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Abstract. Image/video synthesis has been extensively studied in aca-
demics, and computer-generated videos are becoming increasingly pop-
ular among the general public. However, ensuring the temporal consis-
tency of generated videos is still a challenging problem. Most existing
algorithms for temporal consistency enhancement rely on the motion
cues from a guidance video to filter the temporally inconsistent video.
This paper proposes a novel approach that processes single-video input
to achieve temporal consistency. The key observation is that we can ob-
tain a coarse guidance video through temporal smoothing and refine its
visual quality using a rolling guidance pipeline. We only use an off-the-
shelf optical-flow estimation model as external visual knowledge. The
proposed algorithm has been evaluated on a wide range of videos syn-
thesized by various methods, including single-image processing models
and text-to-video models. Our method effectively eliminates temporal
inconsistency while preserving the input visual content.

Keywords: temporal consistency · video enhancement · video filtering.

1 Introduction

Video shot represents a realistic or virtual scene in a period. In most scenarios,
the shading and reflectance of the scene remain almost unchanged, leading to
temporally consistent content in the image domain. Videos captured by cam-
eras or synthesized by realistic rendering algorithms usually have good temporal
consistency. However, the rapid development of image processing algorithms and
neural synthesis techniques brings new challenges to temporal consistency. Hu-
mans are sensitive to flickering effects in the generated videos and usually prefer
temporally consistent presentations. Some videos are created from source videos
with an image processing algorithm executed frame by frame. These videos of-
ten suffer from poor temporal consistency because the adopted algorithms are
unstable under the camera and object motion. Some videos are synthesized with
more abstract guidance information, such as label maps, edge maps [40, 52, 33]
and text description [14, 35, 9], and in these cases, it is more difficult to achieve
temporal consistency.
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Currently, there are two main-stream strategies to enhance the temporal
consistency of synthesized videos. The first one is adding some temporal con-
straints in a specific synthesis algorithm. For example, when training a neural
network, people can add a loss term that requires two pixels corresponding to
the same physical location in consecutive frames to have similar color [16]. An-
other strategy is to apply a post-processing filter to deal with different types of
inconsistency brought by various algorithms [4]. The latter category of meth-
ods can transfer the inter-frame correspondence from a source video to a target
one. Here the target video is generated by some algorithm from the temporally
consistent counterpart. However, the source videos are not always available, and
some input representations, such as edge maps and textual descriptions cannot
provide temporal correspondence. Therefore, it is of great value to develop an
algorithm for temporal consistency enhancement with single-video input. We
notice that a few recent papers [1, 24] have similar motivations, but our solution
is quite different from those and has its advantages. We will give the theoretical
and experimental comparison with the method proposed in [24].

The temporally inconsistent video input is denoted as I = {I1, I2, · · · , IT },
where T is the number of frames. The image resolution is W × H. Our goal
is to find another sequence J = {J1, J2, · · · , JT } with the same resolution that
maintains the video content and removes as much temporal inconsistency as pos-
sible. A straightforward approach to ensure temporal consistency is smoothing
the video content temporally. To tackle view changes and object motion, we can
adopt an optical-flow estimation method to find pixel correspondence between
consecutive frames and apply a 1D filter on each temporal trajectory indepen-
dently. However, this operation will inevitably smooth every frame in the spatial
domain because the flow estimation is imprecise. In addition, the estimated flow
becomes less reliable when there exists a flickering effect.

High-quality temporal filtering is possible if there exists an appropriate guid-
ance video. The blind video consistency method (BVC) [4] and Deep Video Prior
(DVP) method [25] are two major solutions. BVC uses gradient-domain opti-
mization, while DVP regards the architecture of neural networks as a kind of
regularization. Directly using input I as guidance is unsuitable for these two
algorithms. The weights for warping error in [4] are determined by the pixel
similarity in the guidance video, so the guidance video must be stable enough.
The DVP algorithm requires more properties of guidance video. It must contain
the correct structures and textures. Otherwise, the network will produce blurry
results. For example, the DVP algorithm does not work when using edge maps
as guidance. The three candidate approaches above have their drawbacks, but
we will show that the video temporal consistency can be effectively enhanced if
they are carefully combined. Besides, it is difficult to resolve the temporal con-
sistency problem in a single-stage neural network such as [22] because of the lack
of precise inter-frame correspondences. Thus, we design a multi-stage method to
tackle different aspects of challenges progressively.

Our solution brings a few ideas from image filters. Image filters are designed
to reduce the spatial variation, while in this task we need to reduce the tempo-
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Input video Enhanced video

Fig. 1. Example of single-video temporal consistency enhancement. Our algorithm only
takes the temporally inconsistent video (left) as input and creates a consistent version
(right) with the rolling guidance framework.

ral variation. Image filtering algorithms can utilize structural information from
a guidance image [21]. Similarly, previous video temporal filters need a guidance
video with sufficient temporal consistency. The problem we encounter is how to
construct an appropriate guidance video from unstable input. Inspired by the
Rolling Guidance Filter [49], we propose a pipeline that generates a coarse guid-
ance video at first and refines the video content gradually. The pipeline consists
of three stages. In the first stage, we apply a temporal version of domain trans-
form filter [10]. The filtered video can provide a more precise optical flow map so
that we can apply the filter repeatedly with the refined temporal correspondence.
After a few steps of temporal filtering, we obtain a coarse but temporally stable
video. Then we recover the image structures using gradient-domain optimiza-
tion, which is modified from the method proposed in [4]. The filtered video from
the previous step can serve as guidance and provide inter-frame correspondence.
In the final stage, we refine the global consistency and suppress visual artifacts
using Deep Video Prior [25], where we still use the result from the previous
stage as the guidance video. An example of temporal consistency enhancement
result is presented in Fig. 1. The temporal color inconsistency in the input is
introduced by an image operator, and our algorithm can remove it and achieve
a visually pleasing result.
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We conducted experiments on a wide range of synthesized videos. We tested
single image operators including colorization, enhancement, spatial white bal-
ancing, and dehazing algorithms. We also evaluated videos generated by the
text-to-video model, line art colorization model, and neural shading model. We
exhibit that our algorithm can effectively improve temporal consistency while
maintaining the original image content. Our algorithm does not require guidance
videos, and we do not need to train any new network on external datasets. The
model only relies on a relatively reliable optical-flow estimation model [37]. The
main contributions of this paper are:

– We propose a novel rolling guidance framework of temporal consistency en-
hancement with single-video input.

– Our algorithm achieves better temporal consistency and visual quality com-
pared with previous methods on a wide range of videos.

2 Related Work

We briefly review the representative papers for temporally consistent video pro-
cessing and synthesis. Some algorithms are designed for specific tasks, and others
are task-agnostic, which could serve as a post-processing filter for various types
of processed videos. We also discuss some relevant papers about spatial filters
that inspired us to do this work.

2.1 Temporal Consistency for Specific Tasks

Optical flow is widely used in video synthesis algorithms. The accuracy of flow
estimation is significantly improved by neural networks such as FlowNet [8, 17],
PWC-Net [36] and RAFT model [37]. The most popular method to enhance
temporal consistency is using a warping loss between consecutive frames as reg-
ularization during network training. Usually, an optical-flow estimation model
is adopted to determine the warping function. The warping loss could be used
for video style transfer [16], colorization [23], scene illumination [43] and low-
light enhancement [47]. Besides, test-time training with geometric constraints
was proposed to improve the consistency of depth-map estimation [28].

There are some other strategies to ensure temporal consistency in video syn-
thesis. TecoGAN [7] predicts the video sequence with a forward pass and a
backward pass, then a ping-pong loss is used to ensure long-range temporal con-
sistency. This network is trained for video super-resolution and video translation.
Vid2vid [40] is built upon the Pix2pix model [18, 41]. It fuses the image warped
from previous predictions and a synthesized image with a predicted occlusion
map. This method can be accelerated by spatial compression and frame interpo-
lation technique [52]. Video translation model can also be trained on unpaired
dataset [5] using cycle consistency for both reconstructed frames and their flow
maps.
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2.2 Blind Video Temporal Consistency

A temporally inconsistent video is usually the processing result of a source video.
Bonneel et al. [4] provided the first blind video temporal consistency (BVC)
algorithm, which is independent of how the target video is generated. They
optimize the video content with a gradient term to maintain the contrast of
processed video and a weighted warping term between consecutive frames. Yao
et al. [46] constructed the warped frame from a few keyframes and used a con-
tent compensation method to refine detail structures. They also proposed a
new metric for temporal consistency considering the warping error on both the
source video and the target video. Lai et al. [22] trained a ConvLSTM network
on DAVIS dataset [30] to achieve fast blind video consistency (FBVC). They
adopted the perceptual loss [19] and warping loss as supervision. Deep Video
Prior (DVP) [25] extended the concept of Deep Image Prior [26]. A neural net-
work (e.g., U-Net [31]) is trained to reconstruct the processed frame from the
input frame. Since the model fits only one sequence, it can implicitly transfer the
temporal correspondence of input frames to the processed frames, leading to a
temporally smooth output. The thought of DVP can also be adapted to specific
tasks such as video segmentation [51]. Recently, researchers have been consider-
ing how to improve temporal consistency when the source video is unavailable.
Lei et al. [24] proposed the blind video deflickering algorithm, which uses a neu-
ral filter to improve the flawed neural atlases [20]. Ali et al. [1] proposed another
framework for task-agnostic consistency with a novel tri-frame design for stable
flow estimation on flickering data.

2.3 Spatial Smoothing Filters and Rolling Guidance

Smoothing filters in the image domain are extensively studied, but we will only
introduce some widely-used filters here. Bilateral filter [38] is probably the most
famous tool for edge-preserving smoothing. Some methods are formulated as
minimizing the data term and some regularization terms such as L0 gradient
norm [44], L1 gradient norm [3] and Relative Total Variation [45]. Domain trans-
form filter [10] explicitly defines the smoothing operation and is more efficient
for computation.

The smoothing process can also be conducted with a guidance image. A
classical formulation is the joint bilateral filter [21], and the guided filter [13]
is another famous tool. The guidance map can be constructed in a more so-
phisticated way, deriving other filters such as bilateral texture filter [6]. Rolling
Guidance Filter [49] uses a Gaussian filter to generate the initial guidance and
refine the guidance with the joint bilateral filter iteratively. The converged guid-
ance image is also the smoothed version of the input image. The idea of rolling
guidance is also applied to geometry processing, known as the rolling guidance
normal filter [39].
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Fig. 2. The pipeline of our algorithm. We adopt the framework of Rolling Guidance
Filter [49]. We start with the input video J 0 = I and apply a series of operators
to filter the input video with guidance iteratively. Specifically, we apply the temporal
domain transform filter to get the coarse guidance in the first stage, apply gradient-
domain optimization to get detailed guidance in the second stage and enhance the
global consistency using the deep-video-prior of a U-Net in the last stage. The final
output is denoted by J .

3 Method

3.1 Overview

The pipeline of our temporal consistency enhancement algorithm is illustrated
in Fig. 2. The input video is denoted as I = {I1, I2, · · · , IT }. Similar to the
Rolling Guidance Filter [49], we compute a series of videos J 1,J 2, · · · step by
step. Each video could serve as guidance for the next step. Let J 0 = I, we can
formulate the process as:

J i = Filteri(J i−1, I), (1)

where the function Filteri(·, ·) represents a joint filter that uses the guidance
information inside J i−1 to refine I. However, unlike the pipeline in [49], we
adopt three filters in the entire process for different purposes.

Firstly, the input sequence I is smoothed by a temporal version of domain
transform filter [10], resulting in a coarse but temporally stable guidance video
J 1. Then it is possible to use J 1 to compute more precise flow maps and
reuse the domain transform filter. We repeat this process for s times to obtain
J 1, · · · ,J s.

Secondly, we try to recover the image structure. In this stage, we adopt a
gradient-domain optimization framework modified from BVC [4]. We use J s as
guidance to filter the target video I from frame 1 to frame T , obtaining J s+1.
Then we regard J s+1 as a new guidance video and apply the optimization algo-
rithm in the opposite direction, obtaining video J s+2 with improving structures.
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The final stage is designed to refine J s+2 for global consistency. We use Deep
Video Prior [25] to reconstruct I from J s+2 by training a convolutional neural
network from scratch. The final result is denoted by J .

3.2 Constructing Coarse Guidance Video

In this stage, we adopt the domain transform filter [10] to smooth the video
content in the temporal order. The basic idea of domain transform is mapping
the data points to a line while maintaining the geodesic distance. Given a pixel
p = (x, y) in the t-th frame, we can find its corresponding point q in the (t−1)-th
frame. We adopt the RAFT model [37] for optical flow estimation. The geodesic
distance between these two points is defined as:

d = 1 +
σs

σr
∥It(p)− It−1(q)∥1. (2)

Parameters σs and σr represent the variance on the temporal axis and RGB color
space. Increasing σr will make the result smoother. Since the point q might not lie
on the image grid, we cannot efficiently construct the whole trajectory through
the video. Therefore, we apply the recursive form of the domain transform filter
to smooth the value at p. Since it is not the contribution of this work, please
refer to [10] for the detailed implementation. The color at position q is estimated
by bilinear interpolation.

Sometimes the content at p in the t-th frame does not appear in the previous
frame. One possible situation is that the corresponding position q is outside the
image domain, namely q ̸∈ [0,W − 1]× [0, H − 1]. Another situation is that the
point is occluded in the previous frame. We estimate the occlusion by analyzing
the optical flow f from the (t−1)-th frame to the t-th frame. The visibility map
V is constructed as proposed in [42]:

V (x, y) =

W∑
i=1

H∑
j=1

max(0, 1− |x− i− fx(i, j)|)

·max(0, 1− |y − j − fy(i, j)|).

(3)

Then the binary occlusion map O is defined as:

O(p) =

{
1, V (p) > 0.5 and q ∈ [1, H]× [1,W ]

0, otherwise.
(4)

Let Zt be the output of the recursive filter in a forward pass, and Ot the
occlusion map for the t-th frame, we define

Zt(p) = (1−Ot(p)a
d)It(p) +Ot(p)a

dZt−1(q). (5)

Here the factor a is used to control the amount of local smoothing and is related
to σs. Similarly, we can filter the video content in the opposite direction. The
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video is filtered back and forth with parameter a gradually decreasing. We adopt
the same updating rule of a as proposed in [10]. The result of the initial temporal
domain transform filter is denoted by J 1 = {J1

1 , J
1
2 , · · · , J1

T }. More accurate
optical flow can be estimated on J 1, and we replace the initial flow computed
from I. Then we can apply the domain transform filter on I again, but with
new temporal correspondence. We repeat the filtering process for s times. Hence
sequence J s is the result of this stage. In our experiment, we find that s = 3 is
adequate to remove most artifacts.

Fig. 3 exhibits the evolution of video content after three iterations. Though
the result of the first step (the second row) has serious artifacts, it provides better
inter-frame matching (i.e., the artifacts between two frames are also consistent).
Thus, the rolling guidance strategy can recover the content gradually.

1st step

2nd step

3rd step

Input

Fig. 3. Example of domain transform filtering in the first stage. The spatial artifact
can be significantly reduced using rolling guidance.

3.3 Recovering Image Details

Due to the inherent limitation of optical flow, the result J s from the previous
stage is usually blurry and might have structural error. The goal of this stage
is to recover the clear image structure by optimization. Inspired by the work of
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blind video consistency [4], we adopt a modified gradient-domain optimization
scheme. The key point is to reconstruct the gradient field of the original frame,
namely ∇It. Meanwhile, the color at pixel p in the t-th frame is supposed to be
similar to a reference point in the neighboring frame. We use J i−1 to represent
the result from the previous step. It serves as the guidance video to find the pixel
correspondence, and the optimized video is denoted by J i. For the optimization
in a forward pass, our target is to minimize∑

p

∥∇J i
t (p)−∇It(p)∥2 + w(p)∥J i

t (p)− r(p)∥2. (6)

Here r(p) is the reference color for current location p, and weight w(p) is the
confidence value of such a reference. The reference could be obtained by warp-
ing with the optical flow computed on guidance video J i−1. Let q1(p) be the
corresponding location in the previous frame. The optical-flow estimation is not
always correct, so we provide another candidate position q2(p) in the previous
frame found by PatchMatch [2]. Now we have two candidates for reference:

rk(p) = J i
t−1(qk(p)), k ∈ {1, 2}. (7)

Then we define the confidence value as color affinity in the guidance video:

wk(p) = e−∥Ji−1
t (p)−Ji−1

t−1 (qk(p))∥
2/2σ2

, k ∈ {1, 2}. (8)

The term wk(p) represents the similarity between position p and qk(p) in the
two consecutive frames. If this value is not high enough or the pixel p is occluded
(verified by the value of Ot(p)), we consider that the correspondence in the guid-
ance video is inaccurate. Therefore, we compare the similarity with a threshold
α. If the similarity is less than α, we will use the color value It(p) in the original
video as a reference. Specifically, we define

r(p) =


r1(p), w1(p) ≥ w2(p) ∧ w1(p) > α ∧Ot(p),

r2(p), w2(p) > w1(p) ∧ w2(p) > α ∧Ot(p),

It(p), otherwise.

(9)

Here the occlusion index Ot(p) is given by Eq. 4. We choose the weight w(p)
with the same criteria:

w(p) =


w1(p), w1(p) ≥ w2(p) ∧ w1(p) > α ∧Ot(p),

w2(p), w2(p) > w1(p) ∧ w2(p) > α ∧Ot(p),

α, otherwise.

(10)

We set α = 0.75 for all test videos used in the experiment. However, people may
choose a lower threshold if the flow estimation is good enough. Moreover, it is
possible to use J i−1

t (p) instead of It(p) as reference color. Using this alternative
leads to results with smoother changes but larger differences from the input
video.
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The objective in Eq. 6 has a quadratic form and could be converted into a
linear system. We initialize J i

1 = J i−1
1 and adopt the Gauss–Seidel method to

solve J i
2, ..., J

i
T in order. The result J i can serve as the new guidance video for

solving J i+1 in the opposite direction, i.e., fixing the last frame and computing
the t-th frame from the (t+1)-th frame. In this way, we will obtain J s+2 as the
output of this stage.

Fig. 4 shows how the detail structures are recovered by gradient-domain
optimization. Note that the color of the wall is flickering in the input sequence
(first column). The first filtering stage removed the inconsistency but produced
blurry textures (second column). The second stage recovered the details while
maintaining the color consistency (last column).

Coarse guidance Detail recoveredInput

Fig. 4. The effect of image detail recovery via gradient-domain optimization. The
coarse guidance video is provided by the previous stage.
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3.4 Global Refinement

In the previous stage, the video content is updated sequentially, meaning that
the error might accumulate gradually and the later frames will diverge from the
original one. Therefore, it is necessary to refine the output video with global
optimization. The result of the previous stage will serve as a detailed guidance
video to filter the input one. Deep Video Prior [25] has been verified as an
effective tool to regularize the visual content and eliminate temporal flickering
if a high-quality guidance video is available. A convolutional neural network F
is trained from scratch to reconstruct the unstable video I from some stable
input sequence. Each frame is processed independently. In this work, we adopt
the U-Net structure [31]. We use the result J s+2 from the second stage as the
input of network F . Regarding the video frames as training data, the objective
is to minimize the following reconstruction error:

L =

T∑
t=1

L(F (Js+2
t ), It). (11)

The reconstruction term is defined as the combination of L1 loss and percep-
tual loss [19] of VGG-Net features [34]:

L(F (Js+2
t ), It) = ∥F (Js+2

t )− It∥1

+

5∑
l=1

λl∥ϕl(F (Js+2
t ))− ϕl(It)∥1.

(12)

Here ϕl(·) represents the feature maps in the l-th convolutional block of VGG-
Net.

The network is trained through 25 epochs with a learning rate of 10−4. The
final enhanced video J = {J1, J2, · · · , JT } is obtained by applying the trained
model F frame by frame.

Jt = F (Js+2
t ), t ∈ {1, 2, · · · , T}. (13)

3.5 Comparison with the Deflickering Algorithm

The Deflickering algorithm proposed by Lei et al. [24] also aims to improve the
temporal consistency using single-video input. Their pipeline also contains three
stages, but different techniques are adopted. In both methods, the first stage
is designed to obtain a temporally stable intermediate result, but we choose
a concise way without tedious training. In the second stage, Lei et al. use a
network trained on MS COCO [27] to correct image structures. However, this
network is trained on single-image input, so temporal consistency is not explicitly
guaranteed. In the last stage, they adopt a network similar to [22]. The advantage
is that video can be processed in sequential order by one pass, but the model
trained on an external dataset is not as stable as an internal learning method
like DVP [25].
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4 Experiment

4.1 Dataset

We evaluate our method on two types of data. For the first type, we know the
source video from which the target video was generated. We collect the paired
test videos from [25], which is generated by colorization [50], dehazing [12],
spatial white balancing [15] and enhancement algorithm [11]. We also add a few
colorized videos generated by the single image model provided by [23].

For some video generation algorithms, there is no input video, or the input
cannot provide sufficient guidance to improve the temporal consistency of the
generated video. We collect the text-to-video data from CogVideo [14], Make-A-
Video [35] and Gen-2 model [9]. We also consider specific tasks including neural
shading [29, 43] and line art colorization [33]. The unpaired dataset contains 31
videos in total.

For most data, we kept the same parameters in the pipeline. We set σs = 60
and σr = 1.0 for stage 1 by default. However, we observe that some videos in
the paired dataset have large temporal color variation, so we set σs = 300 and
σr = 6.0 to handle these challenging cases.

Input BVC FBVC DVP Deflickering Ours

Fig. 5. Comparison on paired data. For the colorization task, the guidance video used in
BVC [4], FBVC [22], and DVP [25] is the grayscale version of the input. The Deflickering
algorithm [24] and our method do not use the guidance video.

4.2 Quality Assessment

Similar to the DVP paper [25], we assess the quality of refined videos in two
aspects: the temporal consistency and the similarity to the input video. We use
warping error to measure the temporal consistency. The warping error between
two frames Js, Jt with resolution W ×H is defined as:

e(Js, Jt) =
1

W ×H
∥Ms,t(Jt − warp(Js))∥2. (14)

For paired data, the frame Js is warped by the optical flow computed on the
original video. The flow map is predicted by the RAFT model [37], and the
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occlusion map is estimated using the method proposed in [32]. Then we construct
the temporal consistency measure Ew for video J :

Ew(J ) =
1

2(T − 1)

T∑
t=2

(e(Jt−1, Jt) + e(J1, Jt)) . (15)

The error between consecutive frames reflects the short-range consistency, while
the error between the first frame and every other frame represents the long-range
consistency.

Apart from temporal consistency, it is also important to maintain the input
video content with little appearance change. Thus we define the fidelity term Ef

as the average PSNR between input and output frames:

Ef (J , I) = 1

T − 1

T∑
i=2

PSNR(Jt, It). (16)

We neglect the first frame because for some methods the first frame is kept the
same as the input, and the PSNR value for it is infinity.

As for unpaired videos, there is no temporally stable guidance video for
optical-flow estimation. Therefore, we estimate the flow on the output itself as
an approximation, and evaluate the following term:

Êw(J ) =
1

T − 1

T∑
t=2

1

W ×H
||Jt − warp(Jt−1)||2. (17)

Note that for videos processed by different algorithms, the involved optical flow
is also different, and the occlusion map estimated by [32] is not always reliable.
So we do not use the occlusion map and the long-range term for unpaired videos.
We also use metric Ef to evaluate the fidelity of unpaired videos. Since there is
no well-accepted temporal consistency metric for unpaired data, we conduct a
user study.

Table 1. Evaluation on Paired Videos. We report the warping error Ew and the fidelity
term Ef of different algorithms.

Method Input
Ew Ef

(lower the better) (higher the better)

Processed – 0.1877 Inf.

BVC [4] Paired 0.1513 25.30
FBVC [22] Paired 0.2692 22.88
DVP [25] Paired 0.1341 32.25
DeFlickering [24] Single 0.1160 27.05
Ours Single 0.1264 30.65
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Fig. 6. Frame-by-frame warping error compared to the Deflickering algorithm [24] in
one video sequence.

Table 2. Evaluation on Unpaired Videos. We report the warping error with the optical
flow computed on the output video, as well as the fidelity term.

Data Type
Processed Deflickering Ours

Êw Êw Ef Êw Ef

Make-a-video 0.0624 0.0541 28.90 0.0396 31.45
CogVideo 0.0996 0.0573 31.68 0.0447 30.15
Gen2 0.0487 0.0440 27.75 0.0414 31.31
Shading 0.0304 0.0237 31.71 0.0229 37.36
Colorization 0.0387 0.0297 38.07 0.0249 31.97

4.3 Comparison to State-of-the-Art Methods

For the paired data, we test previous algorithms including BVC [4], FBVC [22],
and DVP [25], which require the original video to provide inter-frame correspon-
dence explicitly or implicitly. For the Deflickering algorithm proposed by Lei et
al. [24] and our method, the original input video is neglected. The evaluation re-
sult is reported in Table 1. The Deflickering algorithm achieved a lower warping
error than ours, but our method can better maintain the video content, with a
much higher Ef index. All algorithms using paired videos have higher warping
errors than ours. We also list the initial errors of the input videos (“Processed”
in the table). Fig. 5 shows an example. The Deflickering algorithm produced
color-blending artifacts as highlighted in the image.

For the unpaired data, we evaluate our method and the Deflickering algo-
rithm [24]. Table 2 lists the two metrics on each type of video respectively. Due
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Input Deflickering Ours Input Deflickering Ours

Fig. 7. Comparison between the Deflickering algorithm [24] and our method on un-
paired data. Note that the Deflickering algorithm might blend the color among different
objects.

Input   Single-input BVC   Single-input DVP     Ours (stage 1)         Ours (stage 2) Ours (final)

Fig. 8. Example of the ablation study. We adopt DVP [25] and an improved version
of BVC [4] as components in our pipeline. However, directly applying BVC or DVP
using a single video as guidance cannot achieve temporal consistency.

to the large domain difference, the performance on these videos varies a lot. In
general, our method is superior to the Deflickering algorithm on Êw for all types
of videos. The PSNR of our method is similar across different video styles while
the Deflickering algorithm is not that stable. We randomly choose 15 videos from
the unpaired dataset for the user study. The results generated by our method and
Deflickering algorithm were played to users in parallel in random order. Then
the users were required to assess the temporal consistency and the general visual
quality. We invited 28 users to attend the study and obtained 397 judgments
in total. The result is summarized in Table 3. Our method is preferred by more
participants on both temporal consistency and visual quality. Fig. 7 exhibits two
examples, in which the Deflickering algorithm tends to blend the color of differ-
ent objects. Compared with the neural filter in [24], our detail recovery scheme
can better preserve the original image appearance while improving the temporal
consistency. Fig. 6 provides the comparison of warping errors at every frame of
one sequence, which is the same one as displayed in Fig. 8. More visual results
on long sequences are provided in Fig. 11 and the supplementary material.
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Table 3. User Study on Unpaired Videos. Users were required to compare the tem-
poral consistency and general visual quality between our method and the Deflickering
algorithm [24]. Then they reported their preferences.

Preference on Ours Deflickering Same

Temporal Consistency 33% 20% 47%
General Visual Quality 45% 21% 34%

Table 4. Results of Ablation Study. We report the warping error and fidelity term.

Method Êw Ef

Processed 0.0996 Inf.

Single-input BVC [4] 0.0861 26.66
Single-input DVP [25] 0.0964 37.13
Ours (stage 1) 0.0258 29.60
Ours (stage 2) 0.0512 31.51
Ours (final) 0.0447 30.15

4.4 Ablation Study

We analyze the intermediate results of our method to verify the effectiveness of
our pipeline. In specific, we evaluated the result J s of stage 1 and the result
J s+2 of stage 2. Since we adopt the BVC method [4] and DVP method [25] as
components in our pipeline, we also evaluate these two methods using the input
video I as guidance. We test all these alternatives on the CogVideo dataset [14]
containing 13 sequences. The quantitative result is displayed in Tab. 4 and Fig. 8
provides an example. The output of stage 1 is the most consistent under our
metric. However, the content is also smoothed in the spatial domain, and some
visual artifacts are introduced. The detail recovery process in stage 2 can improve
the visual quality and remove most artifacts. The warping error will also increase
to some extent. The global optimization in stage 3 can reduce the warping error
created by the previous step. Note that using the same video as guidance for
BVC [4] or DVP [25] is useless because the inconsistent video cannot provide
good visual correspondence.

The first stage aims to obtain a guidance video with reliable optical flow.
The definition of the occlusion map in Eq. 4 implies that the forward flow and
backward flow should be consistent if the content is not occluded. Therefore,
the average value of this map, Avg(O), can reflect the quality of the estimated
flow. Ideally, it should be equal to the actual non-occlusion rate, which is usually
close to 1. Fig. 9 shows the change of Avg(O) for sequences J 0 to J 3 displayed
in Fig. 3. A higher value implies that the forward flow and backward flow are
more consistent, and hence more reliable. We also visualize the flow maps before
and after filtering in Fig. 10. The sequences can be found in the supplementary
material.
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Fig. 9. Average value of the occlusion map O computed from input and intermediate
video sequences. A higher value implies a more reliable optical flow estimation.

5 Discussion and Conclusion

Temporal consistency is an important issue in video synthesis. Although AI-
generated videos have been widely spread on the Internet, there is no unified
framework to ensure temporal consistency on synthesized videos. In this paper,
we present a framework to enhance the temporal consistency of a single input
video without the guidance of a temporally consistent video. This method can
serve as a post-processing operator for a wide range of video synthesis algorithms.
We analyze the strengths and drawbacks of existing temporal filters requiring
paired input and derive a rolling guidance framework that improves the quality
of filtered video with a few iterations. Our pipeline consists of temporal smooth-
ing with a domain transform filter, gradient-domain reconstruction, and global
refinement using Deep Video Prior. We evaluate the proposed algorithm with
warping error, fidelity term as well as user study, and exhibit that our algorithm
can create visually pleasant video content.

Our algorithm cannot handle arbitrary types of temporal inconsistency. For
example, Large-scale semantic change in the video is difficult to eliminate (e.g.,
the frame-by-frame processing result of ControlNet [48]), and we would like to
study how to reduce the semantic-level inconsistency in the future. We hope the
progress in single-video consistency enhancement can contribute to the whole
video synthesis community. If temporal consistency could be achieved by post-
processing, the designers of video synthesis models can focus on other aspects of
visual quality, such as semantic and aesthetic metrics.
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Image 1 Image 2 Flow

Fig. 10. Visualization of flow maps. The first row shows the input flickering images and
the corresponding flow, and the second row shows the result after one-step filtering. It
is worth noting that though the initial filtering brings artifacts in the image domain,
the updated flow is more accurate and aligned with object boundaries.
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