
GTLayout: Learning General Trees
for Structured Grid Layout Generation

Pengfei Xu1, Weiran Shi1, Xin Hu1, Hongbo Fu2, and Hui Huang1

1 Shenzhen University, Shenzhen, China
2 City University of Hong Kong, Hong Kong, China

Abstract. Structured grid layouts are preferable in many scenarios of 2D visual
content creation since their structures facilitate further layout editing. Multiple
geometry-based methods can effectively create structured grid layouts but require
user-provided constraints or rules. Existing data-driven approaches have achieved
remarkable performance on layout generation, but fail to produce appropriate lay-
out structures. We present GTLayout, a novel generative model for structured grid
layout generation. We adopt general trees to represent structured grid layouts and
exploit a recursive neural network (RvNN) for this generation task. Our model
can handle grid layouts with varied structures and regular arrangements. Quali-
tative and quantitative experiments on public grid layout datasets show that our
method outperforms several baselines in the tasks of layout reconstruction and
layout generation, especially when the datasets contain a small number of sam-
ples. We also demonstrate that the structured layout space constructed by our
method enables structure blending between structured layouts. We will release
our code upon the acceptance of the paper.

Keywords: Grid layout · Recursive neural network · Layout structure · Layout
generation · Layout interpolation.

1 Introduction

Creating grid layouts [30, 33] is a fundamental step for creating 2D visual content in
various forms, including documents, magazines, webpages, GUIs, etc. Grid lines can
be used to regularize such layouts’ structures, including the spatial relations and organi-
zations of graphical layout elements [5]. These structures can be abstracted as graphs [8,
44] or trees [14, 20] and can facilitate further editing (see Figure 1), e.g., adjusting ele-
ments in a structure-preserving manner [8], adapting layouts to various display configu-
rations [14], etc. Given the great usability of layout structures, multiple geometry-based
methods have been proposed to effectively create structured layouts interactively [44,
47] or automatically [5, 40, 43]. However, they are not always preferable since the in-
teractive methods require heavy labor inputs and the automatic ones demand high-level
constraints or rules provided by users. It seems more natural to address these problems
with data-driven approaches.

Very recently, learning techniques, including GAN [9], VAE [23], Transformer [41],
GNN [38], Diffusion model [11], etc., have benefited the generation of layouts [1, 4, 10,
12, 13, 17, 18, 21, 24, 48]. These layout generation methods have achieved remarkable

2 P. Xu et al.

V V V

V V
H

V

H

H

H

H

H

H

Fig. 1. Structured layouts can facilitate further editing, e.g., adjusting elements in a structure-
preserving manner (Row 1 and 3) and adapting layouts to various display configurations (Row 2
and 4).

results in automatic layout creation with different problem formulations. Early meth-
ods [48] consider layouts as raster images and represent graphic layout elements as
color regions. The succeeding methods often adopt a parametric representation of lay-
outs, i.e., representing graphic layout elements as bounding boxes with semantic labels.
This parametric representation enables convenient applications of the generated layouts
since the bounding boxes can be replaced with semantic elements to synthesize realis-
tic visual content. However, this procedure requires the semantic elements to possess
the same geometries as the corresponding bounding boxes. This requirement cannot
be achieved in some scenarios. For example, when synthesizing a magazine page, the
image aspect ratio or the text length might not be consistent with the corresponding
bounding boxes in the generated layouts. In this case, the layout structures that ex-
plicitly indicate the spatial relations and organizations of graphic elements can help
automatically adjust the layout geometries. Nevertheless, none of the above layout gen-
eration methods can produce such layout structures.

Recursive neural networks (RvNNs) [39] are effective in generating structured data
and have succeeded in several generation problems, e.g., 3D shape generation [28, 32,
50] and indoor scene generation [29]. They are also suitable for the problem of struc-
tured grid layout generation. READ [35] is the first learning-based method that rec-

GTLayout: Learning General Trees for Structured Grid Layout Generation 3

Input Recon. Input Recon. Input Recon.La
yo

u
t

re
co

n
st

ru
ct

io
n

La
yo

u
t

st
ru

ct
u

re
 L

ay
o

u
t

ge
n

er
at

io
n

La

yo
u

t
in

te
rp

o
la

ti
o

n

Fig. 2. Our method is effective in producing high-quality structured grid layouts. Row 1: lay-
out reconstruction with our method. Row 2: layout structures produced by our method. Row 3:
layouts generated by our method with randomly sampled latent codes. Row 4: structured layout
blending achieved by our method. The leftmost and rightmost layouts are the inputs for blending.

ognizes the importance of layout structures. It adopts RvNN for structured document
layout generation and can produce realistic document layouts. However, READ focuses
more on exploiting the structures as tools for layout generation, instead of generating
plausible layout structures. It adopts binary trees as the representation of layout struc-
tures. Although this structural representation is effective in the layout generation task,
it deviates from people’s perceptions of layout structures. A more appropriate represen-
tation for grid layout structures would be general trees [7, 15, 17, 20, 34, 43], in which
leaf nodes represent graphic elements and internal nodes represent horizontal or verti-
cal arrangements of their children. However, READ fails to produce layouts with such
structures.

This paper presents GTLayout, a novel generative model for the structured grid
layout generation (Figure 2). Inspired by the recent structured object generation meth-
ods[28, 29, 32, 35, 50], we also adopt RvNN for our generation task. Compared with
existing RvNN-based generative models, our model needs to address the following new
challenges. First, compared with 3D shapes, the grid layout structures are highly varied
and involve spatial relations among different numbers of elements. Second, high-quality
grid layouts are often composed of regular arrangements from local to global, while this
regularity only exists in substructures of indoor scenes.

4 P. Xu et al.

To address these challenges, we introduce the following new designs. Instead of
binary trees adopted by existing works [28, 35], we adopt general trees as the struc-
tural representation of grid layouts. The hierarchical structures of grid layouts are esti-
mated using a method similar to the one described in [15, 17, 43]. In addition, different
from existing works [29, 32], we do not constrain the structures of these trees, and thus
they can represent any structured grid layouts. With a dataset of structured grid lay-
outs, we train a variational recursive autoencoder (RvNN-VAE), which embeds layouts
into a structure-aware layout space in a recursive bottom-up manner. Specifically, we
introduce a set of encoders and decoders, including geometry encoder/decoder, label
encoder/decoder, element encoder/decoder, and arrangement encoders/decoders. These
encoders are recursively applied to the substructures of layouts and encode the over-
all structures and geometries of layouts into fixed-length codes that roughly follow a
Gaussian distribution. A new structured grid layout can be obtained hierarchically by
decoding a randomly generated code with the decoders.

Our method is effective in producing high-quality structured grid layouts (see Fig-
ure 2). We compare our method with several baseline methods, including LayoutGAN++
[21], VTN [1], and READ [35]. All these three methods can construct layout spaces
in which a latent code represents a layout. The comparison includes layout generation,
layout reconstruction, and layout interpolation. The experiments are conducted on three
public layout datasets, including Magazine [48], PubLayNet [49], and RICO [6]. To bet-
ter examine how these methods are affected by the datasets’ scales, we prepare a series
of datasets by gradually reducing the samples in these three public layout datasets. The
experiments show that our method outperforms these methods qualitatively and quan-
titatively in the tasks of layout generation and reconstruction. The superiority of our
method is more significant for the datasets of small scales, indicating that our method
is more suitable for practical usage. For the layout interpolation task, only our method
achieves smooth and reasonable structure blending. To the best of our knowledge, this
is accomplished for the first time by a learning-based method.

2 Related work

Interactive layout creation. Grid layouts exist in various forms of 2D visual content
and usually possess regular structures. Many techniques have focused on facilitating
the interactive creation of such layouts, e.g., snapping tools [2, 3], arrangement com-
mands [37, 42]. These techniques help create regular grid layouts incrementally but do
not extract the layout structures. Xu et al. [44] proposed a framework for globally beau-
tifying roughly aligned grid layouts. The spatial relations among the elements in a lay-
out were inferred and could serve as the layout structures. Zeidler et al. [47] proposed
the Auckland layout editor to help users interactively create structured GUI layouts.
Although these techniques have improved the efficiency of structured layout creation,
they still require heavy labor input. This problem becomes severer when producing a
large number of layouts.

Geometry-based layout generation. Several geometry-based methods have been pro-
posed for the automatic generation of structured grid layouts. For example, O’Donovan

GTLayout: Learning General Trees for Structured Grid Layout Generation 5

et al. [34] presented an optimization method for generating structured grid layouts based
on the design principles extracted from existing layouts. Kikuchi et al. [20] introduced
a method for generating webpage layouts by formulating the layout generation as a
hierarchical optimization problem. The framework named Grids proposed by Dayama
et al. [5] adopted a mixed integer linear programming solution to automatically gener-
ate structured grid layouts based on only several heuristic rules. Swearngin et al. [40]
presented Scout, a system that helped designers explore structured grid layouts, which
were generated based on user-provided high-level constraints. Xu et al. [43] introduced
a method for creating novel structured grid layouts by blending existing ones. The core
of their method was a correspondence algorithm devised according to high-level rules.
Although these methods have achieved the automatic generation of structured grid lay-
outs, the high-level constraints or rules may not be available or preferable for different
types of grid layouts. Yang et al. [46] presented a method for generating urban lay-
outs by recursively splitting regions. Although their method was not designed for grid
layout generation, we were inspired by their idea of the recursive procedure for layout
generation.

Learning-based layout generation. Learning techniques have benefited the task of lay-
out generation in recent years. A pioneer work was LayoutGAN [27], which adopted a
generative adversarial network [9] for layout generation. LayoutGAN++ [21] adopted a
similar network and further improved the quality of generated layouts. LayoutVAE [18]
exploited two variational autoencoders [23], i.e., CountVAE and BBoxVAE, to generate
layouts. LayoutTransformer [10] and VTN [1] leveraged Transformer [41] to produce
layouts and achieved remarkable results. Based on layout generation, CanvasVAE [45]
provided a Transformer-based method for vector graphic document generation. Jiang et
al. [17] also exploited Transformer for layout generation. Their coarse-to-fine strategy
was insightful. NDN [26] adopted a graph neural network [38] for generating layouts
satisfying user constraints. Recently, several works focused on controllable layout gen-
eration. BLT [24] extended BERT [19] to the layout generation task. It learned to predict
the masked attributes of layouts based on known attributes. Layoutformer++ [16] could
take geometric relations among layout elements as conditions for the layout generation.
Two LayoutDMs [4, 13] and LDGM [12] adopted Diffusion model [11] for the lay-
out generation. They also enabled controllable layout generation. These recent works
have greatly advanced the research on layout generation, However, none of them can
produce layout structures that explicitly indicate the spatial relations and organizations
of graphic elements, though some of them [4, 12, 16, 26] exploited layout structures as
conditions for layout generation. READ [35] was the first learning-based layout genera-
tion method that exploited and produced layout structures. However, its adopted layout
structures were represented as binary trees, which deviated from peoples’ perceptions.
In contrast, our method adopts general trees as a more appropriate representation of
layout structures, constructs a structure-aware layout space, and achieves better per-
formance in the tasks of layout reconstruction, layout generation, and layout blending
(Section 4).

RvNN for structure generation. We adopt RvNN [39] for our structured layout genera-
tion task. This network has been proven effective in various structured data generation

6 P. Xu et al.

(x2,y2)

h2

①

②

③

w2

1

1

①

②

(x2,y2)

1

1

h2
w2

①
②

③

(x3,y3)

h3

w3

1

1

Horizontal arrangement Stacked arrangement

Vertical arrangementRelative geometry of root node

Fig. 3. To better capture arrangement patterns, we store the relative positions and sizes of node
bounding boxes. The four sub-figures show how we compute the relative geometries in different
arrangements. Top left: the relative geometry of the root node of a layout. Top right: vertical
arrangement. Bottom left: horizontal arrangement. Bottom right: stacked arrangement.

tasks. For example, Li et al. [28] presented GRASS, the first work for exploiting RvNN
for structured 3D shape synthesis. Zhu et al. [50] presented SCORES that leveraged
RvNN for structured 3D shape composition. The shape structures were represented
as binary trees in both works. StructureNet [32] was another RvNN-based method for
structured shape generation. It adopted general trees to represent shape structures. How-
ever, it was designed to handle shapes in the same categories, i.e., shapes with similar
structures. Li et al. [29] presented GRAINS, an RvNN-based method for synthesizing
indoor scenes. This method aimed to produce 2D layouts in natural. Compared with in-
door scene layouts, grid layouts possess more varied and regular structures, thus posing
new challenges to layout generation.

GTLayout: Learning General Trees for Structured Grid Layout Generation 7

S Stack. Arran. En/Decoder

Horiz. Arran. En/DecoderH
Verti. Arran. En/DecoderV

E Element En/Decoder N Node Type Classifier

C Child Exist. Classifier

Semantic Label
Node’s Geometry

Sample
Encoder

Root Code

Sample
Decoder

Node Feature Code
Geometry Feature Code
Label Feature Code

Geometry En/Decoder

Label En/Decoder

Fig. 4. Left: the procedure for extracting a layout tree from a grid layout. Right: the architecture
of our generative model illustrated with an example. The encoders in our generative model map a
structured grid layout to a latent feature code. The encoding is achieved in a recursive bottom-up
manner. The decoders covert a latent feature code to a structured grid layout reversely.

3 Method

Our method adopts RvNN-VAE to embed structured grid layouts into a structure-aware
layout space in a recursive bottom-up manner. In this space, layouts are represented as
fixed-length codes that roughly follow a Gaussian distribution. Novel structured layouts
can be obtained by decoding randomly generated codes. We first describe the struc-
tural representation adopted by our method and how we extract such a representation
(Section 3.1). Then we introduce our generative model, including the encoders, the de-
coders, and the encoding/decoding procedures (Section 3.2). Finally, we explain the
training objective and training details of our generative model (Section 3.3).

3.1 Structural layout representation

Most existing learning-based layout generation techniques consider a layout as a set of
bounding boxes with semantic labels. READ [35] exploits layout structures for layout
generation but adopts binary trees as a structural representation. As discussed in [15,
43], structured grid layouts are naturally hierarchical and can be represented by general
trees. We thus adopt general trees, which we term layout trees, as the representation of
structured layouts.

To extract a layout tree from a grid layout, in which elements are represented as
labeled bounding boxes, we use a method similar to the one described in [15, 43], but
allows elements to stack. Figure 4 (left) shows an example to illustrate this procedure.
Specifically, we recursively split a layout horizontally and vertically with grid lines
that do not traverse elements. If a sub-layout contains multiple elements but cannot be
split, we consider that it contains stacked elements. We then decompose this sub-layout
into two parts with the first part being the largest element in this sub-layout and the

8 P. Xu et al.

Algorithm 1 Layout Tree Extraction
Input: A set of layout elements T = {ei}, each ei having attributes {label, x, y, w, h}.
Output: Hierarchical structured layout tree root node N .
1:
2: Class Node:
3: Attributes: children, parent, elements
4: Method: add_child(node)
5:
6: Function ExtractTree(L, N):
7: if L can be divided horizontally then
8: Split L horizontally into subsets L1,L2, . . . ,Ln.
9: for each subset Li ⊆ L do

10: Create a new Node Ni with Li as elements.
11: N .add_child(Ni).
12: Call ExtractTree(Li, Ni).
13: else if L can be divided vertically then
14: Split L vertically into subsets L1,L2, . . . ,Ln.
15: for each subset Li ⊆ L do
16: Create a new Node Ni with Li as elements.
17: N .add_child(Ni).
18: Call ExtractTree(Li, Ni).
19: else
20: Let emax be the largest element in L.
21: Let Lremain = L \ {emax}.
22: Create a new Node Nmax with emax as elements.
23: N .add_child(Nmax).
24: if Lremain is not empty then
25: Create a new Node Nremain with Lremain as elements.
26: N .add_child(Nremain).
27: Call ExtractTree(Lremain, Nremain).
28:
29: Initialize root node Nroot as ExtractTree(T , Nroot).

second part being the rest elements. The elements in the second part can be further split
recursively. This procedure stops when all elements are separated. Algorithm 1 shows
this procedure as pseudocode.

In the extracted layout trees, the internal nodes represent arrangements of elements,
including horizontal arrangements, vertical arrangements, and stacked arrangements.
The leaf nodes represent graphical layout elements. The node types, i.e., the arrange-
ment or element types, and the bounding box geometries are stored in the nodes. To
better capture the arrangement patterns, we store the relative positions and sizes of the
bounding boxes in the nodes, instead of absolute ones. Please see Figure 3 for an illus-
tration. Specifically, for an internal node and its children in a layout, we first normalize
the children’s geometries with their parent’s geometry. Then the first child’s position is
relative to the parent, and the other children’s positions are relative to their left neigh-
bored siblings. The root node stores the relative geometry of the layout regarding a
fixed-geometry canvas.

GTLayout: Learning General Trees for Structured Grid Layout Generation 9

3.2 Generative model for structured grid layouts

The encoders in our generative model map a structured grid layout to a latent feature
code f ∈ RN . In our experiments, we set N as 256. The encoding is achieved in a
recursive bottom-up manner. The decoders convert a latent feature code to a structured
grid layout reversely. Please see Figure 4 for an illustration. Below we describe the
encoders/decoders in detail.

Geometry encoder/decoder. The geometry encoder is used to map the relative geome-
tries of a node i in a layout tree to a geometry feature code fg

i ∈ RN :

fg
i = eg([xi, yi, wi, hi]), (1)

where the input is the node i’s geometry vector obtained by concatenating its relative
position and size. The geometry decoder converts a geometry feature code fg

i to a node
i’s relative geometries:

[xi, yi, wi, hi] = dg(fg
i). (2)

We employ single-layer perceptrons (SLPs) for the geometry encoder/decoder since
they are sufficient for the tasks.

Label encoder/decoder. The label encoder is used to map the semantic label of a leaf
node i in a layout tree to a label feature code f l

i ∈ RN :

f l
i = el(li), (3)

where the input is the leaf node i’s semantic label represented as a one-hot vector. The
label decoder converts a label feature code f l

i to a leaf node i’s semantic label:

li = dl(f l
i). (4)

The networks for the label encoder/decoder are SLPs.

Element encoder/decoder. The element encoder combines the geometry feature code
fg
i and the label feature code f l

i of a leaf node i into a node feature code fi ∈ RN :

fi = ee([fg
i , f

l
i]), (5)

where the input is a vector obtained by concatenating fg
i and f l

i . The element decoder
does the reverse task:

[fg
i , f

l
i] = de(fi). (6)

The networks for the element encoder/decoder are SLPs.

10 P. Xu et al.

Arrangement encoders/decoders. We consider three types of arrangement encoders/decoders,
i.e., horizontal arrangement encoder/decoder, vertical arrangement encoder/decoder,
and stacked arrangement encoder/decoder. The networks for these encoders/decoders
are all MLPs with one hidden layer. The encoders/decoders are distinguished since the
nodes’ relative geometries in different arrangements are defined in different ways (see
Figure 3). Given an internal node j and its child nodes {i1, i2, ..., iK}, the encoders
combine the child nodes’ feature codes {fi1 , fi2 , ..., fiK} and the internal node j’s ge-
ometry feature code fg

j into a new node feature code fj ∈ RN :

fj = e∗([fi1 , fi2 , ..., fiK , fg
j]), (7)

where ∗ ∈ {h, v, s}, corresponding to the horizontal, vertical, or stacked arrangements,
respectively. K is the maximum children number that is dataset-dependent. If an inter-
nal node has K ′ children, where K ′ < K, we append zero feature codes to obtain a
vector [fi1 , ..., fiK′ ,0, ...,0, f

g
j] whose length is still (K + 1)N .

The decoders convert a node feature code fj into its child nodes’ feature codes and
its geometry feature code. Before applying the decoders, we need to first determine
which decoder should be selected. We thus design an auxiliary node type classifier cn

(to be described latter) that predicts the node j’s type. According to the output of this
classifier, an appropriate decoder is applied to fj :

[fi1 , fi2 , ..., fiK , fg
j] = d∗(fj), (8)

where ∗ ∈ {h, v, s}. Note that fj may also be a leaf node’s feature code. In this case,
this code is fed to the element decoder. After applying an arrangement decoder, the
obtained long feature vector is then split into several new node feature codes and a
geometry feature code. Since the number of child nodes of an internal node is not fixed,
we introduce a child existence classifier cc to discard the invalid children.

Auxiliary classifiers. We have two auxiliary classifiers in our model, i.e., the node type
classifier and the child existence classifier. The node type classifier cn is an MLP with
one hidden layer. It takes as input a node feature code and outputs a vector indicating
the node type. The child existence classifier cc is an SLP. It takes a child feature code
as input and outputs a value to indicate the validity of this child.

3.3 Training

We train our model on structured layout datasets. The goal is to train the encoders and
decoders so that they can perform a reversible mapping between a structured layout and
a feature code. Given structured layouts, we recursively apply appropriate encoders at
the nodes of the corresponding layout trees until reaching the root nodes. The feature
codes of the roots are approximated to a Gaussian distribution by the VAE. We then
reverse the process by feeding randomly sampled feature codes to the decoders. Finally
we can obtain structured layouts in the form of layout trees.

GTLayout: Learning General Trees for Structured Grid Layout Generation 11

Loss. We adopt several losses in our training procedure. The total training loss is:

L = λgLg + λtLt + λlLl + λeLe + λKLLKL, (9)

where (λg, λt, λl, λe, λKL) is set as (1, 0.3, 0.3, 0.4, 0.004) in our experiments. Lg is
the geometry loss formulated as the sum of squared difference between the nodes’ rela-
tive geometries in the input and output layout trees. Lt is the node type loss formulated
as a cross-entropy loss between the nodes’ types in the input and output layout trees.
Ll is the semantic label loss formulated as a cross-entropy loss between the leaf nodes’
semantic labels in the input and output layout trees. Le is the child existence loss for-
mulated as a binary cross-entropy with logits loss between the child existence values in
the input and output layout trees. LKL is the KL-divergence loss for approximating the
space of all root node feature codes.

Other details. We implement our GTLayout in PyTorch. We use Adam optimizer [22]
with an initial learning rate of 10−3 reduced by a factor of 0.9. The batch size is 128.

4 Evaluation

Our method constructs a structure-aware layout space in which a latent code represents
a structured layout. With this space, our method can generate novel structured layouts
by decoding randomly sampled codes. We also demonstrate that this layout space is an
appropriate representation of structured layouts by faithfully reconstructing them with
their latent codes. In addition, this layout space enables interpolation between given
structured layouts. In this section, we evaluate our method in the tasks of layout gen-
eration, layout reconstruction, and layout interpolation respectively. We also conducted
an ablation study to verify the design of our method.

Baselines. Many existing learning-based works have already achieved novel layout
generation with given layout datasets. As discussed in Section 2, these works adopt dif-
ferent learning techniques, e.g., GAN, VAE, Transformer, GNN, Diffusion model, etc.
Only a few of them, e.g., LayoutGAN++ [21], VTN [1], and READ [35], have explic-
itly constructed latent spaces to represent layouts. With their constructed layout spaces,
they can perform layout generation, layout reconstruction, and layout interpolation sim-
ilarly to our method. In contrast, other methods that fail to construct such spaces can
only accomplish parts of these three tasks using different strategies. We thus compare
our method with LayoutGAN++, VTN, and READ in the tasks of layout generation,
reconstruction, and interpolation to demonstrate the superiority of our method and its
constructed layout space.

Datasets. The evaluation is conducted on several public grid layout datasets, includ-
ing Magazine [48] which includes 3, 919 layouts with 5 labels, PubLayNet [49] which
includes 330K layouts with 5 labels, and RICO [6] which includes 66K layouts with
27 labels. Due to memory limit, we remove the layouts that contain excessive elements
and labels as existing works [16, 21] did. We also remove the trivial layouts that con-
tain less than 3 elements. After this filtering, we have the following datasets: Magazine

12 P. Xu et al.

Datasets Layouts (#) Labels (#) Elements (#)

Magazine

0.5K 500 4 30
1.0K 1, 000 4 30
1.9K 1, 929 4 30
2.5K 2, 705 4 30

PubLayNet

0.5K 500 5 24
5K 5, 000 5 27

40K 40, 000 5 32
297K 297, 066 5 48

RICO

0.5K 500 14 10
2K 2, 000 17 13

10K 10, 000 21 66
46K 46, 086 23 74

Table 1. The statistics, including the number of layouts, the number of labels, and the maximum
number of elements per layout, of the constructed datasets. These datasets are used in the exper-
iments included in the paper.

(2, 705 layouts, 4 labels, up to 30 elements per layout), PubLayNet (297, 066 layouts, 5
labels, up to 48 elements per layout), and RICO (46, 086 layouts, 23 labels, up to 74 ele-
ments per layout). To exhaustively examine how the compared methods are affected by
the scales of the datasets, we further construct a series of datasets by gradually remov-
ing the layouts in the original datasets. Table 1 shows the statistics of the constructed
datasets that are used in the experiments included in the paper. The training/testing ratio
for all these datasets is 9 : 1.

4.1 Layout generation

Since all the compared methods can construct layout spaces in which a latent code rep-
resents a layout, the layout generation task is achieved by decoding randomly sampled
codes. It is worth noting that, besides a latent code, LayoutGAN++ also needs a list of
labels as input to generate a layout. We adopt the same strategy as described in [21] to
get such a list, i.e., randomly selecting a layout in the testing set and using this layout’s
label list as input.

Evaluation metrics. We evaluate the generated layouts in three aspects. The first is the
arrangement quality of the generated layouts. We use the overlap score (Overlap) and
the alignment score (Align) for the evaluation. Since Overlap and Align have different
definitions in existing works, we reiterate our adopted definitions as below.

Overlap is defined on a layout T as:

Overlap(T) =
1

|T |(|T | − 1)

∑
i∈T

∑
j∈T ,j ̸=i

A(bi ∩ bj)

A(bi ∪ bj)
, (10)

where i and j are elements in the layout T . bi is the bounding box of the element i.
A(bi) means the area of the bounding box bi.

GTLayout: Learning General Trees for Structured Grid Layout Generation 13

Magazine 0.5K Magazine 1K Magazine 1.9K Magazine 2.5K

PubLayNet 0.5K PubLayNet 5K PubLayNet 40K PubLayNet 297K

RICO 0.5K RICO 2K RICO 10K RICO 46K

Fig. 5. Layout generation achieved by the compared methods. For each method and dataset, we
select three representative layouts according to the layout similarity scores (displayed under each
layout). Our method is stable in producing high-quality layouts across all datasets. In contrast,
the other methods may produce low-quality layouts.

14 P. Xu et al.

Magazine PubLayNet RICO
0.5K 1.0K 1.9K 2.5K 0.5K 5K 40K 297K 0.5K 2K 10K 46K

Align ↓

LG++ 0.057 0.066 0.080 0.075 0.011 0.034 0.034 0.034 0.034 0.037 0.031 0.036
READ 0.068 0.068 0.077 0.056 0.061 0.039 0.032 0.033 0.066 0.057 0.038 0.039
VTN 0.009 0.006 0.026 0.024 0.013 0.004 0.004 0.003 0.007 0.033 0.027 0.006
Ours 0.027 0.028 0.029 0.029 0.010 0.011 0.011 0.017 0.014 0.018 0.018 0.016

Overlap ↓

LG++ 0.090 0.067 0.022 0.042 0.421 0.008 0.004 0.009 0.019 0.019 0.011 0.013
READ 0.016 0.018 0.013 0.084 0.004 0.001 0.007 0.007 0.007 0.007 0.008 0.007
VTN 0.267 0.291 0.154 0.103 0.117 0.089 0.044 10−4 0.227 0.127 0.079 0.105
Ours 0.002 0.002 0.002 0.003 10−4 10−4 10−4 10−4 0.010 0.006 0.005 0.006

W label ↓

LG++ 0.053 0.071 0.047 0.040 0.070 0.034 0.013 0.096 0.231 0.192 0.451 0.418
READ 0.338 0.179 0.310 0.396 0.241 0.350 0.069 0.029 0.864 0.689 1.014 1.081
VTN 0.058 0.080 0.097 0.057 0.099 0.091 0.093 0.041 1.243 0.408 7.906 12.779
Ours 0.044 0.021 0.019 0.030 0.188 0.022 0.097 0.115 0.336 0.275 0.143 0.608

W bbox ↓

LG++ 0.162 0.153 0.087 0.094 0.469 0.079 0.073 0.075 0.142 0.122 0.107 0.099
READ 0.083 0.068 0.099 0.132 0.040 0.062 0.053 0.051 0.098 0.087 0.053 0.051
VTN 0.171 0.232 0.129 0.083 0.082 0.080 0.075 0.006 0.194 0.155 0.343 0.442
Ours 0.037 0.027 0.026 0.021 0.052 0.014 0.024 0.022 0.071 0.039 0.023 0.117

LaySim ↓

LG++ 5.544 3.456 2.974 2.804 9.475 2.175 2.188 3.569 1.850 1.862 6.367 4.877
READ 4.200 3.235 6.012 9.280 2.377 3.088 2.557 2.550 2.154 1.970 5.426 5.357
VTN 34.470 38.625 17.327 9.607 25.760 8.875 2.195 2.381 20.794 9.237 7.696 23.464
Ours 2.839 2.534 2.641 2.431 1.400 2.054 2.429 3.526 1.206 1.609 5.848 6.369

LayDiv ↑

LG++ 2.557 1.838 2.460 1.692 1.257 1.172 1.480 1.961 0.166 1.198 4.130 3.659
READ 0.860 1.411 0.957 1.796 1.176 0.392 1.814 1.928 0.862 0.946 2.506 2.327
VTN 1.910 1.065 1.781 1.650 1.473 1.065 1.959 2.466 0.752 0.979 1.597 5.055
Ours 2.795 2.400 2.528 2.311 0.652 1.923 2.115 3.213 0.684 1.426 5.744 5.109

Table 2. Quantitative comparisons on the layout generation task between the compared methods.
In most metrics, our method outperforms the other methods. The advantage of our method is
more significant for the datasets that contain a small number of layouts. The first and second best
scores are highlighted in bold and underline.

Align is defined on a layout T as:

Align(T) =
1

|T |
∑
i∈T

(min
j

Dh(bi, bj)

hT
+min

j

Dv(bi, bj)

wT
), (11)

where Dh(bi, bj) and Dv(bi, bj) are defined as the minimal horizontal/vertical align-
ment distances between bi and bj . wT and hT are the width and height of the layout
and are used to normalize the distance. In our comparison, we consider six alignments,
i.e., horizontal alignments: top, vertical center, bottom; vertical alignments: left, hori-
zontal center, and right.

The second aspect of the evaluation is the similarity between the generated and ex-
isting layouts. We adopt the Wasserstein distance [1] to measure the distribution simi-
larity between these two layout sets. Specifically, we compute the Wasserstein distances
between the generated and testing layouts for the label distribution (W label) and the
bounding box distribution (W bbox). Besides the distribution similarity, we want to
measure the layout appearance similarity between the generated and existing layouts.
Intuitively, the generated layouts should possess similar appearances to the existing lay-

GTLayout: Learning General Trees for Structured Grid Layout Generation 15

outs. This layout appearance similarity, termed LaySim, can be defined as:

LaySim(S,S ′) =
1

|S|
∑
T ∈S

min
T ′∈S′

M(T , T ′), (12)

where S and S ′ are the generated and testing layout sets. M(T , T ′) is the similarity
measure between a pair of layouts T and T ′. Several works [31, 35, 36, 43] have inves-
tigated the similarity measures between layouts. Patil et al. [35] introduced a combi-
natorial layout similarity measure called DocSim. This measure is effective for finding
the nearest neighbors of a given layout, but the computed scores are inconsistent across
different layouts. For example, the self-similarity scores of different layouts may vary
in a large range; the similarity scores of two distinct pairs of layouts can not be com-
pared directly. Xu et al. [43] introduced another combinatorial layout similarity mea-
sure that produces consistent similarity scores. However, it requires layouts to possess
hierarchical structures. LayoutGMN [36] and GCN-CNN [31] are two learning-based
methods that can predict the similarity between two layouts. They require a heavy load
of training before using them to measure specific layouts’ similarities. For convenient
computation, we combine the combinatorial methods introduced in [43] and [35] to de-
fine the layout similarity measure M(T , T ′). Specifically, we treat layouts as sets of
elements [35] and use the Hungarian algorithm [25] to compute the optimal matching
cost as the layout similarity measure between a pair of layouts. The element matching
cost follows the definition in [43] and an element can correspond to a void.

The third aspect of the evaluation is the diversity of the generated layouts. This can
be reflected by the similarities among the generated layouts, i.e., the average similarity
score among all pairs of layouts in the generated layout set S. We term the layout
diversity LayDiv and define it as:

LayDiv(S) = 1

|S|(|S| − 1)

∑
T ∈S

∑
T ′∈S,T ′ ̸=T

M(T , T ′). (13)

Results. For each method and each dataset, we randomly generate 1, 000 layouts for
comparison. As discussed earlier, the generation is achieved by decoding randomly
sampled codes. Table 2 shows the quantitative comparisons of the methods on different
datasets. Figure 5 shows some representative layouts selected from the generated lay-
outs. For each dataset and method, we select three layouts according to the similarity
measures between the generated and existing layouts, i.e., the most, the least, and the
medially similar ones:

Tmost =argmin
T ∈S

(min
T ′∈S′

M(T , T ′)),

Tleast =argmax
T ∈S

(min
T ′∈S′

M(T , T ′)),

Tmedian =argmedian
T ∈S

(min
T ′∈S′

M(T , T ′)),

(14)

where S and S ′ are the generated and testing layout sets. From these quantitive and
qualitative results, we have the following findings. First, in most metrics, our method

16 P. Xu et al.

Magazine PubLayNet RICO
0.5K 1.0K 1.9K 2.5K 0.5K 5K 40K 297K 0.5K 2K 10K 46K

CD ↓
READ 0.057 0.076 0.082 0.194 0.047 0.072 0.022 0.023 0.131 0.052 0.093 0.082
VTN 0.084 0.149 0.156 0.111 0.043 0.039 0.033 0.013 0.379 0.230 0.460 1.948
Ours 0.023 0.031 0.019 0.022 0.030 0.017 0.014 0.021 0.037 0.024 0.014 0.034

IoU ↑
READ 0.237 0.251 0.195 0.250 0.281 0.222 0.422 0.416 0.207 0.410 0.266 0.267
VTN 0.172 0.201 0.232 0.318 0.353 0.318 0.374 0.479 0.372 0.484 0.165 0.115
Ours 0.455 0.480 0.527 0.537 0.382 0.416 0.446 0.356 0.422 0.548 0.366 0.338

Table 3. Quantitative comparisons on the layout reconstruction task between the compared meth-
ods, in terms of the Chamfer distance (CD) and the Intersecion-over-Union (IoU). Our method
achieves the best performance for almost all the datasets. The best scores are highlighted in bold.

outperforms the other methods. The advantage of our method is more significant for
the datasets that contain a small number of layouts. For the datasets that contain a large
number of layouts (e.g., PubLayNet 297K), our method outperforms or is comparable
to the other methods in most metrics. For Overlap, our method outperforms the other
methods on almost all the datasets. This should be attributed to our recursive struc-
ture generation procedure and the design of relative geometry. For Align, our method
is slightly behind VTN. VTN adopts discrete coordinates to represent element geom-
etry, and thus greatly improves its performance on alignment. According to W label
and W bbox, our method also achieves comparable performance in these two metrics.
Since these two metrics only consider the distribution of labels and box geometries,
we introduce LaySim to measure the appearance similarity. For LaySim, our method
also achieves the best performance in most datasets. According to LaySim and LayDiv,
we can conclude that our method produces more diverse layouts with higher qualities,
especially for small datasets. In terms of qualitative comparison, all the methods can
produce reasonable layouts, e.g., the layouts that are most similar to the testing layout
sets. However, our method is more stable than the other methods in producing high-
quality layouts. As illustrated in Figure 5, all the representative layouts generated by
our method, including the ones that are most, medially, and least similar to the testing
layout sets, are of high quality. In contrast, some of the representative layouts generated
by the other methods, including the ones that are medially or least similar to the testing
layout sets, are of low quality, especially for the datasets that contain a small number
of layouts (e.g., Magzine 0.5K). READ also adopts RvNN as the network architec-
ture, therefore its performance is better when training with small datasets. For large
datasets, its performance degrades since the layouts in these datasets contain exces-
sive elements, leading to over-deep binary layout trees, and resulting in the collapse of
the model. VTN archives comparable performance to our method, especially for large
datasets, indicating the advantage of the transformer architecture. Due to the memory
limit, the training of VTN with RICO 46K dataset fails, resulting in low-quality results.
In the supplemental material, we provided more results, including the generated lay-
outs’ nearest neighbors selected from the testing sets. These additional results confirm
that our method can produce novel layouts that are visually similar to the existing ones.

GTLayout: Learning General Trees for Structured Grid Layout Generation 17

Input

Best reconstruction of our method Best reconstruction of VTN

VTNOurs READ Input VTNOurs READ Input VTNOurs READ

Best reconstruction of READ

RI
CO

 2
K

RI
CO

 0
.5

K
RI

CO
 1

0K
RI

CO
 4

6K
Pu

bL
ay

N
et

 1
20

K
Pu

bL
ay

N
et

 4
0K

Pu
bL

ay
N

et
 5

K
Pu

bL
ay

N
et

 0
.5

K
M

ag
az

in
e

2.
5K

M
ag

az
in

e
2K

M
ag

az
in

e
1K

M
ag

az
in

e
0.

5K

Fig. 6. The layout reconstruction achieved by the compared methods. For each dataset, we obtain
three groups of layouts, according to the best reconstruction of each method. Our method outper-
forms the other methods in this task.

4.2 Layout reconstruction

In this task, the reconstruction is achieved by first encoding a layout to obtain a latent
code and then decoding this code to reconstruct the layout. The reconstruction quality

18 P. Xu et al.

indicates whether the latent code is an appropriate representation of the layout. Since
LayoutGAN++ does not have an encoder, it can not perform this reconstruction task.
Therefore, we compare our method with VTN and READ.

Evaluation metrics. We adopt the Chamfer distance (CD) [17] and Intersection-over-
Union score (IoU) [31, 35] between the ground-truth layouts and the reconstructed lay-
outs as the evaluation metrics.

Results. For each testing dataset, we randomly select and reconstruct 1, 000 layouts
(or all layouts for small datasets) using the compared methods. Table 3 shows the
quantitative comparisons between the compared methods. According to CD and IoU,
our method achieves the best performance on layout reconstruction for almost all the
datasets. Figure 6 shows some representative reconstruction results obtained by the
compared methods. For each dataset, we obtain three groups of layouts, each of which
contains an input layout and three layouts reconstructed by the compared methods. The
three input layouts are selected according to the CD score: for each method, we select
the input layout with the best CD score after reconstruction. This strategy avoids the bias
of manual selection. This qualitative comparison also confirmed that the reconstructed
layouts obtained by our method are more visually similar to the input layouts compared
with the other methods. VTN also achieves satisfactory results when training with large
datasets (e.g., PubLayNet 120K), but its performance degrades significantly for small
datasets (e.g., Magazine 0.5K). These quantitative and qualitative comparisons confirm
that the latent code computed by our method is an appropriate neural representation of
layouts.

4.3 Layout interpolation

Layout interpolation is achieved by interpolating the latent codes of existing layouts and
then decoding the interpolated codes. We compare our method with VTN and READ in
this task.

Results. Figure 7 gives a few interpolation examples. These results are obtained by
training the compared methods with Magazine 2.5K and PubLayNet 297K respectively.
We do not include RICO in this task since the variation of the layouts in this dataset is
overly high and all the methods can not achieve satisfactory interpolation.

This qualitative comparison shows that all the methods can produce satisfactory
layouts by interpolation. However, only our method achieves smooth and reasonable
structure blending, since it exploits the structural information when embedding layouts
into the latent space. These results confirm that the latent space constructed by our
method is structure-aware. Please refer to the supplemental material for the animation
of the layout interpolation.

5 Conclusion

In this paper, we have presented GTLayout, a novel RvNN-based generative model
for structured grid layout generation. We adopt general trees as the structural repre-

GTLayout: Learning General Trees for Structured Grid Layout Generation 19

Pu
bL

ay
N
et

M
ag

az
in
e

Fig. 7. The layout interpolation achieved by the compared methods. All the methods can produce
satisfactory layouts by interpolation. However, only our method achieves smooth and reasonable
structure blending. It confirms that the latent space constructed by our method is structure-aware.

sentation of structured grid layouts and use relative geometry to depict the spatial re-
lations between elements. Our model is trained in a recursive bottom-up manner. We
have designed several encoders and decoders according to the arrangements existing
in structured gird layouts. These encoders can successfully map structured grid lay-
outs to a structure-aware latent space. Extensive evaluations show that our method out-

20 P. Xu et al.

performs several baselines quantitatively and qualitatively in the tasks of layout re-
construction and generation, especially for small datasets. We have also demonstrated
the advantage of the structure-aware latent space constructed by our method via the
task of structured layout blending. To the best of our knowledge, GTLayout is the first
learning-based method that achieves structured layout blending. We believe that the
constructed structure-aware layout space has more potential applications, e.g., exploit-
ing user-provided constraints for layout generation.

Our method has some limitations. First, since our method aims to structured layout
generation, it is less reliable to handle unstructured layouts. Second, our method does
not consider more advanced structures in layouts, for example, symmetry or semantic
groupings, since these structural information may break the tree structures. Lastly, sim-
ilar to other RvNN-based methods, the training efficiency of our method is not high. It
takes around 20 hours to train a model for 200 epochs on a dataset composed of 10, 000
layouts.

In the future, we plan to further explore the problem of structured layout genera-
tion. It would be interesting to resolve the limitations of our method by introducing
other representations of structured layouts. We have adopted RvNN for the structured
layout generation. It would be promising to exploit other advanced learning techniques,
e.g., Transformers [41] or Graph Neural Network [38], to solve the structured layout
generation problem, or even extend them to other structured data generation problems.

Acknowledgments. This work was supported in parts by NSFC (62072316, U21B2023), NSF
of Guangdong Province (2023A1515011297), DEGP Innovation Team (2022KCXTD025), Shen-
zhen Science and Technology Program (KQTD20210811090044003), and Guangdong Labora-
tory of Artificial Intelligence and Digital Economy (SZ).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout genera-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 13642–13652 (2021)

2. Baudisch, P., Cutrell, E., Hinckley, K., Eversole, A.: Snap-and-go: helping users align objects
without the modality of traditional snapping. In: Proceedings of the SIGCHI conference on
Human factors in computing systems. pp. 301–310 (2005)

3. Bier, E.A., Stone, M.C.: Snap-dragging. ACM SIGGRAPH Computer Graphics 20(4), 233–
240 (1986)

4. Chai, S., Zhuang, L., Yan, F.: Layoutdm: Transformer-based diffusion model for layout
generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 18349–18358 (2023)

5. Dayama, N.R., Todi, K., Saarelainen, T., Oulasvirta, A.: Grids: Interactive layout design
with integer programming. In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. pp. 1–13 (2020)

6. Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols, J., Kumar, R.:
Rico: A mobile app dataset for building data-driven design applications. In: Proceedings of

GTLayout: Learning General Trees for Structured Grid Layout Generation 21

the 30th Annual ACM Symposium on User Interface Software and Technology. pp. 845–854
(2017)

7. Dixon, M., Leventhal, D., Fogarty, J.: Content and hierarchy in pixel-based methods for re-
verse engineering interface structure. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 969–978 (2011)

8. Frisch, M., Kleinau, S., Langner, R., Dachselt, R.: Grids & guides: multi-touch layout and
alignment tools. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. pp. 1615–1618 (2011)

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neu-
ral Information Processing Systems. vol. 27. Curran Associates, Inc. (2014),
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
Paper.pdf

10. Gupta, K., Lazarow, J., Achille, A., Davis, L.S., Mahadevan, V., Shrivastava, A.: Layout-
transformer: Layout generation and completion with self-attention. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 1004–1014 (2021)

11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems 33, 6840–6851 (2020)

12. Hui, M., Zhang, Z., Zhang, X., Xie, W., Wang, Y., Lu, Y.: Unifying layout generation with
a decoupled diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1942–1951 (2023)

13. Inoue, N., Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: LayoutDM: Discrete Dif-
fusion Model for Controllable Layout Generation. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 10167–10176 (2023)

14. Jiang, Y., Du, R., Lutteroth, C., Stuerzlinger, W.: Orc layout: Adaptive gui layout with or-
constraints. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. pp. 1–12 (2019)

15. Jiang, Y., Stuerzlinger, W., Lutteroth, C.: Reverseorc: Reverse engineering of resizable user
interface layouts with or-constraints. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. pp. 1–18 (2021)

16. Jiang, Z., Guo, J., Sun, S., Deng, H., Wu, Z., Mijovic, V., Yang, Z.J., Lou, J.G., Zhang, D.:
Layoutformer++: Conditional graphic layout generation via constraint serialization and de-
coding space restriction. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 18403–18412 (2023)

17. Jiang, Z., Sun, S., Zhu, J., Lou, J.G., Zhang, D.: Coarse-to-fine generative modeling for
graphic layouts. In: AAAI’22 (February 2022)

18. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: Stochastic scene layout
generation from a label set. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 9895–9904 (2019)

19. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers
for language understanding. In: Proceedings of NAACL-HLT. pp. 4171–4186 (2019)

20. Kikuchi, K., Otani, M., Yamaguchi, K., Simo-Serra, E.: Modeling visual containment for
web page layout optimization. In: Computer Graphics Forum. vol. 40, pp. 33–44. Wiley
Online Library (2021)

21. Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: Constrained graphic layout genera-
tion via latent optimization. In: Proceedings of the 29th ACM International Conference on
Multimedia. pp. 88–96 (2021)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR

22 P. Xu et al.

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015),
http://arxiv.org/abs/1412.6980

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference
on Learning Representations (2013)

24. Kong, X., Jiang, L., Chang, H., Zhang, H., Hao, Y., Gong, H., Essa, I.: Blt: bidirectional
layout transformer for controllable layout generation. In: Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII.
pp. 474–490. Springer (2022)

25. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics
quarterly 2(1-2), 83–97 (1955)

26. Lee, H.Y., Jiang, L., Essa, I., Le, P.B., Gong, H., Yang, M.H., Yang, W.: Neural design
network: Graphic layout generation with constraints. In: European Conference on Computer
Vision. pp. 491–506. Springer (2020)

27. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: Generating graphic layouts
with wireframe discriminators. arXiv preprint arXiv:1901.06767 (2019)

28. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: Generative recursive
autoencoders for shape structures. ACM Transactions on Graphics (TOG) 36(4), 1–14 (2017)

29. Li, M., Patil, A.G., Xu, K., Chaudhuri, S., Khan, O., Shamir, A., Tu, C., Chen, B., Cohen-Or,
D., Zhang, H.: Grains: Generative recursive autoencoders for indoor scenes. ACM Transac-
tions on Graphics (TOG) 38(2), 1–16 (2019)

30. Lupton, E.: Thinking with type: A critical guide for designers, writers, editors, & students.
Chronicle Books (2014)

31. Manandhar, D., Ruta, D., Collomosse, J.: Learning structural similarity of user interface
layouts using graph networks. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16. pp. 730–746. Springer
(2020)

32. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., Guibas, L.J.: Structurenet: Hierar-
chical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575 (2019)

33. Müller-Brockmann, J.: Grid systems in graphic design: A visual communication manual for
graphic designers, typographers and three dimensional designers. Arthur Niggli (1996)

34. O’Donovan, P., Agarwala, A., Hertzmann, A.: Learning layouts for single-page graphic de-
signs. IEEE transactions on visualization and computer graphics 20(8), 1200–1213 (2014)

35. Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: Recursive autoencoders for
document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. pp. 544–545 (2020)

36. Patil, A.G., Li, M., Fisher, M., Savva, M., Zhang, H.: Layoutgmn: Neural graph matching
for structural layout similarity. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11048–11057 (2021)

37. Raisamo, R., Räihä, K.J.: A new direct manipulation technique for aligning objects in draw-
ing programs. In: Proceedings of the 9th annual ACM symposium on User interface software
and technology. pp. 157–164 (1996)

38. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2008)

39. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language
with recursive neural networks. In: Proceedings of the 28th international conference on ma-
chine learning (ICML-11). pp. 129–136 (2011)

40. Swearngin, A., Wang, C., Oleson, A., Fogarty, J., Ko, A.J.: Scout: Rapid exploration of
interface layout alternatives through high-level design constraints. In: Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. pp. 1–13 (2020)

GTLayout: Learning General Trees for Structured Grid Layout Generation 23

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017),
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf

42. Xu, P., Fu, H., Tai, C.L., Igarashi, T.: Gaca: Group-aware command-based arrangement of
graphic elements. In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. pp. 2787–2795 (2015)

43. Xu, P., Li, Y., Yang, Z., Shi, W., Fu, H., Huang, H.: Hierarchical layout blending with recur-
sive optimal correspondence. ACM Transactions on Graphics (Proceedings of SIGGRAPH
ASIA) 41(6), 249:1–249:15 (2022)

44. Xu, P., Yan, G., Fu, H., Igarashi, T., Tai, C.L., Huang, H.: Global beautification of 2d and 3d
layouts with interactive ambiguity resolution. IEEE transactions on visualization and com-
puter graphics 27(4), 2355–2368 (2019)

45. Yamaguchi, K.: Canvasvae: Learning to generate vector graphic documents. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 5481–5489 (2021)

46. Yang, Y.L., Wang, J., Vouga, E., Wonka, P.: Urban pattern: Layout design by hierarchical
domain splitting. ACM Transactions on Graphics (TOG) 32(6), 1–12 (2013)

47. Zeidler, C., Lutteroth, C., Sturzlinger, W., Weber, G.: The auckland layout editor: An im-
proved gui layout specification process. In: Proceedings of the 26th annual ACM symposium
on User interface software and technology. pp. 343–352 (2013)

48. Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic
design layouts. ACM Transactions on Graphics (TOG) 38(4), 1–15 (2019)

49. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis.
In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp.
1015–1022. IEEE (2019)

50. Zhu, C., Xu, K., Chaudhuri, S., Yi, R., Zhang, H.: Scores: Shape composition with recursive
substructure priors. ACM Transactions on Graphics (TOG) 37(6), 1–14 (2018)

