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Abstract. It is very challenging to accurately reconstruct sophisticated human
geometry caused by various poses and garments from a single image. Recently,
works based on pixel-aligned implicit function (PIFu) have made a big step and
achieved state-of-the-art fidelity on image-based 3D human digitization. How-
ever, the training of PIFu relies heavily on expensive and limited 3D ground truth
data (i.e. synthetic data), thus hindering its generalization to more diverse real
world images. In this work, we propose an end-to-end self-supervised network
named SelfPIFu to utilize abundant and diverse in-the-wild images,resulting in
largely improved reconstructions when tested on unconstrained in-the-wild im-
ages. At the core of SelfPIFu is the depth-guided volume-/surface-aware signed
distance fields (SDF) learning, which enables self-supervised learning of a PIFu
without access to GT mesh. The whole framework consists of a normal estima-
tor, a depth estimator, and a SDF-based PIFu and better utilizes extra depth GT
during training. Extensive experiments demonstrate the effectiveness of our self-
supervised framework and the superiority of using depth as input. On synthetic
data, our Intersection-Over-Union (IoU) achieves to 89.03%, 20% and 28.6%
higher compared with PIFuHD and ECON, respectively. For in-the-wild images,
our method excels at reconstructing geometric details that are both rich and highly
representative of the actual human, as illustrated in Fig. 1 and 11.

Keywords: Depth Estimation · Human Reconstruction · Implicit Function · Self-
supervised Learning.

1 Introduction

Image-based human digitization has gained considerable attention in the last decades.
It is widely used in games, telepresence, and VR/AR applications. To recover accurate
3D human shapes from sparse 2D observations, various models are proposed, such as
parametric models [3, 19, 20, 23, 28, 36, 38, 40], silhouetted models [32], volumetric
models [51, 64], and implicit models [8, 43, 44]. Among them, PIFuHD [44] produces
high-fidelity 3D reconstruction with impressive geometric details such as wrinkles of
clothes, which achieves the state-of-the-art.

Compared with the original version PIFu [43], PIFuHD [44] proposes a two-level
pixel-aligned implicit function learning framework for high-resolution 3D reconstruc-
tions, where additional normal maps are generated and integrated for fine-grained detail



2 Z. Xiong et al.

Fig. 1. Comparisons among different methods. PIFu takes a single color image as input (sec-
ond column). PIFuHD takes both image and predicted-normal maps as input (third column).
PaMIR, ICON, and ECON all utilizes SMPL prior (from fourth to sixth line), while ECON also
introduces depth maps to optimize the coarse mesh. Ours takes a predicted-depth map as input
(seventh column). The predcited-depth maps are shown in right. Ours contains more completed
and reasonable geometry detailed.

preservation. However, PIFuHD still suffers from two issues: (i) PIFuHD relies heavily
on delicately created 3D ground truth supervision and normal map, while the exist-
ing dataset, e.g. RenderPeople [1], contains only a few hundred static models cover-
ing limited identities, poses, and complex garment geometry, resulting in performance
degradation when applied on in-the-wild images; (ii) the image-to-normal-to-shape re-
construction of PIFuHD is constructed with normal maps as the intermediate while the
normal estimation is sensitive to texture and shadow in the input image [16, 49, 54].

Considering the limited synthetic normal data cannot cover all varieties of cloth tex-
tures and complex shadows in the real world, estimating normal maps from real world
images is usually difficult and error-prone. The implicit function may not handle these
errors in normal map which lead to artifacts in shape reconstruction quality, as illus-
trated in Fig. 8 and 11. Thus, the heavy reliance on 3D ground truth and the poor
robustness of normal estimation of PIFuHD motivates us to rethink the whole recon-
struction procedure. Compared to using normal maps, depth maps, which contain not
only rich and detailed shape information but also directly define the surface,are able
to provide spatial supervision beyond the surface and make it possible to learn a more
promising signed distance field (SDF). What’s more, depth estimators generalize well
from synthetic data to in-the-wild images (see Fig. 6).

Based on the above observations, we proposed to utilize depth estimation as our
auxiliary (intermediate) input to the PIFu network, and further convert depth into ef-
fective supervisions that enable our self-supervised PIFu (SelfPIFu). SelfPIFu consists
of a normal estimator, a depth estimator and a novel self-supervised SDF-based pixel-
aligned implicit function (PIFu) learning module that takes depth map as input. The
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self-supervised mechanism considers two kinds of supervisions, i.e., a volume-aware
and a surface-aware one, to optimize PIFu using a mixture of synthetic data with 3D
human ground truth and in-the-wild images with well-estimated depth maps. Specifi-
cally, the volume-aware self-supervision utilizes volume supervision from point cloud
data, which is transformed from the depth map. The surface-aware self-supervision uti-
lizes a differentiable surface renderer [25] from SDF as supervision. With their help,
our SDF-based PIFu effectively learns convincing surface details especially for in-the-
wild images. Extensive experiments show that our method outperforms state-of-the-art
human digitization approaches on both synthetic and real images.

In summary, the contributions of this work are as follows:

– A novel self-supervised framework, including volume-aware and surface-aware
SDF learning, is proposed to reconstruct more accurate geometry especially on
real-world images.

– We propose to use depth map to better represent the 3D information from the image
for more robust learning of implicit function, which can lead to a higher quality of
human reconstruction than using normal map.

– Extensive experiments and analysis on both synthetic data and real images support
our claim about the advantages of depth-guided PIFu, and validate the effectiveness
and superiority of the proposed framework.

The remainder of the paper is organize as follows. In Sec. 2, we briefly provide a
survey of related work. Sec. 3 first presents our depth estimator and our implicit func-
tion, then introduce the depth-guided self-supervised framework. Sec. 4 conducts ex-
tensive evaluations on our SelfPIFu with SOTA. At last, Sec. 5 gives several concluding
remarks.

2 Related Work

2.1 Singe-view Human Reconstruction

3D human reconstruction from a single RGB image is inherently challenging due to
the view occlusion and shape ambiguity. To address this ill-posed problem, pioneer
works (e.g. SCAPE [3] and SMPL [28]) propose parametric models that are derived
from large scanned human datasets to provide strong priors. However, methods based
on parametric models are restricted to producing naked human bodies without garment
details [3, 6, 19, 20, 23, 28, 36, 38, 40]. Although [65] introduces a hierarchical mesh
deformation network to restore detailed shapes, the results are far from the ground
truth. Some other methods attempt to define a garment template mesh and deform it
to approach the target shape of clothes [4, 5, 17, 50, 66], but they are limited to gener-
ating specified garments and coarse details due to the fixed topology and resolution of
the template. Besides these template-based methods, silhouette-based [32] and voxel-
based models [51, 64] are proposed for human reconstruction with arbitrary topology
and geometry of clothes. Yet, they still produce rough geometry using a low-resolution
representation due to the heavy calculation consumption.

Recently, implicit models [7, 30, 37, 61] are applied to image-based 3D reconstruc-
tion with an arbitrary resolution and fine-grained details, which dominate the field of
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3D reconstruction. PIFu [43] introduces a pixel-aligned implicit function for human
digitization which extracts pixel-aligned local features to recover detailed geometry.
They further propose PIFuHD [44] with a multi-level architecture to generate higher-
resolution details in line with the input image, achieving state-of-the-arts. However,
PIFuHD requires sophisticated human models for training while the 3D dataset is ex-
tremely limited, making PIFuHD fail when applying to in-the-wild images with chal-
lenging human poses and diverse garment topology. In addition, PIFuHD relies on the
normal generation that is not as accurate as depth estimation for 3D reconstruction.
GEO-PIFu [13] uses a structure-aware 3D U-Net to to inject global shape topology into
a deep implicit function. Their results seem to surpass PIFu, but they still can’t com-
pare to PIFuHD as far as high frequency details are concerned. PaMIR [63] brings in
a parametric human model to improve the generalization ability of the implicit model,
it loses some geometry details. ICON [60] utilizes SMPL-guided clothed-body normal
prediction and local-feature based implicit surface reconstruction to achieve impressive
results, especially in extreme poses. The author further propose the ECON [59], which
introduces intermediate depth maps based on ICON to achieve better results. However,
ICON and ECON need to perform an additional optimization process for each image.
In the same year, another work Difu [47] also introduces the depth maps as a middle
variable to obtain better results.

In this paper, we utilize a robust depth generator to guide PIFu learning, which
presents better generalizability than PIFuHD and achieves better performance than
PaMIR, ICON & ECON.

2.2 Singe-view Depth Estimation

Single-view depth estimation is a fundamental task in computer vision. Traditional
methods attempt to figure out depth values from images based on hand-crafted fea-
tures or geometric priors, such as stereopsis [39], camera focus [9], shading [31], and
normals [33]. They tend to produce artifacts when applied to real images with various
noise and varying illumination. Recent studies mainly focus on learning-based methods
to obtain accurate depth estimation. Most of these works are about scene analysis and
reconstruction [11,22,24,41,42,53,58,62]. [52] presents a large-scale synthetic dataset
for human depth estimation. However, the depth is derived from the SMPL model [28]
which misses surface details. [49] separates depth estimation into a smooth base shape
and a residual detail shape and design a network with two branches to regress them
respectively based on really scanned RGBD dataset of clothed humans. The follow-
ing work [48] extends it to video-based human depth estimation by first calculating an
SMPL model at each video frame (i.e. the smooth base shape) and then learning the
residual detail shape in a self-supervised manner. Even so, the details [48,49] are not as
realistic as the visualization presented in the images. [16] achieves high fidelity results
by jointly learning the depth along with the surface normal and warping local geom-
etry among video frames to enforce temporal coherence. In this paper, we also utilize
a normal generation to assist our depth estimation, which can provide more accurate
geometry priors for 3D human reconstruction.
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2.3 Self-supervised 3D Reconstruction

With the limited availability of 3D data, studies are emerging to directly learn 3D shapes
from input images without ground truth supervision. These methods can be roughly
grouped into three categories based on differentiable rendering [21], view consistency,
and frame consistency, respectively. For the single-view reconstruction, rendering-based
methods propose a differentiable renderer to formulate the connection between the in-
ferred 3D surface (e.g. voxel, mesh, and implicit field) and its 2D renderings (e.g. sil-
houette, depth, normal, and RGB images), which can serve as image-based supervi-
sion by comparing the renderings with the input images [14,18,25–27,35]. View-based
methods attempt to apply the geometry consistency of different views to self-supervised
learning for multi-view reconstruction [10, 45, 46, 56]. Similarly, Video-based methods
utilize the consistency and continuity among video frames to restrict the underlying 3D
shapes [16, 29, 48, 55]. To improve the generalization ability of 3D human reconstruc-
tion with implicit learning, we first learn a robust depth estimation to provide accurate
geometry cues and then apply the inferred depth to supervise SDF learning. We not only
utilize a differentiable rendering [25] to produce surface-aware supervision but also pro-
pose a novel volume-aware supervision based on the inferred depth, both contributing
to obtaining high fidelity clothed human shapes without ground truth supervision.

Fig. 2. Overview of our framework. It consists of a normal estimator, a depth estimator, and a
depth-guided SDF-based PIFu module that enables self-supervised learning. For synthetic data
with 3D ground truth (top row) , we use fully-supervised learning method similar to PIFuHD [44].
For in-the-wild images without any labels (bottom row), we first estimate their depth maps,
and then optimize the network parameters using a novel depth-guided self-supervised learning
method (Sec. 3.3). We visualize the image and point-cloud-like depth map in the middle of frame.



6 Z. Xiong et al.

3 Method

An overview of our framework is shown in Fig. 2. Given a single-view image, we
first employ a normal estimator and a depth estimator to generate the corresponding
depth and then feed the depth into a pixel-aligned implicit function (PIFu) module to
predict the 3D human shape. For synthetic data with 3D labels, we use a fully supervised
mechanism like PIFu [43] and PIFuHD [44] (top row).

Due to limited image-3D shape pairs as supervision, we propose a novel self-supervised
training mechanism, termed as SelfPIFu, to improve the generalization ability of the
existing PIFu based methods. Specifically, the inferred depth is further used to pro-
vide volume-aware and surface-aware supervision through depth-guided space sam-
pling and differentiable implicit field rendering. With their help, we can effectively op-
timize PIFu with in-the-wild images that do not have 3D geometric GT during training,
resulting in largely improved generality (bottom row).

3.1 Normal and Depth Estimation

Depth map not only generates 3D cues as direct input for implicit learning but also indi-
rectly provides two self-supervised mechanisms which are volume-aware SDF learning
and surface-aware SDF learning for implicit training without 3D ground truth. To ob-
tain accurate depth estimation, we adopt the advanced HDNet [16] that jointly learns an
auxiliary normal. i.e.:

gN (x; I) = Npred, (1)
gD(x; I,N) = Dpred, (2)

where I represents the input image, where x ∈ R2 is the xy-location in the image,
Npred and Dpred represent the normal map and depth map at the corresponding location
respectively. As we know, surface normal is responsive to the local texture, winkle, and
shade [49, 54]. Although the geometric information provided by the normal map may
be incorrect, it is still useful for subsequent depth map learning. Like the results in [49]
and [16].

We train the normal and depth estimator fully supervised on RenderPeople [1] data
with ground truth and minimize the following overall loss:

LN = λcos cos
−1

((
Npred

∥Npred∥

)(
Ngt

∥Ngt∥

))
+λn||Ngt −Npred||1

(3)

LD = ||Dgt −Dpred||1, (4)

where λcos and λn relative weights between losses, Npred and Dpred are predicted nor-
mal map and depth map, Ngt and Dgt represent the ground truth. The depth estimator
achieves strong generalization on in-the-wild images, just like Fig. ??, more results will
be shown in the next Section.
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Fig. 3. Depth-guided self-supervised learning. Volume-aware self-supervised SDF learning
(left) utilizes on-/near-surface points converted from the estimated depth map to provide pseudo
volume supervision. Surface-aware self-supervised SDF learning (right) imposes a surface-wise
self-supervision by comparing DIST [25] rendered and estimated depth maps. More details are
described in Sec. 3.3.

3.2 SDF-based Pixel-aligned Implicit Function from Depth

We use a signed distance function (SDF) instead of occupancy to represent 3D geom-
etry, because SDF field is continuous in the 3D space and can interpolation reasonable
details when using marching cube to get a mesh. After we obtain a robust depth es-
timator to infer geometry information from the input image, the goal of 3D human
digitization is to model a function f which can calculate the SDF value s of an arbitrary
query point p ∈ R3 under the observation of an inferred depth map, i.e.:

fθ(g(x,Dpred), z(p)) = s, s ∈ R, (5)

where x = π(p) is the 2D projection of query point p, g(x,D) is depth feature at x, z(p)
is the depth value of p in the camera coordinate space, and θ is the trainable parameters
of our PIFu module.

Our implicit function module fθ consists of a depth encoder (instead of an image
encoder) and an SDF decoder. The depth encoder is a fully convolutional network us-
ing an hourglass architecture [34], while the SDF decoder is made up of multi-layer
perceptrons (MLPs). Implementation details can be found in Sec. 4.

3.3 Depth-guided Self-supervised Learning

The training of PIFu requires plenty of 3D clothed human shapes spanning diverse
identities, poses, and complex garment geometry. However, 3D data is limited and
expensive to acquire. On the other hand, sufficiently diverse social media images are
available online and the state-of-the-art depth estimator usually gives accurate enough
depth estimates with convincing geometry details. So we propose two self-supervised
mechanisms in Fig. 3 to make best use of the well-estimated depth maps (e.g. Fig. 6) to
improve the accuracy, robustness, and generalization ability of the SDF-based PIFu.

Volume-aware self-supervised SDF learning. Inspired by recently neural implicit
shape modeling works such as IGR [12], we propose to utilize volume supervision pro-
vided by the point cloud, which is transformed from the estimated depth map, as pseudo
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labels to better optimize/regularize the implicit field. Specifically, we back-project the
depth map into the camera coordinate space using orthogonal camera model to obtain
3D points. Because these points should be on the underlying human surface, their SDF
values are set to 0. In addition, the variation of SDF value near the surface is sup-
posed to be stable due to the continuity of the SDF field. We can randomly sample N
points along the camera view direction with a threshold σ to generate pseudo labels for
training. Specifically, we assign points far from the viewpoint with negative values and
points close to the viewpoint with positive values. The absolute values are equal to the
distances from the sampled points to the surface.

After obtaining the pseudo labels, we utilize them to supervise our PIFu learning
with a L1 loss. Note that SDF is good at preserving geometric details but its learning
is a classic regression task that is harder to train than a classification one, e.g., the
occupancy learning. Therefore, We increase the penalty for results with opposite signs.
Our volume-aware loss function Lvol can be defined as

Lvol =

N∑
i

||si − sgti ||1 + λm(

N∑
i

||si − sgti ||1 ×Mi) (6)

Mi =

{
1, if si × sgti < 0

0, if si × sgti ≥ 0
(7)

where si is the SDF value of the sample point pi, Mi is the opposite signs penalty
mask, N is the number of sample points, and the superscript “gt” means the ground
truth, i.e. the pseudo labels.
Surface-aware self-supervised SDF learning. In addition to the volume supervision
from discrete samples, we also propose continuous surface supervision based on an dif-
ferentiable renderer DIST [25]. DIST uses a differentiable sphere tracing algorithm to
render the underlying surface of an SDF field to 2D observations including a depth map.
We modify DIST, which originally uses a perspective projection, to be compatible with
our SelfPIFu, which uses orthogonal projection4 We measure the difference between
the DIST rendered depth Dr and the estimated depth Dpred (from the depth estimator
gD) with a L2 loss function:

Lsurf = ||Dr −Dpred||2. (8)

In our experiment, we train the PIFu module with a weighted loss L, i.e.

L = Lvol + λLsurf , (9)

where λ is a weight of the loss Lsurf . Both volume-aware and surface-aware self-
supervised SDF learning mechanisms contribute to the self-supervision of single-view
3D human reconstruction (see Table 4.2 and Fig. 9).
Difference with PIFuHD. In contrast to PIFuHD, our PIFu module presents three main
differences: (i) Different input. It takes the inferred depth (not normal) as input since
image-based depth estimation can recover more correct geometry information than the

4 We use parallel ray tracing instead of sphere tracing.
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normal generation. (ii) Different representation. It adopts SDF to represent a 3D shape
since SDF is consecutive and can capture more detailed geometry than an occupancy
field. (iii) Different architecture. Due to the contribution of depth and SDF, it uses only
one-level PIFu and a shallow network to achieve comparable details with PIFuHD.

4 Experiments

We conduct extensive experiments on both synthetic and real data to compare SelfPIFu
with other state-of-the-art (SOTA) methods. Quantitative and qualitative results have
justified the effectiveness of SelfPIFu and its individual components.

4.1 Datasets, Metrics, and Implementation Details

Datasets. We use two types of data in our experiments: 1) synthetic clothed human
data from RenderPeople with rendered images and their corresponding 3D shape, and
2) real-world images or videos without 3D ground truths. On the synthetic dataset,
we use 278 subjects of RenderPeople data for training and 22 subjects for evaluation.
Similar to the process in PIFuHD [44], for each training subject, we render an image, a
depth map, and a normal map every azimuth degree with varying lighting , producing
360 training triplets in total. The depth maps, which are not utilized in PIFu/PIFuHD,
are rendered using OpenGL [2]. On the realistic dataset, we use a total of 15,320 real
images, of which 1,400 are collected from the TikTok dataset [16], and 13,920 are
crawled from the Internet by ourselves to include more diverse identities, poses, and
appearances/clothes, among which 320 images are randomly chosen for evaluation.

Evaluation Metrics. To evaluate the quality of the generated 3D human shape, we
adopt commonly used Chamfer distance (CD), point-to-surface distance (P2S), and
intersection-over-union (IoU) between the generated shape and the ground truth. For
real images without 3D ground truth, we visualize the generated results.
Implementation Details. The design of the normal and depth estimator in SelfPIFu
is shown in Fig. 4. In the implicit function fθ in Fig. 2, the encoder adopts hour-
glass [34] and uses group normalization [57] instead of batch normalization [15] as in
PIFuHD [44]. The feature maps output by the encoder is 128×128×256, where 256 is
the channel dimension, and is fed into an MLPs with {257, 512, 256, 128, 1} neuron(s)
each layer with skip connections at the second and third layers.

For the training on the synthetic data, we train the network for 100 epochs using
an Adam optimizer with a learning rate (LR) of 0.0001 and batch size of 8. After the
whole frame work is pretrained, we freeze the normal and depth estimator, and finetune
the implicit function fθ using the proposed self-supervised training mechanism on both
the synthetic data and real world images. In this stage, the LR is reduced to one-tenth
and the batch size is set to 2. All images used for training are resized to 512×512 as
in PIFuHD. In the implicit function training, we sample 8000 points with a mixture of
uniform sampling and importance sampling around the surface with standard deviations
of 3cm. In the self-supervised training, λ is set to 0.618. λcos and λn are set to 1.25 and
1 in (3). The threshold σ in 3.3 is set to 1.5cm.
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Fig. 4. The structures of normal and depth estimator. All kernel size of convolutions set to 3*3.

We follow the [16] to train the depth estimator. It is worth noting that during the
training process of the depth estimator, incorporating a normal map in the network’s in-
put and adding constraints from the surface normal map to the depth map can effectively
improve the accuracy of depth map estimation.

4.2 Evaluations

Depth v.s. Normal as Input. We first experimentally validate our claim that the depth
map is a better choice as input for human reconstruction.

Comparison on Synthetic data: Two groups of quantitative experiments are per-
formed on the RenderPeople dataset to show the superiority of using depth as input
over using normal as input. Notice that in order to avoid the influence of other factors,
such as normal estimator and depth estimator, in Depth v.s. Normal as Input part, all
inputs are ground-truth data rendered from textured meshes.

In the first group, we test the usefulness of various input combinations, including
RGB image (denoted as “I”), normal map (denoted as “N”), depth map (denoted as
“D”), and their combinations (e.g. “ID” for using image and depth as input). We follow
the standard fully-supervised training process of PIFu [43] (i.e. w/o the proposed self-
supervised training branches in Sec. 3.3) in these experiments. The reconstructed shape
of each variant is evaluated by the IoU with the ground truth. During the training pro-
cess, we randomly sample 10k near-surface points from the GT mesh of the synthetic
data, and computed the IoU on the training and testing sets, respectively.

The reconstruction results measured with IoU are shown in Fig. 5. In training set,
using only image (i.e. “I”) as input results in 91.8% IoU. Including normal as input
(“IN” or “N”), the accuracy increases to around 94.0%. Including depth as input (“D”,
“ND”, “IND”), the accuracy increases to around 95.8%. Clearly, including depth as
input significantly improve the reconstruction IoU. One possible reason is that the gap
between depth and 3D geometry is smaller than the gap between normal/image and
3D geometry, which means depth is more informative than normal and normal is more
informative than image for this shape reconstruction. When an more informative exists
in the input, the extra less informative input modality can only provide minimal gain
(e.g. 95.8% for “D” vs 95.8% for “ID”, 95.9% for “ND” vs 95.9% for “IND”)

Compare with training set, we care more about the results on testing set. Similar
trend has been observed on the test set while the gap between depth and other modality
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Fig. 5. Comparison of using different input information as input, including image (denoted as
“I”), normal map (“N”), depth map (“D”), and their combinations (e.g. “ID” for image and depth).
Training (top) and test (bottom) loss curves during training are plotted.

Fig. 6. Visual comparison of the estimated normal maps and depth maps on real world images.
Even when tested on in-the-wild images, the estimated depth maps and point clouds (PC) contain
high-fidelity details, which are effectively transferred into the final 3D geometry by the proposed
depth-guided self-supervised learning module. See Sec. 3.3 for details and Fig. 8 for comparisons.

becomes even bigger, demonstrating that including depth as input could substantially
improve the generalization ability. For example, the IoU is above 93.0% when including
depth as input. While the IoU drastically drops under 76% when removing depth as
input. For example,when the input is a single image, the reconstruction IoU is only
around 70.8%. With a normal map as or among the input, the IoU rises to around 75.8%.

Visual comparison of different kinds of input combinations on synthetic data in
shown in Fig. 7. Using the depth map as input, the shape is the most complete and
visually closer to GT. In particular, we observe that in the edge region, the shape be-
comes incomplete when the input contains a normal or an image. This may be because
the depth provides sufficient information about the frontal space geometry. Additional
image and/or normal input instead introduce additional uncertainties that affect the pre-
diction of the geometry by the implicit field function. Considering the visualization
results of the reconstruction, we use the depth map as the only input to our SlefPIFu.
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Fig. 7. Comparison of using different input information as input on synthetic data with GT mesh,
including depth map (denoted as “D”) and the combinations of image, depth map, and normal.
(e.g. “ID” for image and depth)

In the second group, we follow the pipeline of SelfPIFu, where the proposed depth-
guided self-supervision is included to make better use of the depth information for
reconstruction. This module further increases IoU up to 0.5% (e.g. 93.0% to 93.5% for
“D”) The reconstruction IoUs of using different types of intermediate are listed in the
last column Table 4.2. These results show the great potential of using depth for high-
quality reconstruction, not only in a supervised training scenario, but also when using
self-supervision methods for further improvements.

Table 1. The IoUs (%) between reconstructed shapes and the ground truths on
the RenderPeople dataset with respect to different input combinations.

Image Normal Depth IoU (%) IoUself (%)

✓ I 70.8
✓ N 76.1

✓ D 93.0 93.5 (+0.5)
✓ ✓ IN 75.8
✓ ✓ ID 92.9 93.5 (+0.5)

✓ ✓ ND 93.1 93.5 (+0.4)
✓ ✓ ✓ IND 93.2 93.5 (+0.3)

We compare using different input information, including image (denoted as “I”), normal map (“N”),
depth map (“D”), and their combinations (e.g. “ID” for image and depth). “IoUself” means adding our
proposed depth-guided self-supervised module during training.
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Depth Map Contains Details. To better demonstrate the details contained in the esti-
mated depth map, we convert depth mesh to 3D point cloud and render it from different
views. Specifically, we first project depth to 3D (with orthogonal camera model) to get
the 3D point cloud, and then generate a mesh from it for rendering. Fig. 6 shows the
estimated normal maps and depth maps from in-the-wild images, and rendered point
cloud image from depth.

Fig. 8. Visualization of reconstruction results on PIFuHD and Ours. PIFuHD sometimes generates
false disconnected regions when applied on real images (first row). In comparison, Ours can
recover a complete human shape with almost no small shards. Furthermore, PIFuHD usually
reconstructs false details, e.g. unrealistic face features and clothes wrinkles (second row).

Table 2. User Study on different variants of our SelfPIFu.

N D S V Score

M1 ✓ 0.07
M2 ✓ 0.08
M3 ✓ ✓ 0.23
M4 ✓ ✓ ✓ 0.63

“N”, “D”, “S”, “V” denote normal, depth, surface-aware, and volume-aware
self-supervision, respectively.

Comparison with PIFuHD on Real World Images: We visualize the comparison
results of PIFuHD (normal-based) and Ours (depth-based) in Fig. 8. PIFuHD sometimes
generates false disconnected regions when applied on real images (first row in Fig. 8).
In comparison, Ours can recover a complete human shape with almost no small shards.
Furthermore, PIFuHD usually reconstructs false details, e.g. unrealistic face features
and clothes wrinkles (second row in Fig. 8). In comparison, PIFu-D can better handle
such cases with complete shapes and more plausible details.

Ablation Study on the Self-supervision Mechanism. The proposed self-supervision
mechanism contais two parts, i.e. surface-aware and volume-aware SDF learning. Ab-
lative experiments are conducted on synthetic data to demonstrate the effectiveness of
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Fig. 9. Ablative study on the self-supervised mechanism. “M1-M4” represent using normal
map as input (M1), using depth map as input (M2), using depth map as input plus surface-aware
self-supervision (M3), and using depth map as input plus both surface-aware and volume-aware
self-supervision (M4).

either of them, respectively. We visualize the reconstructed meshes of several samples
that are randomly chosen from the collected real images in Fig. 9, where four results
are obtained by taking as input normal map only (denoted as M1), depth map only
(M2), depth map plus surface-aware self-supervision (M3), and depth map plus both
surface-aware and volume-aware self-supervision (M4), respectively. It is shown that
both two self-supervision mechanisms can improve the reconstruction quality when us-
ing the depth map as the intermediate input, especially in the details of reconstruction.
We also conduct a user study for human evaluation on the reconstruction results. 10
samples are randomly chosen and evaluated by more than 50 persons for evaluation.
The participants are asked to choose the best one among four reconstruction results
(shuffled differently for each set) given the original single-view human image. The ra-
tio of votes for each version is computed as its final evaluation score. The results of this
user study are listed in Table 2, which show the improvements brought by the proposed
self-supervision mechanism.

4.3 Comparison with the State-of-the-art

Reconstruction of Synthetic Images. We implement five SOTA methods, PIFu [43],
PIFuHD [44], PaMIR [63], ICON [60], ECON [59], for comparison with the proposed
SelfPIFu. On the RenderPeople dataset, the evaluation results on three metrics are pre-
sented in Table 3. As seen, our SelfPIFu outperforms all listed methods consistently on
all three metrics, achieving a new SOTA performance on RenderPeople with an average
of 0.7934cm for Chamfer distance, 1.5377cm for P2S distance, and 89.03% for IoU. It
surpasses PIFuHD by around 0.4cm, 0.54cm, and 20.08% on the Chamfer distance, P2S
distance, and IoU, respectively.

In addition to objective comparisons, we also made visual comparisons in Fig. 10.
In frontal view, the differences between the results of the different methods are small,
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Fig. 10. Visual comparison on synthetic data. We compare reconstructed meshes from
PIFu [43], PIFuHD [44], PaMIR [63], ICON [60], ECON [59],and ours. The first row shows
front- and back-view results. The second row shows two side-view results and overlaid on GT to
demonstrate the reconstruction errors.

which seems to be different from the results of the objective comparison. However,
their differences are very obvious from the side-view. The results of PaMIR, ICON and
ECON show significant offset, like head, hand and foot due to depth ambiguity, which
is effectively addressed by our SelfPIFu since it uses depth map as input and, more
importantly, is trained on more diverse in-the-wild images enabled by the proposed
depth-guided self-supervised learning.
Reconstruction of Real Images. To compare with SOTA methods on the human re-
construction of real images, we provide qualitative results and also conduct user studies
for human evaluation.

Qualitative Comparison: we visualize the reconstruction result of SelfPIFu and
other SOTA approaches. As shown in Fig. 11, the reconstruction products from Self-
PIFu are of higher quality than others. Compared with PIFuHD, we get similar obser-
vations as in Sec. 4.2, can generate high-quality shapes with less artifacts and more ac-
curate estimated location (i.e. depth/global translation) than a normal-based one. Com-
pared with PIFu, PaMIR and ICON, our SelfPIFu can recover significantly more details,
and also more complete and reasonable shapes. ECON also uses the depth map as the
intermediate variable, and combined with SMPL to optimize a good geometric details,
but the pose priority will introduces errors into the final results, especially the palm
area, that cannot be ignored.
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Fig. 11. Visual results on real world images. Reconstructions from PIFu [43], PIFuHD [44],
PaMIR [63], ICON [60], ECON [59], and ours are shown. Zoom in to see more details.

5 Conclusion

In this paper, we propose a novel self-supervised framework, named SelfPIFu, which is
able to utilize abundant and diverse in-the-wild images lacking 3D GT during training,
resulting in largely improved reconstructions when tested on unconstrained in-the-wild
image. Firstly, we empirically find that the estimated depth usually contains plausible
details and is more robust than the estimated normal, and propose to use the depth
map as the intermediate input for single-view 3D human reconstruction. Then we fur-
ther propose to exploit the inferred depth map as supervision to guide the learning
of the implicit function by designing a novel depth-guided self-supervised SDF-based
PIFu learning module. This module contains two components, i.e. volume-aware and
surface-aware supervision, to better utilize the depth information. As a result, our Self-
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Table 3. Quantitative evaluation on the Renderpeople dataset.

Method CD (cm) P2S (cm) IoU (%)

PIFu [43] 1.2473 2.4219 72.24
PIFuHD [44] 1.1976 2.3435 68.23
PaMIR [63] 2.2563 4.4823 65.09
ICON [60] 1.7857 3.4812 56.77
ECON [59] 2.0607 4.4395 60.42
SelfPIFu 0.7934 1.5377 89.03

PIFu improves the reconstruction quality compared with the normal-based PIfuHD and
generalize better on real world images. We believe that the SelfPIFu can lead to more
accurate and robust reconstructions, particularly in real-world settings.
Limitation. We utilize depth as an intermediate input in the overall SelfPIFu frame-
work. Naturally, the accuracy of depth map affects the final results. Although the depth
estimator predicts plausible and detailed results in standard and easy poses (e.g. standing-
like poses), the robustness of the depth estimator it suffers from extreme poses.
Future work. The most straightforward approach to address extreme poses is to include
such poses in the training data. However, given the challenges associated with acquiring
extensive training data, an alternative approach is to explore the incorporation of SMPL
priors into the depth estimator in future research.
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