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Abstract Dance-driven music generation aims to generate
musical pieces conditioned on dance videos. Previous works
focus on monophonic or raw audio generation, while the
multi-instruments scenario is under-explored. The challenges
associated with the dance-driven multi-instrument music
(MIDI) generation are twofold: 1) no publicly available multi-
instruments MIDI and video paired dataset and 2) the weak
correlation between music and video. To tackle these chal-
lenges, we build the first multi-instruments MIDI and dance
paired dataset (D2MIDI). Based on our proposed dataset, we
introduce a multi-instruments MIDI generation framework
(Dance2MIDI) conditioned on dance video. Specifically, 1) to
capture the relationship between dance and music, we employ
the Graph Convolutional Network to encode the dance motion.
This allows us to extract features related to dance movement
and dance style, 2) to generate a harmonious rhythm, we uti-
lize a Transformer model to decode the drum track sequence,
leveraging a cross-attention mechanism, and 3) we model the
task of generating the remaining tracks based on the drum
track as a sequence understanding and completion task. A
BERT-like model is employed to comprehend the context of
the entire music piece through self-supervised learning. We
evaluate the generated music of our framework trained on the
D2MIDI dataset and demonstrate that our method achieves
State-of-the-Art performance.
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1 Introduction
As choreographer Zakharov puts it ”Music is the soul of dance;
music contains and determines the structure, characteristics,
and temperament of dance”. The relationship between music
and dance is complementary. Studies have demonstrated
that humans utilize the same neural pathways to appreciate
both dance and music [1, 2]. Therefore, it is essential for
the accompanying music that conform to the fundamental
structure, style, and emotional expression to enhance the
artistic appeal of the dance videos.

In the era of short videos, sharing dance performances on
social media platforms has become a popular trend. Main-
stream platforms often provide automatic soundtracks for
dances or allow creators to independently select music clips.
However, it should be noted that the music available in these
libraries is pre-existing and may only be suitable for sim-
ple and regular dance movements. Matching complex and
diverse movements can be challenging. Additionally, the
use of pre-existing music may result in copyright disputes.
Manually selecting appropriate music for dance can be a
time-consuming process. To improve matching, originality,
and efficiency, automatic music generation has emerged as a
thriving subject of research in recent years [3–8].

While there has been significant research on music-to-dance
generation [9–13], the inverse direction of dance-to-music
generation remains underexplored, which is a challenging
task for the following reasons:

• Music generation is challenging [14, 15]. In real-world
applications, music is often polyphonic and multi-
instrumental, requiring harmony and coherence across
all instruments. This complexity in music representation
makes the generation difficult.

• Conditional music generation is also a challenging
task [3, 4, 16]. The correlation between the music and
the control signals, such as dance videos, is often weak.
For instance, this correlation may include musical and
dancing beats, tempo, and emotion [17]. However, there
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are many degrees of freedom for each modality (music
and dance), which can be regarded as noise and may
confuse the generative model during training.

• The lack of publicly available datasets containing paired
music and dance videos hinders the development of
dance-to-music generation research.

There are only a few works studying dance-to-music genera-
tion: Dance2Music [3] takes in the local history of the dance
similarity matrix as input and generates monophonic notes.
However, the handcrafted features they used may discard
much useful information in dance videos and monophonic
music is not applicable to the real scenarios. D2M-GAN [8]
takes dance video frames and human body motions as input
to directly generate music waveforms. While this approach
can generate continuous multi-instrumental music, the high
variability of waveform data (e.g., variable and high-dynamic
phase, energy, and timbre of instruments) makes it difficult
to directly model high-quality waveforms. As a result, the
generated music often contains strange noise.

This work aims to tackle the challenges of dance-to-music
generation and address the issues of previous works. To
overcome the scarcity of datasets, we collect and annotate the
first large-scale paired dataset of dance and multi-instrument
music (D2MIDI), which encompasses six mainstream dance
genres: classical, hip-hop, ballet, modern, latin, and house. In
total, it contains 71,754 pairs of multi-instrument MIDI data
and dance video data. To model the correlation between music
and dance, we introduce a multi-instrument MIDI generation
framework (Dance2MIDI). It is architecturally designed with
three primary modules: a Context Encoder for understanding
the dance motion features related to music, a Drum Rhythm
Generator for creating a base rhythmic drum track, and a
Multi-Track MIDI BERTGen for producing multi-track MIDI
track based on the drum track.

In light of the diversity in human skeleton space and the
intricacy of associated movement patterns, we represent the
human skeleton as a motion graph. To augment the feature
extraction efficacy of the Context Encoder, we employ a graph
convolutional network [18]. Our approach involves bifurcat-
ing the process into two distinct branches, each dedicated
to extracting specific features: one for dance movement and
the other for dance style. The drum, being fundamental to
the establishment of rhythm in music, often serves as the
starting point for composers when crafting a new musical
piece. This is typically achieved by designing the rhythm for
the accompanying drum track. In this context, we utilize a
Transformer as the core of the Drum Rhythm Generator. This
generator progressively creates drum tracks through autore-

gression, guided by dance condition control information. For
the generation of other audio tracks, considering the unique
characteristics of symbolic music in sequence modeling, we
reframe this task as a sequence comprehension and com-
pletion task. Consequently, we introduce a model akin to
BERT [19] to understand the entire MIDI music sequence in
a self-supervised manner. Through experimentation, we have
found that our method can achieve harmonious and coherent
multi-instrument dance-to-music generation and outperforms
all baseline methods [3, 4, 8], demonstrating the effective-
ness of our dataset and framework. In summary, our main
contributions are as follows:

• We construct the first multi-instrument dance-to-music
dataset (D2MIDI), which facilitates research in the field
of dance-to-symbolic music generation.

• We introduce an effective multi-instrument dance-to-
multi track music framework Dance2MIDI, which
demonstrates the feasibility of multi-instrument mu-
sic generation and provides insights into multi-modal
symbolic music generation.

• Exhaustive qualitative and quantitative assessment
demonstrate that our method achieves State-of-the-Art
performance.

2 Background
2.1 Music Generation

While the waveform is the original form of audio, some mod-
els generate audio directly in the waveform [20–22]. However,
a single second of audio waveform spans tens of thousands
of timesteps. As a result, existing non-symbolic music-based
generative methods typically employ intermediate audio rep-
resentations for learning generative models [23–25]. Never-
theless, this does not completely alleviate the dilemma [15].
Consequently, some recent works have adopted a symbolic
music modeling approach. MuseGAN [26] employs a multi-
track GAN-based model using 1D piano-roll symbolic repre-
sentations. Music Transformer [27] generates long sequences
of music using 2D event-based MIDI-like audio represen-
tations. Despite the potential of generative models for long
sequence generation, the quality of samples produced by
these models often deteriorates significantly. To address this
issue, TBPTT [28] employs a Transformer-XL [27] gen-
erator in conjunction with a pre-trained Span-BERT [29]
discriminator for long symbolic music generation, which
enhances training stability. PopMAG [30] proposes a novel
Multi-track MIDI representation MuMIDI that enables si-
multaneous multi-track generation in a single sequence and
introduces extra long-context as memory to capture long-
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term dependency in music. SymphonyNet [31] introduces
a novel Multi-track Multi-instrument representation that in-
corporates a 3-D positional embedding and a modified Byte
Pair Encoding algorithm for music tokens. Additionally, the
linear transformer decoder is employed as the backbone for
modeling extra-long sequences of symphony tokens.

2.2 Dance To Music

A recent novel approach to dance beat tracking has been pro-
posed [32], which only detects music beats from dance videos.
RhythmicNet [16] employs a three-stage model comprising
video2rhythm, rhythm2drum, and drum2music. However,
it is limited to generating music for only two instruments.
CMT [4] establishes three relationships between video and
music, including video timing and music beat, motion speed
and simu-note density, and motion saliency and simu-note
strength. While this approach does not specifically target
dance-to-music tasks and fails to fully exploit the human
motions present in dance videos. Dance2Music [3] utilizes
the local history of both dance similarity matrices to predict
notes but is restricted to generating single-instrument music.
D2M-GAN [8] takes dance videos and human body motions
as input to directly generate music waveforms. However, the
generated music often contains noise.

2.3 Symbolic Music Dataset

The Groove MIDI Dataset (GMD) [33] comprises 13.6 hours
of aligned MIDI and synthesized audio of human-performed,
tempo-aligned expressive drumming, including 1,150 MIDI
files and over 22,000 measures of drumming. In contrast, the
Lakh MIDI dataset [34] is a collection of 176,581 unique
MIDI files, with 45,129 matched and aligned to entries in
the Million Song Dataset. The MAESTRO dataset [35] is a
dataset composed of 198.7 piano MIDI, audio, and MIDI
files aligned with 3 ms accuracy. ADL Piano MIDI [36] is a
dataset that is based on the Lakh MIDI dataset. It generates
9,021 pieces of piano MIDI data from the Lakh MIDI dataset
and then crawls an additional 2,065 pieces of piano MIDI
data from network channels. Both datasets contain only MIDI
music of the piano instrument type. All the above datasets
are purely symbolic and lack corresponding dance movement
annotations. They can’t support the task of dance-to-music.
The AIST Dance Video Database [37] provides a large-scale
collection of dance videos with paired dance action videos and
music annotations. However, its paired music is in the form
of waveforms and lacks paired symbolic music annotations.
Additionally, one piece of music corresponds to multiple

videos, and the non-overlapping music clips comprise only
60 pieces.

3 D2MIDI Dataset
In this section, we provide a brief overview of our newly
collected dance-to-MIDI dataset (D2MIDI) and the method-
ology of its acquisition. D2MIDI represents the first multi-
instrument dataset of its kind and possesses several notable
features:

• High-quality solo dance video: it comprises high-quality
solo dance videos that have been carefully curated
from internet sources to exclude low-quality footage
and videos featuring multiple dancers (Section 3.1)

• Multi-instrument and polyphonic MIDI: the dataset con-
tains multi-instrumental and polyphonic MIDI tran-
scriptions that are temporally synchronized with the
corresponding dance videos (Section 3.2)

• Multi-style and large-scale: the dataset is both multi-style
and large-scale, encompassing a diverse range of dance
styles across 71,754 clips. (Section 3.4).

3.1 Video Crawling and Selection

We manually filter dance videos from various video platforms
using the following screening criteria: 1) The video must
have a pure background with minimal interference from
other characters. 2) Only videos featuring a single dancer are
selected. 3) The music and dance movements must be highly
synchronized. 4) The background music must be clear, and
free of extraneous noise.

3.2 MIDI Transcription and Annotation

To ensure consistency in the Frames Per Second (FPS) with
the dance motions in the videos [13], we first standardize
the FPS of all dance videos to 20. Additionally, we unify
the sample rate of the audio to 10,240Hz and then separate
the audio in the video. Next, we utilize the MT3 [38] music
transcription model to convert the original audio into multi-
instrument MIDI music. However, the MIDI transcribed by
MT3 may contain low-quality notes and discrepancies be-
tween music tempo changes and character movement changes
in dance videos. To address these issues, we enlist profes-
sionals to align and label the MIDI music with reference to
the context of the video and music. Specifically, professionals
adjust the pitch, start time, duration, and instrument type of
notes at corresponding positions in the music based on the
pleasantness of the music and the context of the video.
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Dataset Dance Audio MIDI Genres Instrument Pieces Hours Available
Groove MIDI [33] - 1 1,150 13.6

LMD-aligned MIDI [34] - 10 45,129 -
MAESTRO Dataset [35] 1 1 1,276 198.7
ADL Piano MIDI [36] - 10 11,086 -

AIST Database [37] 10 - 60 118.1
Ours 6 13 71,754 597.95

Table 1 Symbolic music dataset comparisons. The AIST Database does not contain symbolic music. However, it is often used in
dance-to-music tasks for modeling non-symbolic music. In this paper, we also labeled it for comparison experiments.

3.3 Dance Motion Estimation

The movement and posture of the human body are closely
related to the fluctuations in the music. Unlike other 2d-
keypoints methods [39, 40], we extract the 3d keypoints of
the human body including body, hand, and face, allowing
densely represented pose features.

3.4 Statistics

We employ the sliding window method to sample data from
the video. Each sampling window has a size of 600 frames,
equivalent to a 30-second dance video, with a sliding window
size of 40 frames. This process resulted in a total of 71,754
pairs of data, in which the dance type includes classical,
hip-hop, ballet, modern, latin, and house. The music in
each data pair does not repeat each other. In the D2MIDI
dataset, the duration in each data pair is 30 seconds, which is
guaranteed to generate music with a rhythmic structure. The
music in the pair contains up to 13 instrument types, including
Acoustic Grand Piano, Celesta, Drawbar Organ, Acoustic
Guitar (nylon), Acoustic Bass, Violin, String Ensemble 1,
SynthBrass 1, Soprano Sax, Piccolo, Lead 1 (square), Pad 1
(new age) and Drum. We compare our proposed dataset with
public datasets in Table 1.

4 Dance2MIDI Framework
The proposed architecture is schematically illustrated in Fig. 1
and comprises three main components: the Context Encoder,
the Drum Rhythm Generator, and the Multi-Track BERTGen.
In the Context Encoder, we commence by employing the joint
point extraction to obtain the spatial coordinates of the human
joints within the dance video. Subsequently, via the utilization
of two distinct branches, we extract the dance style features and
dance movement features. These extracted features are then
combined to form a concatenated representation, which serves
as a guide for generating conditional control information
that corresponds to the MIDI music. It is worth noting that
in the realm of MIDI music, drums play a pivotal role in
generating fundamental rhythm patterns that underlie the
musical composition. Moreover, in the context of composition

and improvisation, it is customary for composers to initiate
the creation of a new musical piece by designing the rhythm
for the accompanying drum track. As the piece progresses,
additional instrumental tracks are incrementally layered on
top of the drum track, thereby culminating in the production
of the final musical composition. So we first leverage Drum
Rhythm Generator to incrementally generate drum tracks in
an autoregressive manner, thus establishing the foundational
melody of the music. Subsequently, we augment the overall
music composition by incorporating note information from
other tracks and instruments, thereby enhancing its richness
and complexity. We conceptualize this process as a sequence
completion task, wherein the BERT-like model is employed to
enrich the remaining music track, facilitating a comprehensive
understanding of the entirety of the musical piece.

4.1 Context Encoder

The Context Encoder primarily comprises two branches de-
signed to extract features related to dance movement and
dance style. Initially, the human body motion joint coordinate
X ∈ RT×J×3 is extracted from the original dance video via
the Mediapipe framework [41], which is then input into two
conditional encoders.

In the dance movement branch, the human body motion
joint is modeled as a motion graph. The spatial position of the
character’s joints in each frame is first aggregated through a
spatial Graph Convolutional Network (GCN). Subsequently,
timing information across time frames is aggregated via tem-
poral convolution. After this, we obtain the dance movement
features Zm ∈ RT×F , where T and F represent the num-
ber of video frames and the number of feature channels,
respectively. It’s particularly noteworthy that the relation-
ship between dance movements and the beats of music is
intricately linked, as it is the transitions in dance movements
that often drive changes in musical beats. In this context, we
transform the dance movement feature into a binary detection
problem for music beats: Given the dance movement fea-
ture Zm ∈ RT×F , motion information across both temporal
and spatial dimensions is consolidated via attention learning
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Fig. 1 An overview of our proposed Dance2MIDI model. The dance video is input into the Mediapipe framework [41] to extract the
coordinates of the human body’s joint points. These coordinates are then used to encode the spatio-temporal features of dance movement and
dance style (yellow block). Subsequently, these features serve as conditional information to guide the generation of multi-instrument MIDI
music sequences (green block).

within the Transformer encoder, yielding the final beat binary
sequence Zb ∈ RT of the same length as Zm, where each
frame is classified as either a beat or non-beat. This approach
lays the foundation for the entire musical piece, ensuring con-
sistency in timing and rhythm between the dance movement
and the music.

The dance style branch operates similarly to the Choreo-
Mater network [42], utilizing four GCN blocks and two Gated
Recurrent Unit (GRU) layers to compress the dance sequence
into 32-dimensional embedding vectors Zs. The vectors are
then input into an MLP classifier. The dance style branch
is pre-trained on the large-scale annotated dataset D2MIDI.
In the final step, the beat binary sequence and style feature
are concatenated to derive conditional control information Z,
which subsequently guides the multi-instrument MIDI music
generation.

4.2 Music Representation

Inspired by SymphonyNet [31], we represent multi-instrument
music using quads, which include event, duration, track, and
instrument.

• Event: The event attribute comprises four sub-attributes:
measure, chord, position, and pitch. A BOM symbol is
used to indicate the beginning of each measure, with all
symbols in the measure added after the BOM symbol.
Beat and note duration are adopted as time units to divide
each measure and determine position. The pitch range is
divided from 0 to 127 based on the general MIDI design.

• Duration: It represents the duration of each note.
• Track&Instrument: The track and instrument attributes

are determined by traversing the music and identifying
the track and instrument corresponding to each note.

Unlike natural language sequences, symbolic music sequences
exhibit relative position invariance. For instance, a chord C

containing the music notes (C,N1, N2, N3) is equivalent to
(C,N2, N1, N3). As they comprise the same notes and are
controlled by the same chord, the order of the notes does

not affect the musical effect. Therefore, we employ relative
position encoding for music notes.

4.3 Drum Rhythm Generator

Given that multi-instrument MIDI music can be represented as
discrete tokens, it is inherently suitable for sequence modeling
in the realm of natural language processing. Consequently,
we employ an autoregressive approach to generate drum track
notes. More specifically, we utilize a Transformer model [27]
to generate drum notes in a step-by-step manner, guided by
the dance condition control vector Z. For the key attention
module in the model, we adopt the Masked Self-Attention
(MSA) module consistent with the Transformer and design
the cross-attention module Video Guided MIDI (VGM).
The cross-attention mechanism [43] is utilized to blend two
distinct sequences of embeddings, where these sequences
can represent different modalities. Similarly, one sequence
serves as the input query (Q), defining the length of the
output sequence, while another sequence provides the input
keys (K) and values (V). The MSA and VGM modules are
employed in pairs. The VGM module employs conditional
control information Z to guide attentional learning in the
Drum Rhythm Generator. The attention maps of the VGM
block tend to focus on values related to visual information.
The specific calculation method is shown in Eq. (1). Among
them, the Drum-encoded sequence D is utilized as the query,
while the conditional control information Z extracted from
the dance video is employed as both the key and value. The
parameter matrices W q ∈ Rdmodel ×dq , W k ∈ Rdmodel ×dk , and
W v ∈ Rdmodel ×dk . In this work, the number of heads h in the
multi-head VGM attention module is 8. For each head, we
use dq = dk = dmodel/h = 64.

VGM(Q,K, V ) = softmax

(
DW q(ZW k)T√

dk

)
(ZW v)

(1)
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4.4 Multi-Track MIDI BERTGen

In the process of enriching the entirety of a musical piece, we
generate note information for tracks beyond the drum track.
This task bears resemblance to image inpainting in computer
vision and context understanding tasks in natural language
processing. Given the unique nature of symbolic music as
sequence modeling, we incorporate the BERT model [19]
to comprehend the entire symbolic music sequence. The
audio track that is to be completed is considered a part of
the random mask in the BERT model. Unlike the masking
strategy used in the BERT model, we have designed a novel
masking approach tailored to the characteristics of symbolic
music composition. Considering that a piece of music com-
prises multiple measures, and each measure contains tokens
with similar attributes – the values of signature, tempo, and
measure attributes remain consistent within each measure,
and the types of instruments also follow a similar pattern, re-
stricted within a small-scale range. Within the same measure,
the information on position and pitch is also closely related.
Therefore, employing a masking strategy within the same
measure facilitates the model’s learning of musical pattern
structures. Specifically, we apply masking to the same type of
tokens (events, durations, tracks, instruments) across different
measures. In alignment with BERT, we replace 80% of all
masked tokens with MASK tokens, substitute 10% with a
randomly chosen token, and leave the remaining 10% unal-
tered. The Multi-Track MIDI BERTGen, a classic multilayer
bi-directional Transformer encoder, comprises 12 layers of
multi-head self-attention, each with 12 heads, and a hidden
space dimension of 768 in the self-attention layers. As a
self-supervised method, BERTGen does not require labeled
data from downstream tasks for pre-training.

Each input token is initially transformed into a token
embedding via an embedding layer, supplemented with a
relative positional encoding that corresponds to its time step
in the sequence. This is subsequently fed into a stack of 12
self-attention layers to obtain a contextualized representation,
known as a hidden vector or hidden states, at the output
of the self-attention stack. Owing to the bi-directional self-
attention layers, the hidden vector is contextualized in that it
has attended to information from all other tokens from the
same sequence. Ultimately, the hidden vector of a masked
token is fed into a dense layer to predict the missing token.
As the vocabulary sizes for the four token types vary, we
proportionally weight the training loss associated with tokens
of different types to the corresponding vocabulary size to
facilitate model training.

4.5 Training and Inference

Our model is trained in an end-to-end manner. During training,
dance motion features and historical MIDI event sequences
are input to predict the probability output of the next music
event token. In the inference phase, the model autoregres-
sively predicts the next MIDI event. Notably, at time step 0,
the historical MIDI event sequence is empty, meaning that
generation begins with an empty token.

5 Experiments
5.1 Datasets

We evaluate the effectiveness of our method through exper-
iments on two datasets with paired dance video and music:
the publicly available AIST dataset [37] and our D2MIDI
dataset. The non-repetitive music in the AIST dataset com-
prises only 60 pieces, with one piece of music corresponding
to multiple dance segments. The AIST dataset contains a total
of 1,618 dance motions. However, many motions are filmed
from different camera perspectives, resulting in 13,940 dance
videos. Thus, on average, one piece of music corresponds
to 232 dance videos. The AIST dataset encompasses ten
dance genres: ballet jazz, street jazz, krump, house, LA-style
hip-hop, middle hip-hop, Waack, lock, pop, and break. In
contrast to, the music corresponding to each dance segment
in our D2MIDI dataset is unique, making it more suitable for
music generation tasks. The D2MIDI dataset contains 71,754
paired dance videos and MIDI music data, which are not
present in the AIST dataset. The dance types of the D2MIDI
dataset encompass six major genres: classical, hip-hop, ballet,
modern, latin, and house.

5.2 Evaluation Metrics

We evaluate our method both objectively and subjectively
using publicly available metrics [4, 8] and compare our model
with the three State-of-the-Art models.

5.2.1 Coherence
To assess the coherence between dance beats and generated
music rhythms, we utilize two objective metrics: Beats Cover-
age Score (BCS) and Beats Hit Score (BHS), as employed in
previous works [11, 45]. These works have demonstrated that
dance motions and music beats are typically aligned, allowing
for a reasonable evaluation of music tempo by comparing
beats in generated and ground truth music. We denote the
number of detected beats in the generated music samples as
Bg , the total number of beats in the original music as Bt, and
the number of aligned beats in the generated samples as Ba.
During inference, the duration of music generated using the
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Fig. 2 Visualization result. For the given dance video input, Dance2MIDI generates corresponding MIDI music and converts it into
a waveform. The music beat is detected using the public toolbox Librosa [44]. Two pieces of the dance videos are examples, where the
blue box indicates the real dance beat (the turning point of the dance motion), and the red box indicates the frame of the dance video
corresponding to the timestamp of our audio beat.

different methods may not align precisely with the duration
of the real music, resulting in an overflow of detected beats
Bg. Consequently, when the duration of music generated by
the model does not match or significantly differs from the
ground truth, BCS may exceed its value range of [0,1]. To
address this issue, we standardize BCS value and propose
Beat Average Score (BAS) in conjunction with the BHS.
Specifically, as shown in Eq. (2), we employ exponential
functions to constrain the BCS values within the range of 0
and 1. If the BCS value is less than 1, we use the exponential
function eBCS−1. When BCS is greater than 1, we apply the
exponential function e1−BCS.

• BCS It is calculated as Bg/Bt, representing the ratio
of overall generated beats to total music beats.

• BHS It is calculated as Ba/Bt, representing the ratio
of aligned beats to total musical beats.

• BAS The calculation method is shown in Eq. (2),
representing the overall coherence between dance beats
and music rhythms.

BAS =

{
0.5× (eBCS−1 + BHS) s.t.BCS < 1
0.5× (e1−BCS + BHS) s.t.BCS > 1

(2)

5.2.2 Quality
We employed the objective metrics outlined in [4, 46] to
assess the quality of symbolic music. These metrics include
Pitch Class Histogram Entropy (PHE) and Grooving Pattern
Similarity (GS).

PHE It evaluates the tonal quality of the music. we first
gather all notes within each bar and then construct a 12-
dimensional pitch class histogram

−→
h , based on the pitch of

all notes. This histogram is normalized by the total note count
within the period such that

∑
i hi = 1. Then, we calculate

the entropy of
−→
h as Eq.( 3):

H(
−→
h ) = −

11∑
i=0

ni log2 (hi) (3)

GS It measures the rhythmicity of the music. In informa-
tion theory [47], entropy is utilized to measure uncertainty.
We apply entropy H to assess the tonal quality of symbolic
music. A lower entropy value H indicates a clear tonality
within a piece of music. For GS, it represents the positions
within a bar where at least one note onset occurs, denoted by
−→g , a 64-dimensional binary vector. The similarity between a
pair of grooving patterns is defined as Eq. (4).

GS
(−→g a,−→g b

)
= 1− 1

Q

Q−1∑
i=0

XOR
(
gai , g

b
i

)
(4)

Where Q represents the dimension of −→g a and −→g b, XOR

denotes the exclusive OR operation. If the music exhibits a
distinct rhythmic feel, the groove pattern between each pair of
bars should be similar, resulting in a high Groove Similarity
score.

5.2.3 Qualitative Evaluation

We also conduct an audio-visual survey to subjectively com-
pare the different models. We conduct the Mean Opinion
Score experiments [8] to assess the quality of the music and
the correspondence between the video and music. For each
dance genre, 50 samples are evaluated by 5 professional
choreographers. That is, a total of 500 evaluation samples are
provided for the AIST dataset, and a total of 300 evaluation
samples are provided for the D2MIDI dataset. Among the
five choreographers involved in this study, three are female
and two are male, spanning an age range of 25 to 45 years.
They possess extensive experience in choreographing various
types of dances. The entire evaluation process was conducted
anonymously, ensuring that participants were unaware of
which model generated the data samples. In our study, we
present human participants with the same video accompanied
by music synthesized using different methods. Participants
are then asked to rate the music on a scale of 1 to 5, with
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D2MIDI AIST
Metric CMT [4] Dance2Music [3] D2M-GAN [8] ours CMT Dance2Music D2M-GAN ours
PHE ↑ 2.49 2.24 / 2.89 2.55 2.26 / 2.92
GS ↑ 0.62 0.98 / 0.99 0.64 0.98 / 0.99
BCS 5.11 1.75 0.68 0.73 4.87 1.73 0.70 0.76
BHS 0.29 0.42 0.45 0.53 0.32 0.44 0.48 0.61

BAS ↑ 0.15 0.44 0.59 0.65 0.17 0.46 0.61 0.69
Consistency ↑ 3.21 2.82 2.55 3.91 3.38 2.99 2.62 3.99

Noise ↑ 3.43 3.68 2.68 3.57 3.45 3.72 2.82 3.67
Table 2 Objective and subjective evaluation results on the D2MIDI and AIST Dataset. ↑ means the higher the better.

higher scores indicating better performance. The primary
evaluation criteria are:
• Consistency the degree to which the major stress or

boundaries of the generated music aligned with the video
boundaries or visual beat. For instance, fast-paced dance
movements should be accompanied by major stress to
enhance musicality.

• Noise noise degree of sounds produced by non-
instrumental sources. For instance, a pleasing musical
composition should be free of extraneous white noise. The
lower the noise level, the higher the score awarded by
participants.

5.3 Implement Details

We apply the same processing method described in Sec-
tions 3.2 and 3.3 to the AIST dataset to obtain paired dance
motion joint data and MIDI music data. Our framework is
implemented using PyTorch. The encoder of the graph con-
volutional network in our framework comprises 10 layers
with residual connections. The number of layers in the graph
convolution network is set with reference to the ST-GCN
network [18], which is specifically designed for action recog-
nition tasks. It consists of 9 layers of spatial-temporal graph
convolution operators. The first three layers have an output of
64 channels. The following three layers have an output of 128
channels. The last three layers have an output of 256 channels.
Subsequently, we add a layer with 512 channels to align with
the dimension of the Transformer Encoder for predicting
the beat binary sequence. To prevent overfitting, we apply
random affine transformations to the skeleton sequences of
all frames during training as a data augmentation technique.
Both the encoder and decoder blocks of the Drum Rhythm
Generator are set to 6. For each block, the dimensionality of
the attention layer and feed-forward network layer are set to
512 and 1024, respectively. The multi-head VGM attention
block has 8 heads. For post-processing of the generated MIDI
music data, we use the FluidSynth [48] software synthesizer
to convert the generated MIDI music into music waveform,

consistent with the CMT model [4]. We train our model using
the Adam optimizer with parameters β1 = 0.9, β2 = 0.9,
and ε = 10−9. The learning rate is scheduled during training
with a warm-up period: it linearly increases to 0.0007 for the
first 6000 training steps and then decreases proportionally to
the inverse square root of the step number.

5.4 Results

We conduct training and evaluation on the AIST and D2MIDI
datasets, respectively. For the state-of-the-art methods, in-
cluding the CMT [4], Dance2Music [3], and D2M-GAN [8],
we use the default parameter settings provided in their open-
source code. For different dance genres, we divide the training,
validation, and test sets in a ratio of 8:1:1 and use the same
dataset settings for all models. As shown in Table 2, our
model outperforms existing state-of-the-art methods on the
objective metrics of PHE and GS, indicating that the music we
generated was slightly better in terms of tone and rhythm. In
a similar vein, our method outperforms others on BHS, BCS,
and BHS. This demonstrates that the congruence between the
music and videos generated by our approach is superior. Our
method also achieves the best performance on the subjective
metric of Consistency, further indicating that the music and
dance videos we generated are highly consistent.

Dance2Music [3] achieves optimal performance on Noise
metric, a subjective indicator measuring the purity of music.
This is because the Dance2Music [3] model only models
piano music and can only generate piano music, resulting in
limited scalability. In the case of the CMT model [4], it has
been observed that the length of the generated music often
does not align with the duration of the corresponding dance.
This discrepancy can be attributed to the model’s lack of
explicit consideration for dance characteristics, resulting in a
BCS metric that is significantly greater than 1. Our model is
much stronger than that of the CMT model and the duration
of the generated music is generally consistent with that of the
dance video.
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The visualization results are presented in Fig. 2, where two
dance videos are depicted. The red box represents the video
frame corresponding to the timestamp of the generated music
beat, while the blue box represents the real dance beat. It
can be observed that there is a difference of only three video
frames between them, indicating a high degree of alignment
between the generated music and dance movements.

6 Discussion
In this paper, we constructed the first multi-instrument
MIDI and dance paired dataset (D2MIDI), which can serve
as a benchmark dataset for future research on generat-
ing background music for dance videos. We proposed the
Dance2MIDI framework for multi-instrument MIDI genera-
tion. Dance2MIDI leverages the consistency of paired data
to mitigate the weak correlation between music and video.
As a two-stage generation framework, Dance2MIDI initially
synthesizes a fundamental drum rhythm track utilizing the
Transformer cross-attention mechanism, guided by dance
condition information. Subsequently, the synthesis of the
remaining audio tracks is structured as a sequence comple-
tion task. With the aid of the BERT model, we inpaint the
remaining audio tracks.

In addition, some dance genres such as folk and ballet,
may not exhibit the strong rhythmic elements characteristic
of pop dance, and often utilize music without drums. In the
Dance2MIDI framework, we initially generate the drum track
for the entire piece using the Drum Rhythm Generator module.
This drum part, serving as the cornerstone of the music’s
beat, is enriched with the transitions and dynamics of dance
movements and assists in the generation of other tracks within
the Multi-Track MIDI BERTGen module. For dances like folk
and ballet, we opt to remove the drum track in the final stage
through post-processing, resulting in music without drums.
Adopting this pipeline enhances generalizability, making it
applicable to various dance types.

However, there are still limitations to our work: due to
the variability in shape, form, and mechanics of drum in-
struments [16], their performance is a major bottleneck for
music quality, which we aim to address in future work. Addi-
tionally, Dance2MIDI is currently limited to the generation
of soundtracks for single-person dances. Future work will
include an in-depth exploration of the application of group
dances. For the user study, the current qualitative assessment
experiment is indeed limited by the number of participants.
We plan to extend our coverage to diverse participant groups
in the future. This will be achieved by randomly selecting
participants, a method aimed at minimizing self-selection
bias.
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