate; i2i produces two types
of error: prediction error and mapping error to the palette’s
colors due to color gradations in the prediction result. In-
stead, our method only produces prediction errors as shown
in Fig. 9.

6.4.4 Learning strategy

To confirm the effectiveness of our continuous learning
strategy, we evaluated colorization accuracy under the con-
dition that the parameters © of the colorization model
were updated multiple times using previous colorization
processes before the target colorization. Specifically, we
first trained colorization models according to our learning
strategy using different sizes of patch gallery consisting of
10,000 to 40 million patches from Dataset-A. This produced
a set of colorization models with {0} }259°0 with a batch
size of 16. Then, we ran the colorization process based
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Figure 8: mloU for Dataset-B using i2i and our method.
Dashed lines represent i2i and solid lines represent our
method.

on the above model parameters O, for each sequence from
Dataset-B. Finally, we computed the average of mloU for
each colorization result over Dataset-B and each ©. The
result is shown in Fig. 10.

The horizontal axis represents the number of patches
processed for the sequence of a shot and the vertical axis
represents the mIoU of the colorization. The blue dashed
line represents the performance of the baseline model that
was trained from scratch (random initialization of the model
parameters). The other solid lines represent the perfor-
mance of the models previously updated using 10,000 to 40
million patches. The labels show the number of patches di-
vided by 10,000 in Fig. 10. The result implies that a gallery
of over 0.1 million patches was sufficient for the updates.

Interestingly, increasing the number of patches used for
pre-training with Dataset-A helped to increase the update
speed for Dataset-B, even though Dataset-A and Dataset-B
consisted of sequences from different anime series. A pos-
sible reason is that Dataset-A was similar to Dataset-B at
the patch level. The model learned to be a generalized fea-
ture extractor for line drawing patches; that is, knowledge
in Dataset-A was transferred to the update step for Dataset-
B. As a result, our learning strategy enabled us to reduce
the time to reach production-ready accuracy. We assume
a new colorization procedure that artists create some refer-
ence frames by hand, provide our colorization system with
the reference frames and the target sequence to be colorized,
and fix the resulting sequence to complete. Our learn-
ing strategy updated the model for every colorization pro-
cess and the resulting model provided progressively better
performance. Because our patch-based learning extracted
many patches, even from a single reference, the collection

of over 0.1 million patches remained practical.

6.5. Quantitative evaluation

To demonstrate the effectiveness of our method, we col-
orized the line drawings from all shots in Dataset-B using
U-net, SGA, LAVC, and AnT, and then compared coloriza-
tion accuracy for all methods.

To compare our method to U-net, we trained a U-net us-
ing pre- and post- colorized line drawings from only the ref-
erence frames for each sequence in Daraset-B. We used the
Adam optimizer with one size of mini-batch and retained
the colorization model with the highest validation mloU
during 20,000 epochs.

SGA supports only one reference image for each col-
orization target. Therefore, we colorized line drawings in a
sequence using each reference line drawing in the sequence,
then picked the most accurate result frame-by-frame for
evaluation. LAVC requires two reference images sandwich-
ing line drawings to be colorized. We used the same refer-
ence image as the second reference if we have only a single
reference image in a sequence. In this paper, we have as-
sumed that only a few images are available for model train-
ing. Under this assumption, it was difficult to train both
models from scratch. An alternative option is to use their
pre-trained models for the evaluation. However, there is
a gap in drawing styles between the dataset they use for
pre-training and Dataset-B; our line drawings consist of
only foreground objects including characters and/or props.
Moreover, they came from before the composition process
(see Fig. 1), in other words, there is no background. To
make the comparison as fair as possible, we attempted to
fill those gaps by fine-tuning both pre-trained models us-
ing Z® and O from Dataset-B as reference sketches or
line art images. Note that, we limited the time for the fine-
tuning to be approximately the same time required to train
our model. Specifically, as for SGA, we fine-tuned the pre-
trained model using 1 to 5 reference images for each se-
quence in the Dataset-B with 400 epochs. As for LAVC,
we fine-tuned the pre-trained model using sequential triplets
extracted from reference images in Dataset-B with 250 iter-
ations. We set the batch size to 1 in both cases. When re-
porting results, we add a suffix ‘w/ fine-tuning’ to a model
after fine-tuning. To achieve anime-style colorization, a
color for each pixel was mapped to the most similar color
in the palette, then the voting process for each closed region
was performed as in our method.

Our method had full components with a patch size of
M = 64 and we trained the model from scratch (Ours from
scratch) or previously updated it using 40 million patches
(Ours). The baseline method (Baseline) used random sam-
pling instead of the anime-specific sampling in our method.
The baseline did not use PE or continuous learning.

The colors of the indicator lines in the line drawings may
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Figure 9: An example of incorrect color mapping to the palette’s colors: (a) input line drawing patch, (b) resulting images
after prediction, (c) after color mapping, (d) after voting process, and (e) corresponding manual coloring result (ground truth).
Above: colorization by i2i, below: colorization by our method. Images originate from Deadline © OLM Asia SDN BHD.
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Figure 10: Colorization accuracy for various models contin-
uously updated using our learning strategy and the Baseline
trained using random initialization. Note that each model
was updated using 1 x 10* —4, 000 x 10* (labeled 1 —4000)
patches of pre- and post-colorized line drawing from each
shot in Dataset-B. The horizontal axis represents the num-
ber of patches used for updating.

be a strong guide to the network and will lead to better per-
formance. To confirm the improvements caused by colored
indicator lines, we also evaluated variants of both AnT and
Ours; the inputs of these methods were the line drawings
consisting of black lines only that we generated by replac-
ing colored indicator lines with black. We refer to these re-
sults as AnT (Mono) and Ours (Mono). Then we computed
the average and standard deviation of region-wise accuracy
and mloU for all methods. The results are shown in Table

2. Additionally, some representative colorization results are
shown in Figs. 13—16 with their statistics.

As shown in Table 2 and Figs. 13-16, regardless of
fine-tuning, SGA and LAVC were less accurate than our
methods. These results indicate that it is difficult for SGA
and LAVC to adapt to various styles of line drawings of
characters and objects given limited data and time. Our
method achieved state-of-the art performance with respect
to region-wise accuracy and mloU while requiring only one
to five colorized references and hence, not requiring a large-
scale dataset, tedious annotation, and pseudo-data genera-
tion for model training.

7. Discussion

We now discuss whether our method demonstrates ac-
ceptable performance for professional colorization artists.
From the professional artist’s point of view, according to the
literature [ 13], borderline acceptable mIoU (which provides
a good starting point for manual colorization and reduces
manual labor time) and overall processing time are 65% and
200 s, respectively. Our proposed method achieves a higher
mloU (80.18%) in a shorter time (approximately 90 s for
model training and 15 s for per-frame automatic painting),
exceeding these targets.

Our learning strategy is efficient for the following rea-
sons.

* It updates our model in the background after running
every colorization process. Because knowledge is dis-
tilled into the network, storing raw data is not required
for performance improvements.



Table 2: Region-wise accuracy and mloU comparison. The
numbers in parentheses are the standard deviation of these
values. Notes: T Trained using only reference frames. * Re-
turned exactly the same results when inputting line draw-
ings with colored indicators.

Method Accregion |70 mloU [%]
U-net 1 21.09 (£4.43) | 27.02 (£5.16)
SGA 9.47 (£3.47) | 9.16 (£1.97)
SGA w/ fine-tuning | 32.24 (£5.42) | 33.10 (£5.26)
LAVC 6.32 (£2.36) | 19.36 (£3.77)
LAVC w/ fine-tuning | 23.51 (£5.44) | 27.07 (£6.41)
AnT 62.27 (£7.95) | 71.80 (£10.79)
Baseline 52.41 (£6.07) | 56.86 (£8.39)
Ours from scratch 68.24 (£6.89) | 75.12 (£7.83)
Ours 70.93 (£6.75) | 80.18 (£8.59)
AnT (Mono) * 62.27 (£7.95) | 71.80 (£10.79)
Ours (Mono) 66.55 (+£8.21) | 75.95 (+10.20)

* It exploits knowledge from the latest colorization pro-
cess: users may use the colorization process in the
same anime work over a period of time.

Ideally, a dataset of the same artwork should be used
to validate the continuous learning strategy (Section 6.4.4).
However, the results of our experiment suggest that even
models trained with images of different styles can con-
tribute to improving accuracy. It may be possible that
the patch-based approach makes the style irrelevant and
then enables the procedural generation of patches for model
training. This would result in some IP-free data and would
improve colorization accuracy from a potentially unlimited
amount of generated data.

Nevertheless, our method has the following limitations.
Because of hardware restrictions, we shrank the input line
drawings (Fig. 11(a)). This may have caused small closed
regions to disappear (Fig. 11(b)), thereby resulting in these
regions not being colorized. Ishii ef al. indicated the dif-
ficultly for artists to find and correct errors arising if the
colorization model outputs incorrect labels for small re-
gions (Fig. 11(c)). They addressed this issue with a strategy
that ignored the result of automatic colorization for such
small regions and regions with low prediction confidence.
In a similar manner, we can address this issue by removing
such small regions from the colorization targets using the
area of a region as a threshold.

Training did not work well with simple line drawings
with few details such as Fig. 11(d). This type of line draw-
ing can be painted faster by hand than using our system.
Additionally, it is not easy for users to know how many and
which reference frames are required to obtain the best re-
sults. Empirically, we first recommend selecting frames that
have many details. Then, we suggest painting secondary

@% oy
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Figure 11: Limitations of our method. Small closed regions
(in (a)) are disappear during the shrinking operation satisfy
the hardware restriction. (b): after shrinking. Such regions
are indicated by painting a noticeable color (e.g. magenta)
to indicate artists need to fix them (c). Colorization results
for a simple line drawing sequence with error (colored ma-
genta) (d). Reference frames are surrounded by dashed blue
boxes. Manual colorization must be much faster than using
our method together. Images on the top row originate from

Restaurant to Another World 2, © Junpei Inuzuka, IMAG-
ICA INFOS/Restaurant to Another World 2 Project.

frames with the highest variation in line topology.

In this paper, we adopted an U-net as a network archi-
tecture for proof of concept. Despite using a simple net-
work, our colorization method achieved state-of-the-art per-
formance on the dataset from real anime productions. The
performance might be improved by introducing the latest
network architectures. We plan to attempt this in future.

8. Conclusions

We have proposed a novel anime-style colorization
method based on few-shot patch-based learning. Our
continuous learning strategy reduces training time while
achieving the desired accuracy. Through a quantitative
evaluation, we have demonstrated that our colorization
method achieves state-of-the-art performance while being
more practical and pipeline-friendly than existing methods.

In future, we hope to make the whole process more inter-
active. We aim to make it possible for users to suggest refer-
ence frames to be painted and to give them immediate feed-
back about the colorization results of the sequence. This
would require achieving on-the-fly iterative training. We are
also considering introducing temporal coherency, and, for
further efficiency in the colorization process, an automatic



open junction snapping method for line drawings [25].
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Appendix
A. Traditional anime production pipeline

From the storyboard of a new anime work, production
follows a pipeline that consists of layout, keyframing, ani-
mation, colorization, and composition, as shown in Fig. 1.

1. Rough sketches are drawn by artists for each sequence
to determine the pose and layout of objects following
the storyboard.

2. Atrtists clean up rough sketches and add details to cre-
ate keyframes. Then the keyframes are traced to ex-
tract contour lines. In this process, contour lines that
are in contact with regions in shadow, highlighted, or
in other colors are commonly colored in blue, red, or
green. These colored lines are essential for indicating
to the artists in charge of colorization which color to
use in the above regions of the frame.

3. Artists insert intermediate frames in between the
keyframes to achieve smooth motion transitions in the
animation.

4. Artists colorize line drawings in the animation.
Each region surrounded by contour lines must be
filled with a single color (Fig. 2(c)) taken from a
color palette designed by the color director; we
refer to this style of colorization as anime-style

colorization. For efficiency, the paint-bucket tools
implemented in commercial software such as TV-
Paint (https://www.tvpaint.com/v2/wp/
?page_id=1224slang=en) and Clip Studio
Paint (https://www.clip-studio.com/
clip_site/clipstudiopaint/scenes/
animation) are often used to fill closed regions.
However, they require airtight regions; hence, un-
intended gaps in the contours must be corrected in
advance.

5. Final animation is composed of the resulting colored
animation, backgrounds, and sometimes rendering im-
ages by CG.

Traditionally, each process is specialized: the same per-
son is not necessarily in charge of all processes.

In some studios, processes from layout to animation are
performed on paper, and the colorization process is per-
formed on a computer using digital scans of the sheets of
paper in raster image format. Recently, some studios have
adopted a fully digital workflow using line drawings in vec-
tor image format. As an intermediate stage, some processes
are performed with vector line drawings and then converted
to raster image format for the subsequent composition pro-
cess. To support both traditional hybrid (analog and digital)
and a fully digital workflow, we focus on line drawings in
raster image format in this study.


https://www.tvpaint.com/v2/wp/?page_id=1224&lang=en
https://www.tvpaint.com/v2/wp/?page_id=1224&lang=en
https://www.clip-studio.com/clip_site/clipstudiopaint/scenes/animation
https://www.clip-studio.com/clip_site/clipstudiopaint/scenes/animation
https://www.clip-studio.com/clip_site/clipstudiopaint/scenes/animation
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Figure 12: These snapshots illustrate that our PE technique contributes to improving colorization accuracy. References: pre-
and post-colorized line drawings used for model training. First row: input line drawings. Second row (Manual Coloring):
target line drawings and their colorization by an artist. Third and fifth rows: automatic colorization results without PE
(Baseline) and with PE (With PE) for the target line drawing. Fourth and sixth rows: corresponding error visualization in
which incorrect colorization compared to manual results is indicated in magenta. Images originate from OLMA Wonderland
© OLM Asia SDN BHD.
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Figure 13: Region-wise accuracy and mloU comparison of the method proposed by U-net, SGA, LAVC, AnT (Cadmium), the
baseline method (Baseline), and our method with a continuous learning strategy (Ours) and with monochrome line drawings
as inputs (Ours (Mono)) on the line drawing sequences. Magenta pixels indicate the incorrect predictions compared to manual
work. Note that the reference frames surrounded by dashed blue boxes were not counted in the evaluation. Images originate
from Restaurant to Another World 2, © Junpei Inuzuka, IMAGICA INFOS/Restaurant to Another World 2 Project.
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Figure 15: Region-wise accuracy and mloU comparison of the method proposed by U-net, SGA, LAVC, AnT (Cadmium), the
baseline method (Baseline), and our method with a continuous learning strategy (Ours) and with monochrome line drawings
as inputs (Ours (Mono)) on the line drawing sequences. Magenta pixels indicate the incorrect predictions compared to manual
work. Note that the reference frames surrounded by dashed blue boxes were not counted in the evaluation. Images originate
from Deadline © OLM Asia SDN BHD.
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Figure 16: Region-wise accuracy and mloU comparison of the method proposed by U-net, SGA, LAVC, AnT (Cadmium), the
baseline method (Baseline), and our method with a continuous learning strategy (Ours) and with monochrome line drawings
as inputs (Ours (Mono)) on the line drawing sequences. Magenta pixels indicate the incorrect predictions compared to manual
work. Note that the reference frames surrounded by dashed blue boxes were not counted in the evaluation. Images originate
from Deadline © OLM Asia SDN BHD.



