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Abstract. Towards adversarial physical attack in real world, we argue
that the main challenge lies in discounting adversarial effects by changes
of point density along object surface. Most of existing point-wise pertur-
bation based attackers concern on suppressing geometric irregularities,
but it remains challenging to produce adversarial shape with geomet-
ric smoothness. Adversarial attack via the isometry transformation can
alleviate irregular geometries but suffer from its rotation-sensitive na-
ture, so its impractical assumption of category-level pre-alignment on
benign object point clouds cannot be relaxed. In light of this, we explore
non-rigid geometric transformations for geometry-aware adversaries with
a flexible density-aware transformation on the whole point sets, which
can thus impose constraints of global and local surface properties when
adversarially deforming points. Experiment results on publicly bench-
marking ModelNet40 and ScanObjectNN datasets verify the effectiveness
of our transformation-based generation algorithms for adversarial shape
and physical attack against both rotation sensitive and agnostic point
classifiers, significantly outperforming existing adversarial point attack-
ers under diverse recent defenses and the state-of-the-art physical attack
methods.

Keywords: Deep Learning · Adversarial Attack · Geometry-aware Trans-
formation · Physical Attack.

1 Introduction

Deep learning based algorithms have been widely adopted for semantic analysis
on object shape such as autonomous driving [2, 12, 14] and augmented reality
[1, 18, 21], which are verified their vulnerability against adversarial examples on
point-based shape representations [3, 40, 53] to leave security issues of neural
perception systems. Adversarial attack on point clouds aims to 1) fool the point
classifiers of interest; and 2) achieve visual imperceptibility of adversaries to
humans.

Adversarial effects in terms of mis-classification can be objectively measured
by a series of well-defined performance metrics (e.g. classification accuracy),
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Fig. 1. Comparison with existing point-wise perturbation based physical attack, i.e. the
GeoA3 [49], and our non-rigid transformation based AdvGT against the victim Point-
Net. Class predictions (in color) of adversaries and re-sampled point clouds from recon-
structed meshes are provided, which verify the superiority of our AdvGT on generating
adversarial shape.

while visual imperceptibility, i.e. whether humans can distinguish adversarial
examples from benign ones, can only be measured by an approximation surrogate
(e.g. the PSNR [34]). Despite its insensitive nature to texture changes, humans’
visual perception system can capture subtle irregularities on the geometric shape.
Therefore, unlike the case of 2D image adversaries where the less perceptible
high-frequency and low-magnitude noises are added to pixel grids’ intensities,
adversarial examples on point sets in 3D domain desire for geometric fairness
and smoothness on the shape representations for visual imperceptibility.

Beyond early exploration via attaching and dropping a set of points to be-
nign point clouds, existing adversarial point clouds are mainly obtained via
optimization-based point perturbation, resulting in geometric irregularities (e.g. point
outliers and bumpy surface) that are prone to recent defense strategies utilizing
geometric properties of object surface [52, 63] and the more important physical
attack setting.

Although a number of recent geometry-aware adversarial attackers [42, 49]
are proposed to overwhelm those defenses and survive under physical attack,
those point-based adversarial examples still suffer from irrational shape changes
and the consequent geometric perceptibility. Fig. 1 shows an example from the
ModelNet40 dataset, which is under attack by existing point-wise perturbation
based physical attack, i.e. the GeoA3 [49], and our non-rigid transformation
based attack. The adversaries by point-wise perturbation based attack can be
easily spotted due to its more uneven and irregular shape (especially the meshing
surfaces), although it can cheat the victim classifier successfully.

More importantly, perturbation-based adversarial point clouds cannot ensure
that all adversarial effects are from the more vital shape changes rather than
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trivial changes of point density, which therefore leads to the decrease of the at-
tack success rate in adversarial physical attacks. This is demonstrated by the
fact that the victim classifier can correctly classify the re-sampled point clouds
from reconstructed meshes under the perturbation-based adversarial attack in
Fig. 1. Recently, the isometry transformation [60] is proposed to gain adversar-
ial impact mainly dependent on unnoticeable changes of object rotation, which
introduces an alternative to generate adversaries by transformation operations
on the whole point sets. The advantage of such transformation-based attack
method lies in approximately preserving geometric properties of object surface,
but its rotation-sensitive nature makes it less feasible to practical scenarios. In
view of this, we introduce a simple yet effective attack method – adversarial
geometric transformation (AdvGT), via optimization of a flexible density-aware
transformations on all points’ coordinates for adversarial shapes.

Intuitively, the effectiveness of our density-aware transformation can be at-
tributed to the non-linear transformation applied to the object surface. Addition-
ally, this transformation can induce modifications in the distribution of points,
but due to its density-aware projection, it can maintain the geometric proper-
ties of continuous 2D manifolds that are embedded in 3D space (i.e., the object
surface). As a result, this transformation can reduce the visual perceptibility
of irregular geometries. Experiment results on public benchmarks verify the ef-
fectiveness of our proposed transformation on generation of adversarial point
clouds, significantly outperforming existing attack methods under diverse state-
of-the-art defense algorithms. More importantly, our method becomes the new
state-of-the-art for the more challenging adversarial physical attack, which can
demonstrate the superiority of our AdvGT method on generating adversarial
shape, as shown in Fig. 1.

The main contributions of our paper are summarized as the following.

– A novel adversarial attack method is proposed to maintain surface properties
yet impose adversarial effects via a non-rigid transformation on all points,
which can favor for regular shape deformations to survive in the challeng-
ing physical attack and also the ordinary point-based attack against diverse
state-of-the-art defenses.

– Technically, this paper proposes adversarial geometric transformation in a
density-aware style, which concerns on deformation of global and local ge-
ometries rather than point-wise perturbation typically adopted in existing
3D adversarial generators.

– Extensive experimental results can demonstrate our motivation and adver-
sarial effects of obtained point clouds by our AdvGT and re-scanned point
clouds from adversarial shape, achieving remarkably superior physical at-
tack success rate (at least 25.60% performance gain) to the state-of-the-art
methods.

Source codes will be released after acceptance1.

1 https://github.com/starry1010/AdvGT
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2 Related Works

Rotation-Sensitive Point Classification Existing deep classifiers on point
clouds can be divided into three groups: multi-view image based [11,27,39,47,56];
voxel-based [22,29,38,44,51]; geometric deep learning based [5,35,36,45,54,55,
65]. Both multi-view based and voxel-based algorithms rely on the Euclidean
convolution operations on the regular grids-based approximation of object shape
projected or converted from point clouds, which can suffer from information loss
for transformation between non-Euclidean and Euclidean data space. Geometric
deep learning-based methods such as PointNet [35] and DGCNN [45] concerns
on the data-specific challenges of irregular structured and orderless point sets
via multi-layer perceptrons (MLPs). Yet they require category-level pre-aligned
input and thus malperform on point clouds of arbitrarily poses that are widely
encountered in real world applications.

Rotation-Agnostic Point Classification Recently, point cloud classification
with rotation robustness has received a lot of attention, which can be divided
into three main groups – weakly supervision on spatial transformation [35, 58],
learning with rotation invariant features [24, 37, 59], and achieving invariance
via learning rotation equivariant features [6,9,26]. The first group of algorithms
cannot guarantee canonical pose transformation as they lack explicit pose super-
vision signals, while methods falling into the second group depend on rotation
invariant quantities that only partially capture the geometric information as fea-
ture input, which would not be optimal for semantic classification. In this work,
we focus on the rotation-agnostic classifiers via learning rotation-equivariant fea-
tures, which guarantees that rigid transformations of objects in the Euclidean
space can lead to an equivalent transformation of features in feature space. The
works [6,9,26] first convert the point clouds to spheric signals and utilize convolu-
tion on the rotation group, i.e. spherical convolutions, to achieve rotation equiv-
ariance, while Weiler et al. [48] introduce 3D steerable convolution for rotation-
equivariant features by a set of vector-form and scalar-form fields. Thomas et
al. [41] propose a tensor-field representation to achieve SE(3) equivariance on
irregular point clouds. Chen et al. [4] decouple the rotation-equivariant convo-
lutions in the SE(3) space into two separable convolution operations in the 3D
Euclidean and SO(3) space, which is further combined into rotation invariant
features via attention weights. Deng et al. [7] introduce a generic concept of Vec-
tor Neurons (VN) to extend element-wise neurons with vector-formed directions,
which can be easily adopted in existing point classifiers, to address the challenge
of non-differentiable characteristics of existing rotation equivariant operation
groups on irregular point clouds. In view of its generality and superiority in
point-based rotation equivariant feature encoding, our paper adopts the Vector
Neurons with two representative backbones – PointNet [35] and DGCNN [45] as
the rotation-agnostic victim classifiers to be attacked.

Generation of Adversarial Point Clouds Deep neural networks are verified
their vulnerability to Adversarial sample, which was first pointed out by Szegedy
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et al. [40]. Conceptually, by adding slight but intentionally perturbations to
inputs that were originally correctly classified, an adversarial sample can mislead
classifiers into making incorrect decisions. The generation of adversarial samples
is refer to adversarial attack. There are two common modes of adversarial attack:
white-box attack and black-box attack. White-box attack and black-box attack
differ in the attacker’s knowledge of the model’s algorithm and parameters: the
former has full access, while the latter has none. In this paper, we use the setting
of white-box attack.

Adversarial attack has been widely investigated in the 2D image domain
[32,33]. The goal of adversarial attack on point sets attempts to alter the benign
point clouds with human-unnoticeable changes yet with adversarial effects to
fool the classifier of interests, which attract a recent surge of attention in the
field of 3D semantic analysis. Existing adversarial generation algorithms can be
divided into point attaching/detaching based [50,53,57,61] and point perturba-
tion based [42,49,53]. Point attaching algorithms such as the methods in [53,57]
gain adversarial point clouds via attaching a set of independent points or point
clusters to the “vulnerable” regions of benign point clouds, which are hard to be
ignored by humans. Dropping essential points for object classification [50,61] can
be more imperceptible, but cannot avoid dropping points with high-frequency
(i.e. with higher curvatures) leading to less smooth geometries. Previous point
perturbation based attackers [42, 49, 53] optimize point-wise coordinate offsets
with regard to promoting mis-classification, additionally using geometry-aware
regularization on adversarial generation such as the curvature-consistency objec-
tive in [49] and explicit constraints to enforce deformation along the surface [17].
Beyond the above algorithms, Hamdi et al. [15] propose a transferable adver-
sarial perturbation attacker that can capture data distribution. Zhou et al. [62]
incorporate label encoding of target predictions into feature encoding of benign
examples to generate adversarial point clouds, in a generative adversarial net-
work (GAN) structure. Hu et al. [16] vary certain geometric structures in the
graph spectral domain for adversarial effects, while Liu et al. [25] craft adver-
sarial samples from the low-frequency component of point clouds. The work [60]
demonstrates the vulnerability of main-stream 3d models under global isometric
transformation, which share similar scripts of transformation based adversarial
attack as our AdvGT. However, their method mainly concerns rigidly rotat-
ing objects to fool the victim classifiers, which can be less effective on rotation
agnostic classifiers, while ours non-rigid transformation method on points’ co-
ordinates can encourage adversarial shape against both rotation sensitive and
agnostic classifiers.

3 Methodology

3.1 Preliminaries

Given X and Y denoting the input and output space respectively, training sam-
ples for supervised semantic classification on point clouds consist of (P, y), where
P = {pi}ni=1 ∈ X denotes a point cloud and y ∈ Y represents its corresponding



6 Xiang et al.

semantic class label. Each point pi ∈ R3 is depicted by its 3D coordinates and
the size of P is n. Such a problem aims to learn a mapping function Φθ : X → Y
that classifies any point cloud P into one of the M object categories in Y
(i.e. |Y| = M), where θ is a set of model parameters to be optimized.

In the context of geometric deep learning on point clouds, the mapping
function Φθ(P) can be made up of a cascade of a feature encoding module
Φfea : X → F and a classification module Φcls : F → Y as follows:

Φθ(P) = Φcls ◦ Φfea(P), (1)

where F denotes the feature space and the feature encoder can consist of multi-
layer perceptrons (MLPs) such as PointNet [35] and DGCNN [45] or convolution
based on rotation equivariant rotation groups such as the SphericalCNNs [6] and
3D Steerable CNNs [48]. The classification module Φcls predicts the probabili-
ties p of P belonging to object categories, where p = Φθ(P) = [p1, · · · , pM] is
subjected to

∑M
i=1 pi = 1. The deep model Φθ is trained by adjusting its param-

eters θ to minimize the cross-entropy loss J(Φθ(P), y), for each sample P and
its one-hot label y that are sampled from data distribution D:

min
θ

E(P,y)∼DJ(Φθ(P), y). (2)

For rotation-sensitive classifiers, the representative PointNet [35], and DGCNN
[45] are selected. Since our adversarial attack is not limited to rotation equivari-
ant point classifiers, we select the Vector Neurons [7] for its generality to existing
point classifiers and differentiable characteristics on irregular points. Note that,
the main difference between rotation-sensitive and rotation-equivariant classi-
fiers lies in layer-wise feature encoding, and therefore both groups of popular
point classification algorithms are adopted in our experiments.

To attack a trained classifier Φθ, an adversary P̃ = {p̃i}ni=1 ∈ X̃ is generated
from a benign point cloud P such that the obtained P̃ would be mis-classified by
Φθ, where the X̃ denotes the adversarial space. The adversary P̃ can be obtained
via point-wise perturbation [42,49,53], attaching/detaching points [50,53,57,61]
or global transformation [60]. Specifically, adversarial generation of point clouds
can be carried out via optimizing the following object function:

min Lmis(P̃) + λLimp(P̃,P) (3)

s.t. y ̸= argmaxj Φθ(P̃)j , (4)

where λ is a trade-off parameter between the loss term Lmis(P̃) measuring ad-
versarial attack success rate, and the distance metric Limp(P̃,P) penalizing geo-
metric dissimilarity between the benign P and the resulting P̃ in terms of visual
imperceptibility to humans.

Under the setting of the white-box attack, i.e. the attacker has full access
to the architecture and parameters θ of a neural classifier Φθ, adversarial point
clouds P̃ of an untargeted attack can be mis-classified from the class y of P to
one of the other classes (i.e. y ̸= argmax Φθ(P)). To promote attacking effects
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on the victim classifier,we use the C&W loss function introduced by [3], which
has been adopted in recent works [42,49,53] as follows:

Lmis(P̃) = max{−κ,max
j ̸=t

Φθ(P̃)j − Φθ(P̃)t}, (5)

where κ ⩾ 0 is a margin threshold, and t is the class entry with the highest
confidence except for the true label in Φθ(P̃) under the untargeted attack setting.

3.2 Adversarial Geometric Transformations

Existing adversarial generation on perturbing individual points {pi}ni=1 of P can
enforce geometry-aware constraints on local regions for point-based adversaries
but still cannot avoid geometric irregularities due to failure of imposing uni-
fied changes on global shape, which can thus lead to unsatisfactory adversarial
shape and physical attack. Inspired by [20,62], this paper explores geometrically
smooth shape transformations on the points of P when generating adversaries.
Adversarial effects of such transformation can be contributed to all the points’
deformation, rather than individual ones or point clusters as in previous works.
Without loss of generality, geometric transformation operations on 3D shapes
have been well investigated in mathematics and computer vision, including rigid
ones such as the isometry transformation and non-rigid ones such as the affine
and the projective transformations. Since rigid deformations do not change ge-
ometric patterns of the object surface, adversarial effects are only triggered by
changes in the location and pose of point clouds. As a result, their resulting point
adversarial examples [60] cannot survive in the wild due to their impractical
rotation-sensitive nature, e.g. when attacking rotation-agnostic classifiers or for
the more challenging physical attack on arbitrarily posed benign point clouds.
In order to generate practical adversarial examples, we propose a straightfor-
ward yet effective algorithm that utilizes non-rigid transformations to perturb
all points in the point cloud P in a globally correlated manner, with the aim of
preserving geometric fairness and smoothness.

Density-Aware Transformations This paper explores a novel density-aware
transformation, which combines a number of locally anchored geometric trans-
formations to increase flexibility and diversity of adversarial point clouds. Tech-
nically, a set of anchor points PA = {pA

j }mj=1 ∈ P are sampled from the be-
nign point cloud, on which geometric transformations are conducted to produce
adversaries. To obtain the anchor points, the Farthest Point Sampling (FPS)
algorithm is adopted for its simplicity. However, other sampling strategies such
as geometry-aware sampling [30] could also be considered. To ensure spatial con-
tinuity and fairness of adversarial shape, a set of local anchor points in 3D space
are converted into an anchor density map on 2D object surface manifolds. A
typical option is to use the Gaussian kernel. Given the anchor points PA, the
Gaussian kernel is defined as follows:

Kσ(pi,p
A
j ) = exp(

−∥pi − pA
j ∥22

2σ2
), (6)
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where Kσ(·, ·) denotes the Gaussian kernel with a hyperparameter σ and ∥ · ∥2
denotes the Euclidean norm. Therefore, any point pi sampled from object surface
can be measured by its density to the anchor pA

j ∈ PA.
We employ the Nadaraya-Watson kernel regression [46] to incorporate the

Gaussian anchor density into the transformation, which results in the following
density-aware transformation on local shape as:

p̃i = T (pi) =

∑m
j=1Kσ(pi,p

A
j )Tj∑m

j=1Kσ(pi,pA
j )

, i = 1, 2, . . . ,n, (7)

where T is the density-aware transformation for the benign point clouds, and
Tj is the transformation centered at anchor point pA

j . For the input point
pi, i = 1, 2, . . . ,n, Tj includes several transformations (i.e. scaling, rotation, and
translation) that can be written as:

Tj(pi) = SjRj(pi − pA
j ) + Tj + pA

j , (8)

where Sj ∈ R3×3, Rj ∈ R3×3, and Tj ∈ R3 respectfully denotes a scaling matrix,
a rotation matrix, and a translation vector of Tj to be optimized to generate P̃
that would be misclassified.

To avoid the overall surface destruction of adversarial examples, the scaling
matrix S should be as close to the unit matrix I as possible; the rotation angle
A of rotation matrix R and all entries of the translation vector T are also
supposed to approach 0, which results in the following object function of implicit
regularization of geometric imperceptibility as follows:

Ldef(T ) =
1

m

m∑
j=1

(∥Sj − I∥2F + ∥Aj∥22 + ∥Tj∥22), (9)

where ∥ · ∥F denotes the Frobenius norm, Aj ∈ R3 denotes the rotation angles
at anchor points pA

j along three axes.

Loss Functions To encourage geometric similarity between P and the resulting
P̃, we consider two objective terms of explicit constraints for geometric imper-
ceptibility – the Chamfer distance [10] and the consistency of local curvature [49]
on similarities of global and local geometries respectively between benign and
adversarial examples. The Chamfer distance takes the average of the distances
of all nearest point pairs. Specifically, given two point sets P and P̃ both having
n points, the chamfer distance can be obtained as follows:

LCha(P, P̃) =
1

n

∑
p̃∈P̃

min
p∈P
∥p̃− p∥22

+
1

n

∑
p∈P

min
p̃∈P̃
∥p− p̃∥22,

(10)
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The loss term LCur that encourages the consistency of local geometries can be
depicted as [49]:

LCur(P, P̃) =
1

n

∑
p̃∈P̃

∥ζ(p̃, ñp; P̃)− ζ(p,np;P)∥22

s.t. p =argmin
p∈P
∥p̃− p∥2,

(11)

where the function ζ(p,np;P) is to describe local geometries of neighbourhood
Np anchored on the point p with the following definition

ζ(p,np;P) =
1

k

∑
q∈Np

| < (q − p)/∥q − p∥2,np > |,

where k denotes the number of points falling into Np and np is the pre-computed
normal vector of p based on the eigen decomposition as [49]. Note that, ñp in
ζ(p̃, ñp; P̃) can be approximated by np, i.e. the normal vector in P closest to p̃
as a surrogate.

As a result, the imperceptible loss Limp(P, P̃) in equation (3) can be substi-
tuted by the following formulation:

Limp(P, P̃) = Ldef(T ) + αLCha(P, P̃) + βLCur(P, P̃), (12)

where α and β are the trade-off parameters between loss terms. Here, the two
loss terms of LCha and LCur can avoid suffering from dis-alignment caused by
severe geometrical deformation between P and P̃.

3.3 Optimization

Optimization of the object function (3) and (4) is carried out by the Stochastic
Gradient Descent (SGD). We have S,A and T to be optimized according to the
following rule:

St+1
j ← St

j − η∇(Lmis(P̃) + λLimp(P, P̃))

At+1
j ← At

j − η∇(Lmis(P̃) + λLimp(P, P̃))

T t+1
j ← T t

j − η∇(Lmis(P̃) + λLimp(P, P̃))

(13)

where∇ denotes the gradients of the loss with respect to the parametric matrices
or vectors that are going to be updated; η is the learning rate and t denotes the
t-th iteration.

4 Experiments

4.1 Dataset and Settings

Dataset We use both synthetic (ModelNet40) and real-world (ScanObjectNN)
datasets for comparative evaluation on adversarial attack algorithms. Model-
Net40 [51] is adopted as existing works [42, 49], which is consisted of 12,311
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CAD objects from the 40 common object categories. We take 9,843 CAD mod-
els for training and the remaining 2,468 for testing. Due to the imbalanced
sample distribution across classes, for the generation of adversarial point clouds,
we follow the work [49,53] to randomly select 25 instances that can be correctly
classified by the victim networks from each of the 10 categories in the test set,
including airplane, bed, bookshelf, bottle, chair, monitor, sofa, table, toilet, and
vase. ScanObjectNN [43] is a recent point cloud object dataset that consists of
2,890 objects from 15 classes. These objects were extracted from real-world in-
door scenes. We adopt the OBJ_ONLY version of the dataset, which splits
2,309 objects for training and 581 objects for validation. ScanObjectNN poses
significant challenges for 3D deep learning due to the presence of background
clutter, missing parts and deformations commonly found in the data.

Comparative Attack and Defense Methods We qualitatively and quanti-
tatively compare our attacks with a number of algorithms, including FGM [31],
IFGM [13], MIFGM [8], PGD [28], KNN [42], 3d-Adv [53], GeoA3 [49], and SI-
Adv [17]. All adversarial attackers are under the identical untargeted setting [3]
(i.e. the class having the second-largest logit predicted by victim networks is
chosen as the attacking target) for a fair comparison. Diverse recent defenders
for adversarial attacks are adopted to verify adversarial robustness, including
SOR [63], SRS [64], DUP-Net [64] and IF-defense (ConvONet) [52].

Performance Metrics The attack success rate (ASR) is adopted to evaluate
the adversarial effectiveness of comparative attack methods, which is measured
by the ratio of adversaries successfully fooling a victim point classifier. To quan-
titatively measure the visual imperceptibility in terms of geometric smoothness
and uniformity of adversarial point clouds, we adopt three performance metrics
(i.e. the k-Nearest Neighbor Distance LkNN [42], the Uniform Metric Luni [23]
and the consistency of local curvature LCur [49]) to assess the alteration brought
by attack methods.

Implementation Details We uniformly sample 1024 points from the surface
for each CAD model via the Farthest Point Sampling, which is normalized into
a unit ball. Two rotation-sensitive classifiers (PointNet, and DGCNN) and two
rotation equivariant VN-based classifiers (VN-PointNet and VN-DGCNN) are
attacked with the maximum gradient iteration of 1000 and a learning rate of
0.01. The batch size is set to 1. Besides, an early stop strategy is adopted, i.e. ,
when our attack succeeded before reaching the pre-defined maximum iteration,
the attacker would stop.

4.2 Evaluation on Adversarial Point Clouds

Evaluation on Defense-Free Adversarial Attackers In order to conduct
a fair comparison our AdvGT attack with existing methods, we executed vari-
ous baseline attacks on both synthetic (ModelNet40) and real-world (ScanOb-
jectNN) datasets. The results of these experiments, conducted under a defense-
free setting, are presented in TABLE 1 and 2. It is observed that our AdvGT
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achieves 100% ASR and the least the Uniform Metric Luni. Although the k-
Nearest Neighbor Distance LkNN may not always be the optimal choice, it ex-
hibits superior performance in comparison to a majority of attackers.

Fig. 2. Adversarial point clouds generated by our proposed methods and other attack-
ers under the defense-free setting against PointNet. All the shown examples here are
successful attacks on the victim model with true labels in black, and wrong predicted
labels given by the victim highlighted in green.
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The visualization of adversarial examples is shown in Fig. 2. It can be ob-
served that our AdvGT induces subtle changes that are imperceptible to the
humans, in contrast to the majority of comparative adversarial attackers that ex-
hibit geometric irregularities that result in perceptible changes to humans. These
results suggest that our proposed AdvGT algorithm is capable of achieving com-
mendable performance in terms of geometric imperceptibility, as evidenced by
its ability to generate adversaries with high level of smoothness and uniformity.
This achievement is attributed to our algorithm’s ability to preserve the surface
properties of point clouds. It can reduce damage during the process of deceiving
victim classifiers, owing to the use of highly flexible and diverse transformations.

Evaluation on Attacking under Diverse Defenses To demonstrate the
robustness of adversarial attacks against recent defenses, a series of experiments
are conducted to compare our attacks with four powerful attack methods that
show better performance on the uniform and the k-NN metrics in TABLE 1
and 2. Firstly, a comparative evaluation is carried out under the defense of
SOR and SRS, which statistically or randomly drop a subset of points from
adversarial point sets. Results of experiments conducted on ModelNet40 and
ScanObjectNN respectively reported in Fig. 3 and 4. Our AdvGT algorithm

Table 1. Comparison between our AdvGT and comparative attackers without any
defense on attack success rate, the uniform metric Luni, and the k-NN distance LkNN

(×10−3). The experiments are conducted on ModelNet40.

Attacks
Rotation-Sensitive Rotation-Agnostic

PointNet DGCNN VN-PointNet VN-DGCNN
ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓

FGM [31] 99.60 0.46 5.70 100.00 0.49 2.10 100.00 0.32 7.97 95.60 0.46 3.86
IFGM [13] 100.00 0.19 0.57 98.40 0.19 0.60 99.60 0.17 0.66 98.40 0.17 0.66
MIFGM [8] 100.00 0.45 6.80 100.00 0.48 2.30 100.00 0.37 5.44 99.60 0.48 2.58
PGD [28] 100.00 0.31 1.20 100.00 0.30 1.21 100.00 0.30 1.21 100.00 0.30 1.22
KNN [42] 96.80 0.21 0.52 99.60 0.25 0.66 100.00 0.25 0.60 100.00 0.28 0.59
3d-Adv [53] 100.00 0.18 0.61 100.00 0.19 0.62 100.00 0.17 0.64 100.00 0.18 0.66
GeoA3 [49] 100.00 0.21 0.69 100.00 0.24 0.91 100.00 0.19 0.71 100.00 0.21 0.73
SI-Adv [17] 100.00 0.32 0.90 100.00 0.37 1.23 100.00 0.27 0.64 100.00 0.37 1.18
CTRI [60] 99.60 - - 95.60 - - - - - - - -
AdvGT (ours) 100.00 0.15 0.65 100.00 0.16 0.69 100.00 0.12 0.58 100.00 0.14 0.64

Table 2. Comparison between our AdvGT and comparative attackers without any
defense on attack success rate, the uniform metric Luni, and the k-NN distance LkNN

(×10−3). The experiments are conducted on ScanObjectNN.

Attacks
Rotation-Sensitive Rotation-Agnostic

PointNet DGCNN VN-PointNet VN-DGCNN
ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓ ASR (%)↑ Luni ↓ LkNN ↓

FGM [31] 90.72 0.42 6.23 84.44 0.46 2.00 80.80 0.45 2.75 86.00 0.42 3.99
IFGM [13] 100.00 0.17 0.43 100.00 0.17 0.46 100.00 0.17 0.48 99.60 0.17 0.48
MIFGM [8] 100.00 0.41 6.45 96.36 0.44 2.16 96.80 0.44 2.03 91.20 0.42 2.67
PGD [28] 100.00 0.29 1.08 100.00 0.28 1.11 100.00 0.29 1.11 100.00 0.29 1.12
KNN [42] 97.35 0.18 0.25 100.00 0.27 0.36 100.00 0.17 0.42 99.60 0.18 0.42
3d-Adv [53] 100.00 0.17 0.43 100.00 0.17 0.46 100.00 0.17 0.49 100.00 0.17 0.48
GeoA3 [49] 100.00 0.20 0.60 100.00 0.21 0.71 100.00 0.19 0.59 100.00 0.19 0.59
SI-Adv [17] 100.00 0.30 1.00 99.67 0.38 1.39 99.60 0.36 1.28 98.80 0.34 1.14
CTRI [60] 100.00 - - 99.73 - - - - - - - -
AdvGT (ours) 100.00 0.15 0.45 100.00 0.14 0.44 100.00 0.15 0.45 100.00 0.14 0.45
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performs similarly well under the two defense methods. Specifically, our method
consistently outperforms other competitors with significantly large margins using
different ratios of dropping points. These results confirm our motivation that
assigning adversarial effects to all points by the transformation operation can
significantly improve the robustness of our adversarial point clouds.

Other defense algorithms (i.e. SOR∗, DUP-Net, and IF-Defense) via shape
smoothing and recovery are also employed to prevent adversarial attacks as

Fig. 3. Attack success rate (%) of IFGM [13], KNN [42], 3d-Adv [53], GeoA3 [49], and
our attack under two defense methods by dropping a range of ratios of points. The
experiments are conducted on MoedelNet40.

Fig. 4. Attack success rate (%) of IFGM [13], KNN [42], 3d-Adv [53], GeoA3 [49], and
our attack under two defense methods by dropping a range of ratios of points. The
experiments are conducted on ScanObjectNN.
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presented in Fig. 5 and 6. It is noted that SOR∗ is another version of SOR. In
particular, it improves geometric smoothness of point clouds by computing the
mean µ and standard deviation σ of nearest neighbor distances and removing
the points which fall outside the µ±α×σ, where α (is set to 1.1) determines the
size of the analyzed neighborhood. Similar results to those obtained by dropping
points are observed, which again verify the effectiveness of our attack algorithms
in suppressing diverse state-of-the-art defenses. To conclude, the experiments
demonstrate the robustness and effectiveness of our adversarial attack methods
against a wide range of defense algorithms and classifiers.

Fig. 5. Attack success rate (%) of IFGM [13], KNN [42], 3d-Adv [53], GeoA3 [49],
and our attack method under SOR∗, DUP-Net, and IF-Defense. The experiments are
conducted on MoedelNet40.

Fig. 6. Attack success rate (%) of IFGM [13], KNN [42], 3d-Adv [53], GeoA3 [49],
and our attack method under SOR∗, DUP-Net, and IF-Defense. The experiments are
conducted on ScanObjectNN.
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Table 3. Attack success rate (%) of re-sampled point clouds of reconstructed shape
from adversarial point clouds by comparative methods.

Victims Rotation-Sensitive Rotation-Agnostic
PointNet DGCNN VN-PointNet VN-DGCNN

KNN [42] 6.00 8.80 18.40 30.00
3d-Adv [53] 3.20 3.60 11.60 16.40
GeoA3 [49] 18.40 5.20 16.00 23.60
AdvGT (ours) 92.40 90.40 41.60 57.20

4.3 Evaluation on Shape and Physical Attack

From a practical perspective, adversarial shapes are more favorable than ad-
versarial point clouds, which inspires the challenging physical attack [49] on re-
sampled or re-scanned point clouds from the reconstructed mesh-based surfaces,
as surface reconstruction can discount irregular geometries in local regions and
cause reduction of adversarial effects. In our experiments, we uniformly sample
10,000 points from each CAD model in ModelNet40 to obtain the input, benign
point clouds for the convenience of surface reconstruction, which are optimized
under adversarial attack algorithms to generate point-based adversaries. Given
adversarial point clouds by comparative attack methods, the Screened Poisson
Surface Reconstruction algorithm [19] is adopted to reconstruct mesh-based sur-
face, from which we re-sample 10,000 points as an approximation of adversarial
shape for evaluation.

We compare our AdvGT with the state-of-the-art methods [42, 49, 53], in
which [42] and [49] studied the physical attack effects. For a fair comparison, the
same procedure of meshing and point re-sampling is adopted for all competitors
as our AdvGT. Results of generated adversarial shape are shown in TABLE
3. We can find out that the attack success rate dramatically dropped for all

Fig. 7. Visualization of benign examples, adversarial point sets by our AdvGT and
three competitors – KNN [42], 3d-Adv [53] and GeoA3 [49], reconstructed meshes
and re-sampled point clouds against VN-PointNet. The classification predictions of re-
sampled point sets are also illustrated.
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Fig. 8. Visualization of reconstructed surfaces in meshes, 3D-printed examples, and
re-scanned point clouds sets, true labels and class predictions against our AdvGT. The
objects are generated by VN-PointNet.

the comparative methods, while our method consistently performs better on the
attack success rate (at least 25.60% higher) when attacking four point classifiers.
Visualization of an adversarial example is given in Fig. 7, where the reconstructed
meshes of our AdvGT possess the best quality with more regular surfaces than
the other three point-wise deformation based attacks.

For a real test of physical attack, among all the successfully attacked testing
instances from our adversaries, we choose some examples to reconstruct meshes
via 3D printing and then re-scan each printed object with a 3D scanner to mimic
the procedure of acquiring point clouds from adversarial shape in real world.
Considering that the process of printing and re-scanning the adversarial samples
changes their pose, and therefore may affect the classification accuracy of the
rotation-sensitive classifiers, we select 20 adversarial samples for both rotation-
equivariant classifiers respectively, i.e. VN-PointNet and VN-DGCNN. All re-
scanned point clouds can be mis-classified to other classes (i.e. achieving 100%
on the ASR in the real test), which can verify the effectiveness of our algorithm
for adversarial physical attack. The visualization of reconstructed surfaces in
meshes, 3D-printed examples, and re-scanned point clouds is reported in Fig. 8.

4.4 Ablation Studies

We conduct an ablation study about the effects of implicit and explicit simi-
larities between adversarial and benign point clouds in geometric imperceptible
objectives Limp. The results are reported in TABLE 4. In most instances, using
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Table 4. Attack success rate (%) and LCur (×10−2) of ablation studies with AdvGT.

Metrics PointNet DGCNN
w/o LT w/o LCha w/o LCur with all w/o LT w/o LCha w/o LCur with all

ASR↑ 100.00 99.60 99.60 100.00 100.00 100.00 100.00 100.00
LCur ↓ 2.19 2.20 2.19 1.72 1.25 1.31 1.25 1.24

Metrics VN-PointNet VN-DGCNN
w/o LT w/o LCha w/o LCur with all w/o LT w/o LCha w/o LCur with all

ASR↑ 99.60 100.00 100.00 100.00 100.00 100.00 100.00 100.00
LCur ↓ 2.84 2.84 2.83 2.70 2.83 2.77 2.80 2.85

all three loss terms performs better than those degenerated ones removing any
objective on the ASR and LCur.

Besides, we conduct one more experiment about the effects of varying m of
pre-defined anchors, whose results are shown in TABLE 5. We observed that
as m increases, achieving a 100% success rate becomes increasingly challenging
for all victim networks. Meanwhile, the value of LCur exhibits a trend of first
decreasing and then increasing with the growth of m. Interestingly, this turning
point occurs earlier in the PointNet and VN-PointNet networks compared to the
DGCNN and VN-DGCNN networks. The reason for this discrepancy may lie in
the different network structures of PointNet and DGCNN, where the former only
considers global information, while the latter takes into account both local and
global information. In the attack method we proposed, a smaller m, representing
fewer transformation anchor points, is more likely to disrupt the global shape
of the point cloud, while more anchor points are more likely to damage its local
detail information.

To verify the effect of hyper-parameters σ, attack results with different σ
is adopted during adversarial attacking are shown in TABLE 6. Insights drawn

Table 5. Attack success rate (%) and LCur (×10−2) of ablation studies with AdvGT,
the experiments are conducted with different anchor points m.

Metrics PointNet

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16

ASR↑ 99.20 100.00 99.20 99.20 99.60 99.20 99.60 99.60
LCur ↓ 2.81 1.72 2.07 2.01 2.07 2.53 2.54 2.54

Metrics VN-PointNet

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16

ASR↑ 99.60 100.00 99.60 98.80 99.20 94.80 96.00 96.80
LCur ↓ 3.45 2.70 2.60 2.41 2.48 2.46 2.49 2.54

Metrics DGCNN

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16

ASR↑ 100.00 100.00 100.00 100.00 100.00 94.00 92.80 94.00
LCur ↓ 1.82 1.24 1.19 1.15 1.14 3.88 3.81 3.78

Metrics VN-DGCNN

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16

ASR↑ 100.00 100.00 100.00 100.00 99.60 99.20 99.60 98.80
LCur ↓ 3.76 2.85 2.48 2.38 2.37 2.39 2.42 2.41
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Table 6. Attack success rate (%) and LCur (×10−2) of ablation studies with AdvGT,
the experiments are conducted with different σ.

Metrics PointNet

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

ASR↑ 100.00 100.00 100.00 100.00 100.00 99.60 98.00 97.20 96.40 96.00
LCur ↓ 2.25 2.24 1.93 1.78 1.72 1.67 1.69 1.74 1.80 2.39

Metrics VN-PointNet

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

ASR↑ 100.00 100.00 100.00 99.60 100.00 96.00 90.80 91.20 90.40 89.20
LCur ↓ 2.82 3.22 3.28 2.85 2.70 2.42 1.91 1.93 1.93 1.96

Metrics DGCNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

ASR↑ 100.00 100.00 99.20 99.20 100.00 99.60 99.60 100.00 99.20 100.00
LCur ↓ 3.74 3.18 2.35 2.19 1.24 1.25 1.30 1.34 1.45 1.37

Metrics VN-DGCNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

ASR↑ 100.00 100.00 100.00 99.60 100.00 97.60 92.80 88.40 90.00 93.20
LCur ↓ 4.01 4.27 3.67 3.24 2.85 2.35 2.37 2.46 2.45 2.49

from the table indicate that when the value of σ is small, the attack is more
effective. However, as σ increases, the effectiveness of the attack diminishes. In-
terestingly, LCur exhibits a trend of initial decrease followed by an increase with
σ. This can be attributed to the characteristics of the Gaussian curve. When σ
is small, the Gaussian curve is steep, leading to prominent local deformations in
the adversarial point cloud. These deformations result in a larger LCur and are
easily detected by the victim classifiers, thereby facilitating a successful attack.
Conversely, when σ is large, the Gaussian curve is smoother, making the de-
formations in the adversarial point cloud less noticeable to the victim classifier.
This necessitates more deformations for a successful attack, resulting in a larger
LCur, and hence, larger σ values also result in less effective attacks.

In an effort to investigate the distinct impacts of our chosen three transfor-
mation methods on the attack performance, and to ascertain the necessity of
each, we conducted an ablation study on the process of point cloud transfor-
mation. The results are presented in 7. It can be observed from the table that

Table 7. Attack success rate (%) and LCur (×10−2) of ablation studies with AdvGT,
the experiments are conducted with different transformation. R, S and T respectively
represent rotation, scaling, and translation.

Metrics PointNet DGCNN
w/o R w/o S w/o T with all w/o R w/o S w/o T with all

ASR↑ 98.80 91.60 92.40 100.00 88.80 71.20 79.20 100.00
LCur ↓ 1.78 1.87 1.73 1.72 4.13 3.84 2.92 1.24

Metrics VN-PointNet VN-DGCNN
w/o R w/o S w/o T with all w/o R w/o S w/o T with all

ASR↑ 94.40 81.20 88.40 100.00 97.60 79.20 84.40 100.00
LCur ↓ 2.75 2.89 2.86 2.70 2.88 2.88 3.05 2.85
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the attack performance using all transformation methods surpasses that of any
other combination where one or more transformations are omitted. One possible
interpretation of these results is that the combination of the three transforma-
tion methods leads to a more diversified overall transformation of the adversarial
point clouds, thereby enhancing the attack capability.

5 Conclusions

In this paper, we propose a more practical setting on generating adversaries in
the physical adversarial attack. Different from existing point-wise deformation
based attackers, our AdvGT can favour more rational and imperceptible adver-
sarial shape via non-rigid transformation, whose effectiveness can be verified in
our experiments. More importantly, owing to the transformation-based nature
of our AdvGT, adversarial effects can be shared among all points and good ge-
ometric smoothness and uniformity of adversaries can be achieved, which thus
ensures the survival of our AdvGT under recent defenses and adversarial physi-
cal attacks. However, we acknowledge that our study is primarily focused on the
task of point cloud classification. It does not extend to other critical tasks such as
point cloud recognition and semantic segmentation, thereby presenting potential
limitations. Nevertheless, these limitations also highlight potential directions for
future research.
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tics, Series A pp. 359–372 (1964)

47. Wei, X., Yu, R., Sun, J.: View-gcn: View-based graph convolutional network for 3d
shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 1850–1859 (2020)

48. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.S.: 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. Advances in Neural
Information Processing Systems 31 (2018)

49. Wen, Y., Lin, J., Chen, K., Chen, C.P., Jia, K.: Geometry-aware generation of
adversarial point clouds. IEEE Transactions on Pattern Analysis & Machine Intel-
ligence 44(06), 2984–2999 (2022)

50. Wicker, M., Kwiatkowska, M.: Robustness of 3d deep learning in an adversarial
setting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11767–11775 (2019)

51. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1912–1920 (2015)

52. Wu, Z., Duan, Y., Wang, H., Fan, Q., Guibas, L.J.: If-defense: 3d adversar-
ial point cloud defense via implicit function based restoration. arXiv preprint
arXiv:2010.05272 (2020)

53. Xiang, C., Qi, C.R., Li, B.: Generating 3d adversarial point clouds. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9136–9144 (2019)

54. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves
for point clouds shape analysis. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 895–904. IEEE Computer Society (2021)

55. Xu, M., Ding, R., Zhao, H., Qi, X.: Paconv: Position adaptive convolution with
dynamic kernel assembling on point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3173–3182 (2021)



Adversarial Geometric Transformations of Point Clouds for Physical Attack 23

56. Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni, N.: Learn-
ing object bounding boxes for 3d instance segmentation on point clouds. In: Pro-
ceedings of the 33rd International Conference on Neural Information Processing
Systems. pp. 6740–6749 (2019)

57. Yang, J., Zhang, Q., Fang, R., Ni, B., Liu, J., Tian, Q.: Adversarial attack and
defense on point sets. arXiv preprint arXiv:1902.10899 (2019)

58. Yuan, W., Held, D., Mertz, C., Hebert, M.: Iterative transformer network for 3d
point cloud. arXiv preprint arXiv:1811.11209 (2018)

59. Zhang, Z., Hua, B.S., Chen, W., Tian, Y., Yeung, S.K.: Global context aware
convolutions for 3d point cloud understanding. In: 2020 International Conference
on 3D Vision (3DV). pp. 210–219. IEEE (2020)

60. Zhao, Y., Wu, Y., Chen, C., Lim, A.: On isometry robustness of deep 3d point cloud
models under adversarial attacks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1201–1210 (2020)

61. Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K.: Pointcloud saliency maps. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
1598–1606 (2019)

62. Zhou, H., Chen, D., Liao, J., Chen, K., Dong, X., Liu, K., Zhang, W., Hua, G.,
Yu, N.: Lg-gan: Label guided adversarial network for flexible targeted attack of
point cloud based deep networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10356–10365 (2020)

63. Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: Deflecting 3d adversar-
ial point clouds through outlier-guided removal. arXiv preprint arXiv:1812.11017
(2018)

64. Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: Dup-net: Denoiser
and upsampler network for 3d adversarial point clouds defense. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1961–1970
(2019)

65. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised
domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. pp. 6403–6412 (2021)


