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Abstract. Fine-grained 3D shape retrieval aims to retrieve 3D shapes
similar to a query shape in a repository with models belonging to
the same class, which requires shape descriptors to represent detailed
geometric information to discriminate shapes with globally similar
structures. Moreover, 3D objects can be placed with arbitrary positions,
orientations, and scales in real-world applications, which further requires
shape descriptors to be robust to rotation and sensitive to scale.
The shape descriptions used in existing 3D shape retrieval systems
fail to meet the above two criteria. In this paper, we introduce a
novel deep architecture, ROSA-Net, which learns rotation-robust and
scale-sensitive 3D shape descriptors capable of encoding fine-grained
geometric information and structural information, and thus achieve
accurate results on the task of fine-grained 3D object retrieval. ROSA-
Net extracts a set of compact and detailed geometric features part-
wisely and discriminatively estimates the contribution of each semantic
part to shape representation. Furthermore, our method can learn the
importance of geometric and structural information of all the parts
when generating the final compact latent feature of a 3D shape for fine-
grained retrieval. We also build and publish a new 3D shape dataset
with sub-class labels for validating the performance of fine-grained 3D
shape retrieval methods. Qualitative and quantitative experiments show
that our ROSA-Net outperforms state-of-the-art methods on the fine-
grained object retrieval task, demonstrating its capability in geometric
detail extraction. The code is available in the supplementary material.

1 Introduction

Recent advancements in modeling, digitizing, and visualizing physical and virtual
3D objects have resulted in an explosion of available 3D models on the internet.
† Corresponding author: yangjie01@ict.ac.cn
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Fig. 1: Four examples of the top-5 retrieval results given query models on the
shape dataset with perturbed rotations within the chair category. Our method is
able to capture geometric details, learn the importance of each part, and balance
the contribution of structure and geometric information in fine-grained retrieval.

As a result, effective retrieval of models from a shape repository has become
an integral part of the research field of 3D shape analysis. The most popular
shape retrieval methods are content-based approaches that use shape descriptors
to search for similar models. However, while many methods exist to retrieve
similar 3D shapes using their shape descriptors, most of these methods perform
well only on inter-class retrieval, where shape search engines are tasked with
retrieving shapes with the same class label among different object classes that
typically have vastly different overall shapes. This often results in the retrieval
of an object of the same class that does not look similar to the query due to
mismatched structure or geometric details.

In contrast, fine-grained intra-class 3D shape retrieval is frequently over-
looked but is essential for real-world applications. For example, in deformation-
based 3D modeling [52], designers often create a new shape by deforming a
similar source shape within the same class. In robot grasping [53], retrieving
an object with similar fine-grained details aids in grasping novel objects.
Additionally, in online shopping, users search for the ideal object within a
database containing objects of the same class. In this paper, we aim to solve the
task of fine-grained intra-class 3D shape retrieval, which is of critical importance
in various practical scenarios.

Fine-grained intra-class 3D shape retrieval presents greater challenges com-
pared to inter-class retrieval. One challenge of fine-grained retrieval lies in the
ability of shape descriptors to distinguish between subtle differences in the
geometry and structure of objects within the same class. This requires that shape
descriptors capture more detailed geometric features of the shapes, such as local
surface features of the chair legs. Additionally, structure-aware information must
be incorporated into the shape descriptors to differentiate between objects with
different underlying structures, such as chairs with different leg arrangements.
Another challenge in 3D shape retrieval is that objects in a repository are
typically not in a canonical form. For instance, in real-world data, objects may
be placed with arbitrary positions and orientations, while in synthesized data,
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it is labor-intensive and infeasible for designers to strictly canonicalize all of
the designed objects. Furthermore, fine-grained intra-class retrieval requires the
incorporation of scale information into the shape descriptors. For instance, a
coffee table and a dining table may look similar in their geometric details and
structure but differ in scale, and thus scale information is necessary for accurate
retrieval. This is especially important in applications such as robot grasping,
where retrieving an object with similar fine-grained details aids in grasping novel
objects of varying sizes.

To tackle the above challenges, we propose a Rotation-Robust Scale-Sensitive
Structure-Aware Network (ROSA-Net) for fine-grained 3D shape retrieval which
extracts a 3D shape descriptor that is robust to rotation, sensitive to scale,
and is also informative to indicate fine-grained shape similarity and structure
information. Our method is based on the following three observations. Firstly, in
both physical object manufacturing and digital 3D shape modeling, assembling
interchangeable components or parts has become a practical reality to avoid
considerable, and often inconvenient user interactions in 3D object design
[13, 45]. It is thus natural to see part-wise differences in 3D models constructed
for different functionalities. The parts of an object often vary in importance,
and therefore contribute unequally to discriminating different object categories.
Therefore, we extract geometric information part-wisely and then use an
attention mechanism(Part-Geo Attention) to learn to weight the contributions of
different parts to shape retrieval. Secondly, we need to ensure that the extracted
descriptor can well encode the subtle difference among the same semantic part
of different objects, and the descriptor should be rotation-robust and scale-
sensitive. Thus, we propose a variational autoencoder(PartVAE ) to encode
reconstructive rotation-invariant and scale-sensitive mesh-based geometric in-
formation: edge lengths and dihedral angles. Intuitively, a latent feature that
can be precisely reconstructed to the whole shape must have comprised all
detailed geometric information of the original shape. Thirdly, there are shapes
that differ in local details and shapes that differ in structure, so the descriptor
should distinguish which information is more critical in the differentiation of
shapes. Therefore, we propose a new paradigm(Geo-Struct Attention) to balance
the importance of fine-grained geometric information and structural information
and incorporate this information into the shape descriptors through variational
autoencoder(GlobalVAE ). With the above components, experiments show our
network is able to learn 3D shape descriptors that achieve higher accuracy than
previous methods when querying shapes with arbitrary poses against objects of
the same class. The Part-Geo Attention and the Geo-Struct Attention are able to
balance the part-wise geometry and structure information for intra-class shape
retrieval.

In summary, our main contributions are as follows:

1. We propose a part-based deep model, ROSA-Netfor intra-class fine-grained
3D shape retrieval. The architecture includes a compact mesh-based descrip-
tor that encodes rotation-robust and scale-sensitive geometric information.
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2. We propose a self-supervised paradigm that balances structural and geomet-
ric information in shape discrimination.

3. We build and publish a 3D Shape dataset, ROSA-Net-Dataset, to evaluate
fine-grained intra-class object retrieval methods quantitatively, which pro-
vides sub-class labels of all the 8, 906 3D shapes in 6 classes.

2 Related Work

The task of 3D shape retrieval is critical in evaluating the descriptive capabilities
of shape representation models. In this section, we commence by conducting a
thorough review of the present research on 3D shape retrieval. Subsequently,
we examine two contemporary approaches for 3D shape representation, namely
mesh-based representations and rotation-robust representations. These methods
are of particular relevance to our study.

2.1 3D Shape Retrieval

Shape retrieval is an indispensable aspect of numerous applications that rely on
large-scale 3D shape repositories, such as shape modeling [59], template-based
deformation [52], and scene modeling [60]. These applications retrieve a globally
or locally similar shape from the target shape and employ it as a component or
template for shape modeling, utilizing the information provided by the shape
repository. Effective description of 3D shapes constitutes a crucial component of
shape retrieval. Hand-crafted shape descriptors such as lightfield descriptors [6]
and spherical harmonic descriptors [26] have been employed to extract global
3D features. On the other hand, local information for partial shape retrieval can
be described using shape distribution [36], heat kernel diffusion [50], predefined
primitives [38], bag-of-features [4,35,41], and shape editing distance [27]. These
methods can also aggregate local information for global shape retrieval. Recently,
facilitated by progress in deep neural networks, machine learning-based methods
have been adopted to improve the descriptive power of 3D shape representations.
Multi-view image-based approaches aim to aggregate features from multi-view
images for shape representation, which aggregates image features through
pooling operations [49], image matching [1, 25], or attention-based sequential
view aggregation [20, 21]. Instead of projecting shapes to multi-view images,
Shi et al. [46] and Steve et al. [14] proposed to project a shape to a cylinder
and a unit sphere respectively, and learn features from their projection without
extra aggregation operations. Other methods focused on extracting features
from point or mesh based representations. [17] extracted and aggregated local
features from rotation-normalized point sets. [62] transformed the point set into
a volumetric representation and introduced a voxel feature encoding layer for
feature extraction. [52] developed a deep embedding technique to retrieve a 3D
model that can best match the query through mesh deformation.

While these methods perform well on large-scale 3D shape retrieval bench-
marks [28, 42], their representative power is limited to distinguishing shapes of



ROSA-Net 5

different sub-classes within the same overall class, overlooking fine-grained shape
features. Additionally, they focused on only geometric information or spatial
information, without discerning the global semantic structure of objects. Despite
some non-learning-based methods [27] utilizing both structural and geometric
information, they necessitate users to manually determine the significance of
these features. In contrast, ROSA-Net learns the importance through a self-
supervised approach. [30]introduced a fine-grained 3D shape dataset and
proposed a method to classify fine-grained 3D shapes from multiple rendered
views to address the above issues. However, the process of view capturing
in their approach loses geometric details. Observing their drawbacks in sub-
class level retrieval, we propose ROSA-Net that focuses on fine-grained shape
retrieval, which can encode both geometric and structural features and weight
their importance. We also provide a dataset for quantitatively evaluating fine-
grained shape retrieval.

2.2 Mesh-based Representations

There have been numerous studies that investigate how to apply convolution
operations on 3D mesh-based models. Masci et al. [33] were the first to
extract patches based on local polar coordinates and generalize convolution
networks to non-Euclidean manifolds. Sinha et al. [48] used Convolutional Neural
Networks (CNNs) to transform a general mesh model into a “geometry image”
that encodes local properties of shape surfaces. Anisotropic CNN (ACNN) [3]
adopted anisotropic diffusion kernels to construct patches to learn intrinsic
correspondences. Monti et al. [34] further improved these ideas by parametrically
constructing patch operators through vertex frequency analysis. Alternatively,
methods were reported in the literature to perform convolutional operations in
the spectral domain. Boscaini et al. [2] used windowed Fourier transform and
proposed localized spectral convolutional networks to conduct supervised local
feature learning. Xie et al. [58] learned a binary spectral shape descriptor for 3D
shape correspondence. Han et al. [19] further proposed a circle convolutional
restricted Boltzmann machine (CCRBM) to learn 3D local features in an
unsupervised manner. In follow-up work, Hanocka et al. [22] brought up a
network with unique convolution and pooling operations on the edges which
connect adjacent mesh vertices. Schult et al. [44] proposed a network that applies
geodesic and Euclidean convolutional operations in parallel. These methods
provide fundamental building blocks for deep learning methods for geometry
processing. Inspired by the above works, we propose to use generative models to
automatically learn shape descriptors in the latent space.

2.3 Rotation-invariant Representations

Rotation invariance is an important attribute of shape descriptors in real-
world applications of 3D shape retrieval. Although studies have been conducted
by many researchers, this problem is still insufficiently explored. A common
technique in this field is discrete feature aggregation. For instance, the method
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[17] by Furuya et al. extracted shape descriptors from an oriented point
set by aggregating processed local 3D rotation-invariant features. Similarly,
Luo et al. [31] learned an orientation for each point and transformed its
neighbors before aggregating neighbors’ information into this point. Kanezaki
et al. [25] mainly focused on how to aggregate predictions from multiple views
and take a single image as input for its prediction. SeqViews2SeqLabels [21]
aggregated the sequential views using an encoder-decoder Recurrent Neural
Network (RNN) structure with attention. The rotation invariance has been
addressed only to a very limited extent because the above methods are not
able to deal with arbitrary rotations. Some recent research works suggested
incorporating equivariance directly into the network architecture, because the
desired equivalence of transformation can be achieved through constraining the
filter structure. Thomas et al. [51] introduced tensor fields to keep translational
and rotational equivariance. Zhang et al. [61] proposed to represent data by a
set of 3D rotations and defined quaternion product units to operate on them.
Chen et al. [7] dynamically adapted convolution kernels based on the rotation
invariant relative pose information. Deng et al. [11] extended neurons from 1D
scalars to 3D vectors, constructing rotation-equivariant learnable networks.

Another way to achieve equivalence is coordinate transformation. Henriques
et al. [23] fixed a sampling grid according to Abelian symmetry. Also, equivariant
filter orbit was the main focus of many recent works. Cohen et al. [8] proposed
group convolution networks (G-CNNs) with the square rotation group. They
provided the evidence for the rotational equivariance of group-convolutions.
Worrall et al. [56] proposed CubeNet using KleinâĂŹs four-group on 3D voxelized
data, which learns interpretable transformations with encoder-decoder networks.
Some previous research works have applied functions on the icosahedron and
their convolutions to achieve equivariance on the cyclic group [10] and the
icosahedral group [15]. Esteves et al. [14] and Cohen et al. [9] focused on the
infinite group SO(3), and used the spherical harmonic transform for the exact
implementation of the spherical convolution or correlation. Esteves et al. [14]
also defined several SO(3) equivariant operations on spheres to process 3D data,
which can achieve better invariance and generalizes well to unseen rotations. The
question remains open that how the invariance preservation mechanism can be
utilized to learn a shape descriptor for fine-grained shape retrieval.

There are also several recent studies focusing on rotation invariant repre-
sentations on point clouds, which learn an initial rotation to a canonical pose.
Qi et al. [39] adopted an auxiliary alignment network to make model robust to
affine transformations by predicting and applying such transformations to input
points and features, which was then further improved to handle the variations in
point density by [40]. Deng et al. [12] proposed ordering-free point pair features
and a deep architecture based on PointNet to encode coordinates to transform-
invariant features. Adversarial training [32] has also been used to improve model
robustness to arbitrary rotations. In [55], rotation of the point cloud was regarded
as an attack and rotation robustness was improved by training the classifier on
inputs with adversarial rotations. Despite good results on rotation robustness,
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these methods cannot be directly applied to retrieve mesh models. Moreover,
they did not focus on the rotation invariance of both geometry and structure.

Fig. 2: Pipeline of ROSA-Netto extract shape descriptors for fine-grained intra-
class shape retrieval. From left to right, i) our method first extracts part-wise
base geometric features and structural features. ii) Then PartVAE encodes base
geometric feature to latent space, and Part-Geo Attention learns the contribution
of each geometric part. iii) Meanwhile, shape structure is analyzed and extracted
as structural features. iv) After concatenation, the global geometric feature
and structural feature are weighted by Geo-Struct Attention. v) The weighted
geometric and structural features are concatenated and then encoded by a
GlobalVAE, whose latent vector is the high-level shape descriptor of the input
object.

3 ROSA-Net

Our method is inspired by the recent progress in latent vector learning and
transformation-invariant feature extraction. To extract 3D shape descriptors
with rich geometric details that are robust to rigid transformation, we propose to
extract part-wise mesh-based features: edge lengths and dihedral angles. These
features preserve rigid transformation invariant and scale-sensitive geometric
details, which enable shape reconstruction from these features [16], showing
that complete information is retained. Although these geometric features are
descriptive, their high-dimensionality means it would be inefficient to use them
directly as shape descriptors. Moreover, these features only describe low-level
features of edges. It thus lacks information on the global semantic structure
of the 3D shape. To address these issues, we adopt a set of variational
autoencoders (VAEs) with attention mechanism to extract compact features
from the base geometric features, which not only retains the translation and
rotation invariance of detailed geometric features, but also balances structure
and geometric information to a high-level succinct feature for retrieval tasks.
In the following subsections, we first symbolize the elements of ROSA-Net, and
then introduce the components of the network.
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Fig. 3: The structure of one PartVAE that extracts rotation-invariant scale-
sensitive fine-grained geometric information. PartVAE encodes edge features
through convolutional operations on edges and their adjacent edges. E and dz
denote the number of edges of a mesh model and the dimension of the latent
vector respectively.

3.1 Overview

Fig. 2 illustrates the network architecture of ROSA-Net. Given a 3D shape Mi,
the input of the network is its semantically segmented parts {mi

p, ∀p ∈ {1, 2, · · · , P}},
where P is the number of parts. We extract its base geometric feature fi

p

from each part mi
p. Then we use a set of partVAE s (part-wise variational

autoencoders) to encode a geometric feature set {fip, ∀p ∈ [1, P ]}. Each partVAE
encodes the geometric feature of the corresponding part edge-wisely to a
latent vector zi

p. Furthermore, we adopt a part-geometry (Part-Geo) attention
mechanism to weight the importance of each semantic part to amplify the effect
of important parts by multiplying the latent vector of each part by the attention
weight αp

i. The weighted latent vector set
!
z′i

p
, ∀p ∈ {1, 2, ..., P}

"
encodes the

geometric information and the contribution of each part to shape discrimination.
All the vectors are then concatenated to form a global geometric feature vector
gvi, representing the geometric feature of the whole shape. Similarly, we extract
the global structural feature svi that is robust to rigid transformation through
part-based structure analysis. As the contributions of geometric and structural
features to fine-grained retrieval vary in different cases, we further learn the
importance of geometric and structural features respectively through geometry-
structure (Geo-Struct) attention mechanism. In particular, we multiply the
global geometric feature gvi and the global structural feature svi by the learned
geometry weight wi

g and structure weight wi
s respectively. Finally, the weighted

geometric and structure features are concatenated to get the initial global feature
vector fvi, which is then interpreted as a low-dimensional latent vector zvi by the
global feature variational autoencoder (GlobalVAE ). zvi will be used as the shape
descriptor of the input 3D shape for the fine-grained retrieval task. Additionally,
we append triplet loss term to the original VAE loss to improve the distribution
of shape features in the latent space and train our attention mechanisms in an
end-to-end manner.
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3.2 Geometric Feature Representation

In our observation, globally similar objects could share similar features in some
semantic parts, but differ drastically in other parts, since 3D objects are often
designed and assembled using different parts to satisfy various desired functions.
Therefore, compared with learning features at a low level of granularity for
an integrated 3D shape, learning them part-wisely is more effective. In real
world applications, 3D objects may be randomly placed, thus are not always
strictly aligned or zero-centred to the world coordinate system. Therefore, shape
descriptors of 3D objects should be invariant to possible rigid transformations.
In case of scaling transformation, the feature needs to be capable of describing
the relative size of parts for shape discrimination. For example, comparing a
coffee table with a dinning table that has the same panel size, the coffee table
has shorter legs. Given the above observations, the part-wise geometric feature
we extract should be invariant to rotation and translation but sensitive to
scaling. Finally, we want the extracted features to contain as much geometric
detail as possible, so that the whole 3D shape can be reconstructed from them.
Therefore, we represent shapes by edge lengths and dihedral angles, which are
reconstructive, scale sensitive and robust to rigid transformations [16].

In particular, the base geometric feature is defined on a set of 3D models
that all have the same semantic parts with label p ∈ {1, 2, · · · , P} and E edges
with the same connectivity among them, where P and E are the number of
Part Semantics and edges respectively. We denote the parts with the same label
p of all the models by the set {mp

i , ∀i ∈ [1, N ]}, where N is the total number
of models. The same topological structure of all the shapes can be utilized to
establish part-level correspondences. In our implementation, we use a watertight
unit cube mesh with 3075 vertices as the reference model, and perform non-rigid
coarse-to-fine registration [63] on the above shape part set, ensuring that all the
shapes have the same connectivity as the reference. Each shape mp

i could be
described by its edge lengths and dihedral angles:

fp
i =

#
Lp
i , Θ

p
i |L

p
i ∈ RE

+, Θ
p
i ∈ [0, 2π)

E
$

(1)

where Lp
i ∈ RE

+ contains all E edge lengths, and Θp
i ∈ [0, 2π)

E includes dihedral
angles of all edges.

The base geometric feature is not ideal for retrieval tasks because of its high
dimensionality and redundancy. Therefore, after basic geometric information
extraction, feature compression is a necessary step. We propose to use partVAEs
(part-wise variational autoencoders) to extract high-level features from the base
geometric features. Due to its reconstructive property, the high-level latent vector
zpi learned by partVAEs will not only maintain the translation and rotation
invariance, but also preserve necessary detailed geometric features for object
retrieval.

Fig. 3 illustrates the structure of one partVAE. The input of a partVAE
is an E × 2 dimensional feature vector, fp

i , containing above basic geometry
features. In fp

i , it concatenates the rows of an E × 2 matrix, where each row
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corresponds to an edge, and the two columns represent edge lengths and dihedral
angles between two adjacent faces. The encoder of partVAE learns the posterior
distribution between the input data fp

i and the latent vector zpi . As the encoder
learns local geometric features, convolutional operations on undirected edges are
required. Thus, we adapt MeshConv operation [22] to encode our reconstructive
base geometric feature. In particular, the input is filtered by the first three
convolutional layers, where the convolutional operation on the ith edge ei is
defined as:

yi = We ∗ xi +Wne,1 ∗

%
j∈Nei,1

xj

|Nei,1 |
+Wne,2 ∗

%
j∈Nei,2

xj

|Nei,2 |
+ be (2)

where xi ∈ R2 is the feature (edge length and dihedral angle) of edge ei. Edges
are treated as undirectional, and each mesh part is registered from a unit cube,
which is a closed, manifold mesh. Therefore, ei is adjacent to two faces. Within
each adjacent face of ei, in the counter-clockwise order, we refer to the edge
immediately after ei as the first adjacent edge, and the edge immediately after
the first adjacent edge as the second adjacent edge. Denote by Nei,1 and Nei,2 the
sets of first and second adjacent edges of ei, respectively. In our case, as each edge
has 4 neighboring edges, the numbers of elements in each set |Nei,1 | = |Nei,2 | =
2. We,Wne,1 ,Wne,2 ∈ R2×2 are learnable weights of convolutional operations
on an edge and its adjacent edges. be ∈ R2 is the bias term. Additionally, all
convolutional layers are appended with a batch-norm layer and a Leaky-ReLU
layer with the slope for negative input α̃ = 0.02.

The output of three consecutive convolutional layers is fed into two fully-
connected layers to obtain its mean and variance respectively, where the mean
zpi is the latent vector of partVAE. After that, the decoder learns to reconstruct
fp
i from the latent vector zpi , the network structure of which is symmetric with

the encoder without sharing weights. Each partVAE is able to extract high-level
latent features of a semantic part, thus depicting geometric information part-
wisely. We assume that the number of parts is fixed for all the objects in the
same class. However, not all parts need to be present on a given shape. If an
input model misses some parts, the input for the corresponding partVAE s will
be zero-matrices, and the latent vectors of these parts are set as zeros.

3.3 Part Geometry Attention Mechanism

Each semantic part does not contribute equally in shape representation. For
example, when measuring the similarity of two car models, car bodies may be
more important than car mirrors. Therefore, we further introduce a Part-Geo
(part geometry) attention mechanism to learn to determine the importance of
each part of each shape in fine-grained retrieval.

We define an attention vector αi = [α1
i ,α

2
i , ...,α

P
i ] to denote the importance

of each part for object Mi. The higher the value of αp
i , the more discriminative

the part p is when recognizing shapes. Following [54], the attention vector αi is
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obtained by softmax of the dot-products of key vector Ki and query vector Qi:

αi = softmax(KT
i ·Qi) (3)

where Ki = [K
(1)
i ,K

(2)
i , ...,K

(P )
i ] represents the key feature of the part i, which

is a linear transformation of its latent vector: Kp
i = W p

Kzpi . The query vector Qi

is the summation of the linear transformation of the latent features of all parts:
Qi =

%
p W

p
Qzi

p. Here, W p
K ,W p

Q ∈ Rdh×dz , dz is the dimension of the latent
vector, and dh is the dimension of the key and query features. The attention
vector is jointly trained with other parts of the neural network.

Thus, the output of the Part-Geo attention mechanism is a set of weighted
geometric features, {α1

i z
1
i ,α

2
i z

2
i , ...,α

P
i z

P
i }, which are concatenated and reshaped

to a vector gvi ∈ RP×dz , representing the global geometric information of the
object.

3.4 Structural Information Representation

Despite the importance of structural information in shape representation, it
has been neglected by existing methods for shape retrieval. Visually similar
shapes often share similar structure. Objects that have parts with similar
geometric features can be distinguishable when their structures are highly
different. Therefore, we incorporate the global structure of an object as part
of our representation.

We represent the structural information by the spatial relationships among
the semantic parts. Same as geometric features, the proposed structural features
are also robust to rigid transformation. For each class of 3D objects, we first
define one semantic part as the body part that all models must contain. If there
are more than one common semantic parts in all models, we select the part with
the largest average volume. We observe that the existence of non-body parts and
their relative positions to the body part are important for shape discrimination,
which can be used to interpret structural information of shapes. As shown in
Fig. 2, we describe the structure of objects by an 11-dimensional vector svi,
defined as follows:

– sv1 ∈ {0, 1} denotes whether the part exists in the input 3D shape.
– sv2 ∈ R denotes the distance from the center of the current part to the center

of the body part.
– [sv3, sv4, sv5] ∈ [−1, 1]3 denotes the cosine of the angles between the

first principal component of the current part and the first three principal
components of the body part respectively.

– [sv6, sv7, sv8] ∈ [−1, 1]3 denotes the cosine of the angles between the
second principal component of the current part and the first three principal
component of the body part respectively.

– [sv9, sv10, sv11] ∈ R3 denotes the unit direction from the center of the body
part to the center of the current part.
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3.5 Geometry-Structure Attention Mechanism

Although the objects of the same class all share similar structures, objects
belonging to different classes have different diversity in the composition.
For example, all guitars share the same structure, but chairs have diverse
compositions. Thus geometric information and structural information could have
different contribution when discriminating objects belonging to different classes.
Therefore, the extracted compact global geometric and structural features gvi
and svi need to be re-weighted to balance their contributions to the final
shape representation. To achieve this, we introduce a Geo-Struct (geometry and
structure) attention mechanism to learn to balance the importance of structure
and geometric information in shape representation. We define a score vector
wi = [wg

i , w
s
i ] ∈ [0, 1]2 for model Mi, representing the weights of geometric and

structural information. The score vector is learned through two fully-connected
sub-networks:

wi = softmax([F (gvi), G(svi))]) (4)

where F : Rdz → [0, 1] and G : R11 → [0, 1]. In implementation, F (·) contains
two fully-connected layers, and the dimension of output vectors of the two layers
are 32 and 1 respectively. G(·) contains two fully-connected layers as well, where
the dimension of output vectors are 16 and 1 respectively. The global geometric
feature and structural features are multiplied by their corresponding weight
scores respectively and then concatenated to form the global feature: fvi ∈
RP×(dz+11), which contains weighted geometric and structural information of the
object.

Fig. 4: Network architecture of GlobalVAE.
GlobalVAE encodes part geometric features
and global structural features through three
consecutive fully-connected layers. The latent
vector is used as the shape descriptor for fine-
grained intra-class shape retrieval.

3.6 Global Feature
Encoding

To encode both geometric
and structural feature into
one latent space, we further
use a GlobalVAE (global fea-
ture variational autoencoder)
to encode global geometric
and structural information
into a reconstructive com-
pact representation. We use
the architecture of globalVAE
illustrated in Fig. 4. The
GlobalVAE comprises three

fully-connected layers, each appended with a leaky Relu layer with the slope
of negative input α̃ = 0.02. The structure of GlobalVAE ensures that its latent
vector zvi contains the geometric information of all parts as well as the global
structural information.
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3.7 Losses

To optimize the network parameters of our model, we adopt three loss-terms
that enable a distriminative latent space for fine-grained shape retrieval.

VAE Losses. Our optimization objective function includes a Kullback-
âĂŞLeibler (KL) divergence term and a reconstruction term for each partVAE
and the GlobalVAE. The KL divergence term regularizes the latent space, while
the reconstruction term ensures that the input features can be explained by our
autoencoders. Therefore, the loss function for all the partVAEs includes the KL
divergence terms and the terms measuring the differences between all the input
base geometric features and their decoding results:

Lpart
V AE =

1

Pi

Pi&

p=1

(fp
i − f ′p

i )
2 + γ

Pi&

p=1

Dp
KLp

(q(zpi |f ′p
i ) ‖ p(zpi )) (5)

where Pi is the number of the parts of model Mi, fp
i is the base feature of

the the pth part, f ′
i
p is the reconstructed feature of the pth part. In the second

term, γ is a weight that balances both terms, p(zpi ) is the prior probability
distribution, q(zpi |f ′p

i ) denotes the posterior probability, and Di
KLpart

denotes
the KL divergence of the pth partVAE. γ is a constant, which is set as 1 × 105

in our experiments. We define the loss for the GlobalVAE in a similar way.
Triplet Losses. Using above losses for VAEs, the distribution of the latent

vectors is able to cluster the models of the repository in the feature space to some
extent. However, it can be further optimized by minimizing the distance between
the features of similar shapes and enforcing a margin between dissimilar shapes.
Besides, we use a triplet loss [43] to optimize the final feature distribution in the
latent space, which also helps the attention mechanisms to find the distinguished
parts and balance the importance of structure information.

For the globalVAE, we define the term as:

Lglobal
triplet =

&

i

[D(zvai , zv
p
i )−D(zvai , zv

n
i ) + η]+ (6)

where zvai , zvpi and zvni are the latent features of an anchor model (i.e., a chosen
model in the training iteration), a positive model (i.e., a model of the same sub-
class as the anchor model) and a negative model (i.e., a model of a different
sub-class from the anchor model). D(·, ·) is a measure of distance between two
vectors in the latent space. We use the Euclidean distance D(v1, v2) = ‖v1−v2‖22
in our experiments. η is the threshold of the margin between the distances from
the reference model to the similar and dissimilar models. In implementation,
the Euclidean distance D(·, ·) between features are normalized to [0, 1] in each
batch. We set η to 0.3 in the following experiments.

For the set of partVAE s, we define a triplet loss term as:

Lpart
triplet =

&

i

[D(gvai , gv
p
i )−D(gvai , gv

n
i ) + η]+ (7)
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We use the term to refine the distribution of the global geometric feature gvi for
the entire set of partVAEs.

Overall Loss. The overall loss of ROSA-Net is:

L = Lpart
V AE + λ1L

global
V AE + λ2L

part
triplet + λ3L

global
triplet (8)

where λ1, λ2 and λ3 are hyper-parameters to balance the weights of different
loss terms, which are defaultly set as 1 × 103, 1 × 102, and 1 × 102 in our all
experiments.

3.8 Model Training and Shape Retrieval

We feed 3D shapes of all the sub-classes of the same class to ROSA-Net to learn
to encode base features into a latent feature for that class. The partVAE set
with Part-Geo attention mechanism first learns a high-level geometric feature
set from base geometric features, using the reconstruction loss, KL losses, and
triplet losses. At the same time, the high-level geometric feature set is balanced
with structural feature and then fed to the GlobalVAE to learn to generate the
final latent feature vector, where we minimize the same three types of loss terms
during training. In addition, we use the objects of the same sub-class as similar
shapes and objects of different sub-classes as dissimilar shapes when minimizing
the triplet losses.

For an input 3D object Mi, we use the latent vector of the GlobalVAE gvi as
its shape descriptor. For each query shape, we rank the shapes in the repository
according to the Euclidean distance between their shape descriptors. Note that
the distance metric used in retrieval is the same as in the triplet loss, which is
the Euclidean distance.

4 Experimental Results

We quantitatively and qualitatively compare the performance of ROSA-Net with
other shape retrieval methods or shape descriptors on fine-grained intra-class 3D
shape retrieval. We prove the effectiveness of the major components in ROSA-
Net and show that ROSA-Nethelps retrieval on other data representation. This
section is structured as follows: we first describe ROSA-dataset, which is an
intra-class retrieval dataset we construct to evaluate the intra-class fine-grained
shape retrieval performance. Then, we provide qualitative and quantitative
comparisons between ROSA-Netand other methods on intra-class fine-grained
shape retrieval. After that, we visualize and explain how Part-Geo Attention and
Geo-Struct Attention automatically balance all sources of information. Also, we
show that ROSA-Netis able to deal with other data representations. Lastly, we
evaluate the effectiveness of the major components in our network.

4.1 ROSA-dataset

Retrieving a model against shapes within the same class but belonging to
different sub-classes is a typical fine-grained shape retrieval task, where the
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repository contains globally similar shapes that differ in some details. Most of the
existing large-scale 3D object datasets are annotated with only class level labels,
which is not suitable for fine-grained retrieval task. For example, ModelNet [57]
contains 662 object categories but only a few of them are given sub-class labels.
Part of ShapeNet models [5] also have intra-class semantic labels, but the labeling
precision and amount are not sufficient to test intra-class retrieval methods.
Although FRGC v2 dataset [37] is labeled with an intra-class manner, the
dataset only focuses on facial recognition rather than common objects retrieval.
FG3D [30] labels an intra-class 3D dataset, but it only contains 3 category of
data - car, plane and chair. We build a new dataset with more detailed sub-class
level annotations, designed for training, evaluating and comparing fine-grained
shape retrieval methods, which is used to demonstrate the effectiveness of our
latent descriptor for fine-grained shape retrieval. It could be used to support and
evaluate future research on fine-grained 3D shape classification and retrieval task.
The shapes used in our fine-grained 3D object retrieval dataset is a subset of
SDM-NET data [18], containing 8,906 3D models from 6 object categories. The 6
categories are knife, guitar, car, plane, chair and table, which are further grouped
into 175 sub-classes. Each sub-class of models is annotated with semantic labels,
which are defined by their distinguishable features compared with other sub-
classes, such as functionality, product model number and style. Take the category
of guitar as an example, objects are further categorized into twelve sub-classes
including double-neck guitar, acoustic, cutaway, Flying V, Gibson Explore,
Gibson Les Paul, etc. These semantic labels are assigned according to their
style and standard model number.

All of the intra-class labels were annotated manually, and the original
annotation from ShapeNet is used as a reference for our annotators. Additionally,
some unrealistic shapes that are hard to be categorized were discarded, because
keeping them would confuse the retrieval method by using ambiguous sub-
class labels, leading to inaccurate quantitative analysis. Please refer to our
supplementary materials for more detailed information on the dataset.

We evaluated the performance of ROSA-Net in the fine-grained 3D object
retrieval task on the ROSA-Dataset introduced in the previous subsection. We
randomly selected 80% of objects in each sub-class as training, and the rest
20% as validation. We tested the performance of ROSA-Net on all the 6 object
categories. To demonstrate the robustness of ROSA-Net to random rotation, we
perturbed all models in the dataset by transforming each model with a random
rotation in SO(3). All experiments were conducted on the randomly rotated
shape dataset.

4.2 Fine-Grained Shape Retrieval

In the fine-grained object retrieval task, we query a shape among the shapes
of the same class in the dataset. As mentioned above, all shapes are randomly
rotated in the experiment. ROSA-Net is trained to extract latent feature vectors
for shape representation, which are then used to measure the similarity between
the query and all the shapes of the same class. The similarity between shapes
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Table 1: Evaluate the intra-class fine-grained 3D shape retrieval performance
of ROSA-Netand other methods using five metrics on ROSA-dataset test set.
ROSA-Netoutperforms other methods on all metrics.

micro macro
Methods NN FT ST ndcg mAP NN FT ST ndcg mAP
SHD [26] 0.162 0.134 0.245 0.436 0.162 0.090 0.075 0.146 0.352 0.111
LFD [6] 0.224 0.183 0.313 0.486 0.214 0.128 0.107 0.193 0.401 0.153

RotationNet [51] 0.416 0.182 0.243 0.514 0.296 0.146 0.123 0.223 0.403 0.144
FG3D [30] 0.538 0.351 0.424 0.591 0.531 0.351 0.217 0.333 0.522 0.350

VN-DGCNN [11] 0.482 0.296 0.372 0.545 0.465 0.285 0.179 0.261 0.423 0.301
ART-DGCNN [55] 0.423 0.305 0.338 0.525 0.411 0.307 0.170 0.280 0.414 0.312

PaRI-Conv [7] 0.524 0.338 0.432 0.573 0.468 0.297 0.207 0.292 0.459 0.316
MeshCNN [22] 0.447 0.318 0.363 0.527 0.461 0.329 0.197 0.283 0.448 0.347
MeshMAE [29] 0.467 0.341 0.384 0.521 0.442 0.311 0.196 0.307 0.434 0.333
SubdivNet [24] 0.504 0.314 0.425 0.601 0.478 0.325 0.189 0.286 0.449 0.364

ROSA-Net 0.624 0.556 0.675 0.770 0.598 0.588 0.456 0.551 0.697 0.502

Top-5 Retrieved ResultQuery Top-5 Retrieved ResultQuery Top-5 Retrieved ResultQuery

Fig. 5: Visual comparison of retrieval results among FG3D, ART, SubdivNet
and our method. Our method outperforms the other methods on geometric local
feature encoding and fine-grained object retrieval.

is measured by the Euclidean distance between shape descriptors. If a retrieved
shape is in the same sub-class with the query shape, we denote it as a successful
retrieval. Fig. 1 shows the top five retrieved results for four query shapes on
chair category. Since ROSA-Net is able to find shapes with matched geometric
details, it performs well in the sub-class retrieval. Specifically, as shown in the
first row of Fig. 1, ROSA-Net captures that the query object has grid cotton pad
on the chair back, and then retrieves shapes with similar features. Meanwhile,
the retrieved results with lower rankings also show the capability of ROSA-Net.
As shown in the last row, the query shape has a slat back and turned legs.
ROSA-Net successfully retrieves shapes with matched features, which are in the
same sub-class as the query shape. For more retrieval results, please refer to the
supplementary material.

We compare ROSA-Net with other alternative approaches. We compare
with other shape retrieval methods, including Spherical Harmonics descriptor
(SHD) [26], LightField descriptor (LFD) [6], RotationNet [51], and FG3D [30].
We also compare rotation-equivariant shape descriptor, Vector Neuron(VN)
[11], rotation-robust shape descriptor ART [55], and rotation-invariant shape
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descriptor PaRI-Conv [7]. Additionally, we compare with other mesh-based shape
descriptors, including MeshCNN [22], MeshMAE [29], and SubdivNet [24]. We
use the best setting for all of the methods above for comparison.

Table 1 shows the quantitative comparison between ROSA-Net and other
methods on ROSA-dataset. The results are evaluated using various statistical
metrics: Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), Normalized
Discounted Cumulative Gain (NDCG) and mean Averaged Precision (mAP).
Considering the imbalance of model numbers of the sub-classes, each measure
is calculated through both micro and macro average. The macro averaging
computes the metric independently for each sub-class and then takes their
average as the final overall metric, whereas the micro averaging is a weighted
average with the weight for each sub-category proportional to the number of
objects in it. Noticeably, ROSA-Net outperforms other state-of-the-art retrieval
methods, rotation-robust shape descriptors, and mesh-based shape descriptors
on intra-class fine-grained 3D shape retrieval, showing the effectiveness of our
feature extraction strategy.

Fig. 5 provides examples of top-5 retrieved results by using FG3D, ART-
DGCNN, Subdivnet, and ROSA-Net respectively. Note all of these comparison
methods are robust to random shape rotation. These retrieval methods or shape
descriptors can achieve fine-grained representation to some extent. However, only
ROSA-Net can retrieve top-5 shapes all similar to query shape robustly. Our
method is scale-sensitive as shown it prefers shapes with similar scale(green)
instead of similar local detail(blue).

Knife Guitar Car Plane Chair Table

Fig. 6: Illustration of the confusion matrix and tier images of ROSA-Net on 6
classes. The confusion matrix shows all the shapes are well-classified and the tier
images show that similar shapes are clustered together.

In Fig. 6, we use the confusion matrix and tier image [47] to visualize the
global retrieval results of our method in each category. The confusion matrix
shows shapes are classified correctly. In a tier image, each row represents a query
with model j. Pixel (i, j) is filled by black, red, and blue if model i is the nearest
neighbor, first tier match, and the second tier match of j respectively. Along
each axis, models are grouped by sub-class, and lines are added to separate each
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sub-class. Note that the tier image is not diagonally symmetric because of the
imbalance shape number in each class. In each sub-class, red pixels are clustered
in blocks along the diagonal, showing that models of the same sub-class are each
other’s first-tier matching results. Moreover, second-tier matches of each sub-
class tend to congregate together in the same block, implying that ROSA-Net
learns the similarity between sub-classes.

4.3 Weighted Features of Parts by Part-Geo Attention

(a) plane (b) chair

Fig. 7: Part geometry attention visualization on the plane and chair datasets.

Our model utilizes the Part-Geo attention mechanism to balance the
contributions of different parts when discerning a shape among sub-classes. Fig. 7
visualizes the learned attention information that demonstrates the importance
of each part when learning the final latent descriptor, where we highlight the
valid parts using the learned attention weights. Note that the weights of missing
parts are set to 0. Aside from those missing parts, the discriminative parts
of the shapes are successfully assigned with relatively high weights, meaning
that they contribute more than the other parts to the latent feature learning.
More specifically, in Fig. 7(a), the highest weight of each plane appears on the
most discriminative part: engine, wing, tail or body. In Fig. 7(b), the weights of
existing parts also conform to their discriminativeness. The highest weights are
assigned to leg, arm, back and seat respectively.

4.4 Weighted Features by Geo-Struct Attention

The Geo-Struct attention mechanism balances the geometry and structure
information in our shape representation. Fig. 7 visualizes the learned geometry
score wg in guitar and chair datasets. The structure score is calculated by: ws =
1−wg. In each dataset, we randomly selected some model in the test set. Models
are grouped by sub-classes along x-axis, and their geometry scores are shown by
their y-coordinates. Each point represents an object instance, and we draw the
3D shapes of several representative instances for better visualization. Note that
shapes of the same sub-class that share similar structure/geometry features tend
to have similar structure/geometry scores. Also, the average geometry score of
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(a) guitar (b) chair

Fig. 8: Visualization of geometry-structure attention information on guitar and
chair datasets.

Table 2: The comparison between point cloud input and mesh input.
micro macro

Methods NN FT ST ndcg mAP NN FT ST ndcg mAP
PaRI-Conv 0.5296 0.3479 0.4409 0.5794 0.4766 0.3056 0.2107 0.2964 0.4654 0.3216

ROSA-Net(PC) 0.5812 0.5251 0.6352 0.7166 0.5561 0.5616 0.4325 0.5256 0.6492 0.4743
ROSA-Net 0.6552 0.5955 0.7215 0.8115 0.6295 0.6305 0.4902 0.5943 0.7368 0.5369

the class of guitar is higher than chair, indicating that distinguishing guitars
relies more on geometric information than chairs.

4.5 Using Other Data Representation

In this experiment, we investigate whether our approach is sufficiently practical
to be combined with existing shape segmentation methods to retrieve a shape
in other representations. Instead of manually segmenting the shapes into parts,
we use the following way to automatically obtain the segmentation results. We
randomly and uniformly sampled 2048 points from each watertight mesh, and
then feed the points to PaRI-Conv [7] for segmentation. With the semantically
labeled points, we align watertight mesh models to the points and assign each
triangular mesh with the label of the closest point. Then we use the segmented
meshes to train and test our model. Fig. 2 shows the performance of ROSA-
Neton the plane subcategory, compared with the PaRI-Conv and the original
method using mesh-based representation. Note that our approach is able to
tolerate minor part segmentation errors, indicating its capability to be used in
real-world shape retrieval applications. Also, our method performs better than
the original PaRI-Conv, indicating other methods can use ROSA-Netto improve
its performance on fine-grained shape retrieval.

4.6 Ablation Study

We now provide the results of a detailed ablation study that shows the
contribution of each component to the overall performance, including base
geometric feature selection, the feature extractor selection and the hierarchical
structure.
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Table 3: Ablation study proves the effectiveness of all the components.
micro macro

Methods NN FT ST ndcg mAP NN FT ST ndcg mAP
wo Struct-info 0.5710 0.4990 0.6073 0.6932 0.5362 0.5405 0.4100 0.4961 0.6266 0.4518
wo Geo-Atten 0.5811 0.5140 0.6270 0.7171 0.5576 0.5502 0.4202 0.5103 0.6393 0.4636
wo Struct-Geo 0.6109 0.5433 0.6621 0.7546 0.5859 0.5772 0.4461 0.5391 0.6831 0.4920

ROSA-Net 0.6237 0.5555 0.6748 0.7702 0.5977 0.5882 0.4556 0.5512 0.6969 0.5020

Fig. 9: Comparison between scale-invariant and
scale-sensitive feature as a base geometric
feature.

Geometric feature ex-
traction. In this subsection,
we show the effectiveness of
the adopted scale-sensitive
features and a reconstructive
network to describe part ge-
ometry. We design a compar-
ison group that replaces our
base geometric feature with

the 5 dimensional shape feature proposed by Hanocka et al. [22] as a scale-
insensitive feature, which is denoted as “Ours(scale sensitive)”. We design another
comparison group by replacing PartVAEs with the classification network in [22],
which is denoted as “Ours(CNN)”.

We provide two examples for visual comparison. Fig. 9(a) is a comparison
of different choices of base features. Using the scale-invariant feature as in
MeshCNN [22], although the semantic parts of retrieved shapes all look similar
to the parts of the query shape, the size relationship is not maintained among
parts, leading to dissimilar overall shapes.

In Fig. 9, a failure case of using CNN instead of our PartVAE structure
is provided. Using the classification network for feature extraction sometimes
fails to capture geometric features from thin geometry. In contrast, with the
reconstructive network of our PartVAE, the detailed geometric features are well-
learned in the latent space of our VAE modules as shown in the experiment,
showing the effectiveness of our PartVAEs.

Structure information. Finally, we compare the performance of ROSA-
Net with and without structural information, without geometry attention, and
without structure-geo attention in Table 3. The full model performs the best,
indicating the effectiveness of all the components.

5 Conclusion

In this paper, we introduce ROSA-Net, a novel framework to extract shape
descriptors for fine-grained 3D object retrieval. ROSA-Net can extract 3D
shape descriptors with geometric details and global structural information,
which are robust to rotation and sensitive to scale. Trained with the attention
mechanisms and the dedicatedly designed losses, ROSA-Net can locate and
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emphasize discriminative parts, and make a balance between structure and
geometric information when representing a 3D shape. Thanks to the above
designs, the Through fruitful experiments on fine-grained 3D shape retrieval, we
demonstrated that ROSA-Net outperforms the state of the art on fine-grained
3D object retrieval tasks.

Limitations and Future work. Firstly, ROSA-Net encodes structural
information based on the spatial relationships between semantic parts, which
leads to a need for correspondence between the segmented parts of the query
shape and the dataset. Incorporating unsupervised co-segmentation methods
would be a natural extension of this work. Secondly, to encode fine-grained
geometric details, ROSA-Net represents shapes with meshes of the same
topology. However, the registration or the re-meshing process takes extra
processing time. Future work could incorporate methods that are robust to
meshes with different typologies. Finally, a notable limitation is the sensitivity of
the shape descriptor to scale and structure variations. Consequently, descriptors
for identical shapes at different scales may exhibit significant differences. As
shown in Fig. 5, ROSA-Net regards the chair with a round corner with a similar
scale as a similar shape(highlighted in green), rather than the chair with a sharp
corner with a different scale(highlighted in blue). For future work, fine-grained
sketch-based and image-based object retrieval would be a natural extension of
our work. Also, with our method retrieving fine-grained similar shapes, how to
utilize the retrieved shapes for modeling of new shapes is worth also exploring.
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