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Abstract Large-scale simulations on supercomputers have
become important tools for users. However, their scalability
remains a problem due to the huge communication cost
among parallel processes. Most of the existing communication
latency analysis methods rely on the physical link layer
information, which is only available to administrators. In this
paper, a framework called PCLVis is proposed to help general
users analyze process communication latency (PCL) events.
Instead of the physical link layer information, the PCLVis
uses the MPI process communication data for the analysis.
First, a spatial PCL event locating method is developed. All
processes with high correlation are classified into a single
cluster by constructing a process-correlation tree. Second, the
propagation path of PCL events is analyzed by constructing
a communication-dependency-based directed acyclic graph
(DAG), which can help users interactively explore a PCL event
from the temporal evolution of a located PCL events cluster.
In this graph, a sliding window algorithm is designed to
generate the PCL events abstraction. Meanwhile, a new glyph
called communication state glyph (CS-Glyph) is designed
for each process to show its communication states, including
its in/out messages and load balance. Each leaf node can
be further unfolded to view additional information. Third,
a PCL event attribution strategy is formulated to help users
optimize their simulations. The effectiveness of the PCLVis
framework is demonstrated by analyzing the PCL events of
several simulations running on the TH-1A supercomputer.
By using the proposed framework, users can greatly improve
the efficiency of their simulations.

Keywords PCLVis, communication latency, large-scale
simulation, visual analytics

1 Introduction
Large-scale simulations have found widespread utility across
diverse fields, including fluid mechanics, aerodynamics, and

aerospace. Leveraging the computational might of supercom-
puters for virtual simulations offers a promising means to
conserve precious resources. These supercomputer systems
comprise two foundational components: compute nodes and
communication network infrastructure. Each computing node
is equipped with its distinct private memory space, ensur-
ing isolation from other nodes. In the context of large-scale
simulations, supercomputers partition computational tasks
into discrete processes for parallel execution across distinct
compute nodes. These processes necessitate communication
for synchronized operation and data exchange, highlighting
the centrality of process communication.

However, the performance of simulation applications can
be curtailed by bottlenecks in process communication[1, 2].
Communication delay events can unpredictably manifest at
any juncture, prompting an imperative to dissect the under-
lying causes. Existing methods for communication latency
analysis predominantly lean on the physical link layer, fur-
nishing granular information encompassing start and end
points, routing paths, and intermediate waypoints (routers).
This information empowers the accurate identification of
communication latency events. Nonetheless, the accessibility
of physical link layer insights is confined to system adminis-
trators, limiting general users’ access.

In the absence of access to physical link layer data, general
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Fig. 1 Visual analytics of the PCL events from a parallel application running with 1152 processes on a TH-1A supercomputer. (a) shows the
spatio-PCL event clustering results obtained using our process-correlation-tree-based algorithm. The temporal evolution of each cluster can
be viewed in (b1), and the details can be further interactively explored in (b2). (c) shows the constructed communication-dependency-based
DAG graph, which helps users further explore the extracted PCL events. For each selected process, its former and latter connected
processes are denoted by the red and blue curves, respectively. The leaf process can be further unfolded as shown in (c2), and the design of
each glyph is shown in (c3). The possible PCL causes as summarized in (d) include (d1) poor process-to-processor mapping (too much
intercommunication), (d2) poor communication pattern (unbalanced workload), and (d3) background traffic due to the application of other
users. (e) shows the result obtained using an optimized process-to-processor mapping. The ratio between the intra- and inter-communications
became larger than the original value reported in (d1).

users are relegated to investigating communication delays
via Message Passing Interface (MPI) process communication
data. To this end, we initiate our analysis by preprocessing the
data. Specifically, we curate a communication event dataset
through the scrutiny of parallel execution traces recorded
by the Tuning Analysis Utility (TAU), yielding essential
communication trace data. However, while MPI process
communication data encapsulates the communication’s origin
(Source MPI rank) and destination (destination MPI rank),
the absence of routing path and router details poses two
fundamental challenges [3]. Firstly, pinpointing the latency
region becomes intricate, given that delays often manifest
at intermediary waypoints such as routers or routing paths.
Secondly, unraveling the propagation path of communication
delay events proves complex. The propagation path, integral
to the routing path, remains elusive to general users devoid of
access to the physical link layer.

To bridge this gap, we introduce ’PCLVis,’ an innovative
framework tailored for the wider supercomputer user base.
PCLVis facilitates the visual analysis of process communi-
cation latency (PCL) events utilizing readily available MPI
process communication data. First, a space-PCL event local-

ization method is developed to localize processes involved in
PCL events. All processes with a high correlation are classi-
fied into a single cluster by constructing a process-correlation
tree. Second, the propagation path of PCL events is analyzed
by constructing a communication-dependency-based directed
acyclic graph (DAG), which can help users interactively ex-
plore a PCL event from the temporal evolution of a located
PCL events cluster. In the end, A PCL events attribution strat-
egy is also designed to help users optimize their simulations.
And in summary, the graphics user interface of PCLVis is
shown in Figure 1.

Based on the above works, PCLVis is evaluated via visual
analytics of three types of communication data on a super-
computer. Results show that the proposed framework can help
users greatly improve the efficiency of their simulations.

The main contributions of this work include:
• A process-correlation-tree-based spatio-PCL event lo-

cating method is proposed to help users locate those
communication regions with high latency.

• A communication-dependency-based DAG is con-
structed to help users track the propagation path of
PCL events.
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• A PCL events attribution strategy is designed to help
users optimize their simulations.

2 Related Work
This section reviews some existing work on communication
delay analysis methods (Section 2.1), processes communica-
tion visualization methods (Section 2.2), and communication
delay attribution methods (Section 2.3).

2.1 Communication Delay Analysis

Analyzing communication delays from a large-scale simu-
lation is a challenging task due to the large data size. Some
studies have attempted to reduce the data size by using
clustering [4–7], compression [8–11], and some other al-
gorithms [12, 13]. Nevertheless, the precision of analysis
results does not satisfy the user requirements because some
important features have been lost during the data reduction
process. Several analysis tools can visualize the basic and sta-
tistical information of communication events, like the scalasca
performance toolset [14], multi-threaded parallel application
analysis tool [15], the TAU parallel performance tool [16], the
HPCToolkit [17], the Craypat-cray X1 performance analysis
tool [18], and some other tools [19–21]. However, they did
not analyze communication delay events. Some researchers
have proposed structure-based analysis methods. For instance,
Hendriks et al. [22, 23] proposed critical-path analysis and
distance analysis algorithms to help users track communica-
tion delays. Execution phases have also been used to track
the communication state in different running phases [24–26].
Pattern matching methods [27–29] have been proposed to
detect predefined communication patterns and have success-
fully extracted inefficient communication behaviors. Isaacs
et al. [30–32] proposed a series of methods that can help
users detect communication delays by extracting a logical
structure from parallel tracking data. While these methods
can help users detect communication delays, their accuracy
cannot be guaranteed. To address this problem, this paper
proposes a spatial-temporal communication delay locating
method that can successfully locate all communication delays
from large-scale communication data, thereby helping users
further analyze these delays.

2.2 Process Communication Visualization

Process communication is a type of event sequence data.
Therefore, this section not only examines process communica-
tion but also surveys the visualization of other event sequences.
Several visualization tools have been developed, including
VAMPIR [33], Paragraph [34], Paraver [35], Projections [36],

which can visualize the performance of a simulation using
a Gantt chart. However, these tools cannot support users in
further exploring the details of process communication. They
also cannot be directly used to analyze large-scale simulations
due to the limitations in their scalability. Some improvement
methods [37–39] have been proposed by making good use of
sorting algorithms. While these Gantt-chart-based methods
can be used to visualize event sequences, they still do not
fully meet user requirements, especially for visualizing long
event sequence data, including process communication.

To visualize a large-scale event sequence, flow-based meth-
ods can offer a visualization abstract for users [40]by aggre-
gating event sequences [41]. Some scholars have attempted
to reveal the sequence evolution pattern by using aggregated
visualization methods, including simplification [42], flow
design [43, 44], feature extraction [45], progression analy-
sis [46], and some methods for a specific application [47, 48].
When visualizing a large-scale communication event se-
quence, scale-related issues are addressed by changing the
vertical axis from processes to event duration [49, 50]. Isaacs
et al. [51] reduced visual clutter by adopting a layered abstrac-
tion algorithm to visualize the logicalized process communi-
cation sequence. LBVis [52] applies an interactive visualiza-
tion method to show the data transmission among different
processes. While these methods can successfully visualize
large-scale communication data, they do not offer commu-
nication dependency and state information to users, which
are vital for understanding the evolution of communication
latency. To address these limitations, this paper constructs a
communication-dependency-based DAG that can help users
track communication latency. A CS-Glyph is also designed
to show the detailed state of a process.

2.3 Communication Delay Attribution

Communication delay attribution is important for users to
improve the efficiency of their simulation. Most existing
communication delay attribution methods mainly rely on
analyzing the link layer log information [53–56]. In other
words, these methods utilize the logs in routers through which
messages have passed to check for possible communication
latency. Fujiwara et al. [57] evaluated the transmission effi-
ciency in a communication path using hop bytes and designed
a re-routing and remapping algorithm to optimize the com-
munication efficiency of a simulation. Li et al. [58] analyzed
the performance of simulations in different workloads and
routing strategies by using physical link layer information. Jha
et al. [59] summarized the causes of communication latency
by detecting network congestion using link layer information.
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Meanwhile, Taffet et al. [60] attributed communication delays
to three causes, namely, poor process-to-processor mapping
(placement of MPI ranks on physical cores), poor communi-
cation patterns, and background traffic due to the application
of other users.

A communication pattern illustrates how processes send
and receive data to one another. Some example patterns in-
clude the many-to-one and nearest-neighbor communication
patterns. All of these patterns belong to an unbalanced work-
load [61]. A poor communication pattern can lead to conges-
tion and communication latency. Demmel et al. [62] reduced
latency events using the communication avoidance algorithm.
A poor process-to-processor mapping only extends the mes-
sage transmission path, thereby increasing communication
latency. Yan et al. [63] greatly improved communication per-
formance by designing a good process-to-processor mapping.
Background traffic is considered a job interference [64]. The
network of a supercomputer is shared by many users, thereby
restricting the performance of their simulations.

The majority of the above methods rely on link layer log
information, which is only available to the administrators of
a supercomputer. Therefore, this paper designs PCLVis as a
process-information-based communication delay attribution
method to help users analyze the causes of communication
latency and improve the efficiency of their simulations.

3 OVERVIEW OF PCLVis
This section summarizes the user requirements (Section 3.1)
and presents the PCLVis design (Section 3.2).

3.1 User Requirements

The requirements presented in this section were gathered
through comprehensive interviews with a diverse group of
supercomputer users. With insights derived from these inter-
views, we have distilled the users’ needs into the following
synthesized set of requirements:

R1: Locate high latency region. In large-scale supercom-
puter simulations, users face a complex communication en-
vironment. They need an intuitive way to understand com-
munication dynamics throughout the simulation, enabling
comprehensive analysis of design mechanisms. However,
the sheer volume of communication data exchanged among
processes presents a challenge. Variability in latency due to
supercomputer background traffic adds complexity, making it
impractical to set a fixed latency threshold. To address these
issues, our system efficiently locates all latency instances in
extensive communication data.

R2: Explore temporal evolution of latency. In extensive,
long-duration simulations spanning days or weeks, users aim

to understand how communication delays evolve over time in
specific regions. This understanding helps identify and grasp
periods of increased latency, enabling timely adjustments and
effective responses during the entire simulation. Our system is
designed to facilitate the extraction of crucial latency periods,
empowering users to delve into comprehensive analyses of
communication latencies over time.

R3: Communication delay attribution. Users require an
efficient and user-friendly approach to assess communication
latencies and their origins. This is vital for enabling ordinary
users to engage with the simulation effectively. Our system
meets this need by clearly depicting communication latency
dependencies and summarizing their potential sources, mak-
ing it easier for users to comprehend logical connections and
identify underlying causes.

R4: Offer possible optimization schemes. Following the
analysis of delay causes, users seek actionable strategies to
counter communication delays within diverse timeframes
and regions. They anticipate receiving initial optimization
approaches or guidance to initiate effective improvements. In
response to this, our system is designed to offer a range of po-
tential optimization schemes, empowering users to proactively
address communication delays through informed decisions.

3.2 System Overview

According to the abovementioned requirements, we design
PCLVis for a visual analysis of PCL events in a large-scale
simulation.

To analyze communication delay using MPI process com-
munication data, we first preprocess the data. Specifically,
we built a communication event dataset by analyzing parallel
execution traces collected by the Tuning Analysis Utility
(TAU) to obtain communication trace data [16]. During the
runtime of the simulation program, TAU intelligently de-
tects functions, methods, and code blocks, thereby capturing
essential communication tracing data. The properties of a
communication event are as follows:

• MPI Rank: Unique process to which the event belongs.
• Type: Two types of communication events (i.e., send or

receive).
• Timestamp: Wall clock time of the event.
• Source: Source MPI rank of the event.
• Destination: Destination MPI rank of the event.
• Message Size: Size of message within the event.
PCLVis has three main parts, namely, spatial latency,

temporal latency, and attribution. First, the spatial latency
part offers information about communication latency within
regions. In this part, a spatio-PCL event locating method is
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proposed to help users locate those communication regions
with high latency (R1). Second, the temporal latency of these
communication regions is analyzed by DAG. We offer an
evolution view to display the latency abstraction over time.
Users can select a period of high latency to further explore the
communication latency among processes in DAG (R2). Third,
the attribution part offers three views to display information
about the process of communication states. Users can analyze
the causes of communication latencies using our proposed
attribution strategy (R3) and then optimize their simulations
using an appropriate method that is provided through our
system. Such methods may include optimizing the physical
mapping of nodes, adjusting the communication patterns,
and choosing the running time with better background traffic
(R4).

4 LOCATING SPATIAL PROCESS COM-
MUNICATION LATENCY EVENTS

This section introduces our spatio-PCL events locating method
(R1). A process-correlation tree is constructed to divide all
processes into different clusters (Section 4.2), and several
criteria for defining a PCL event and the latency of a commu-
nication region are prepared (Section 4.1).

4.1 Criteria for Defining Communication Latency
Within a Region

Given that a supercomputer is shared among users, the the-
oretical transmission speed cannot be used to define a PCL
event. At the same time, there is no proper way to describe a
communication delay standard in the given region. Therefore,
this paper designs a statistical method for defining a PCL
event in a region.

In the following tasks, we define two latency criteria (trans-
mission time) for intra-node and inter-node communication.
The difference between these criteria lies in whether two com-
munication processes are in the same physical nodes or not
given that the transmission speed of inter-node communication
is much lower than that of intra-node communication [65].

First, we separately sample intra-node and inter-node mes-
sages and then collect as many as 10,000 messages for each
sampling message-size. Second, we sort the messages with the
same size in an ascending order. Latency criteria is defined
as the median transmission time for a particular message-size.
The latency criteria defined by our method are shown in
Figure 2. As can be seen in the figure, the message transmis-
sion time linearly increases along with message size, and the
inter-node latency criteria are much higher than the intra-node
criteria.

Fig. 2 Latency criteria of PCL events. The x-axis represents
message size, whereas the y-axis represents time. The blue and
red lines denote the latency criteria of intra-node and inter-node
messages, respectively. The message size is sampled with an interval
of 50 bytes.

Utilizing these latency criteria, the communication latency
of a message can be calculated across three perspectives:
spatial latency, temporal evolution, and PCL dependency,
employing Equation 1.

latencymsg =
tmsg

gtmsg
(1)

Where tmsg is the real transmission time of msg, and gtmsg

is the latency criteria of msg. If latencymsg > 1, then msg

is considered delayed. A larger latencymsg , corresponds to a
longer delay. A high PCL event is defined as the communica-
tion event with the larger latencymsg .

The latency of a communication region can be calculated
as

RegionLatency =
1

n

∑n

i=1
latencymsgi (2)

Where n is the number of messages contained in the current
communication region.

4.2 Process-Correlation-Tree-Based Spatial Cluster-
ing

This section describes the process-correlation-tree-based spa-
tial clustering method 4.2.1 and presents the visualization of
communication regions extracted by our clustering method
and the communication latency regions extracted by our own
latency criteria (Section 4.2.2)(R1).
4.2.1 Clustering Method
We define a region as a collection of multiple processes,
which satisfies the idea that the communication inside the
region is much more intensive than that outside the region.
Therefore, PCL can be defined as a situation wherein the
processes in the same region affect the communication latency
of one another.

To generate communication regions, we introduce a metric
called Process-Correlation, which is used in our clustering
method. This metric reflects how closely any pair of processes
communicate with each other. Processes communication
relationships are calculated by a tree structure. For process
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Fig. 3 The symmetry of process correlations in the process-
correlation tree. (a) Process-correlation tree. The dataset on the
left describes the process of communication. cspi denotes the
collection of processes communicating with pi. The tree on the
right describes the correlation of csp1 with the other processes.
The red edge represents the path connecting csp1 and csp2 . (b)
Process-correlation tree describing the correlation between csp1 and
csp2 .

p, csp is defined as the communication collection of p. All
processes in csp must send/receive messages to/from p. We
build a tree (treep) for every process p as follows:

Take p as the root node of treep, and take the processes
in csp as the children of p. For each child of p, we generate
children for them in the same way as we did for p. We repeat
the above step to construct the tree. The following discipline
ensures that we can construct a unique tree for p: the process
ID on the path from the root node to any leaf node is not
repeated. That is, the ancestor and descendant nodes of node i
cannot be the same. Figure 3(a) shows the process-correlation
tree of p1.

As depicted in Figure 3, our dataset showcases a discernibly
tree-like configuration among its constituent elements. Lever-
aging this inherent characteristic, we employ Equation 3 to
calculate the interdependencies existing among processes.

R (p, q) =
∑

v∈V,v.pid=q

1

(v.depth)
2 (3)

where p is the root node of treep, q is a process in csp,
R(p, q) is the process-correlation between p and q, V is the
collection of all nodes in treep, v.depth is the depth of node
v, and v.pid is the process ID of node v. A larger R(p, q)

Table 1 Process-Correlation
p1 p2 p3 p4 p5 p6 p7 p8

p1 1.36 1.5 1.36 0.47 0.22 0.58 0.11
p2 1.36 1.36 0.72 0.33 0.11 0.36 0.11
p3 1.5 1.36 1.47 0.72 0.47 1.11 0.25
p4 1.36 0.72 1.47 1.11 0.47 0.72 0.22
p5 0.47 0.33 0.72 1.11 1.25 1.36 0.36
p6 0.22 0.11 0.47 0.47 1.25 1.25 0.36
p7 0.58 0.36 1.11 0.72 1.36 1.25 1
p8 0.11 0.11 0.25 0.22 0.36 0.36 1

indicates more communication between p and q. If i does not
appear in treep, R(p, i) is 0.

Using Equation 3, the process-correlation between each
pair of processes can be obtained as shown in Table 1.
A larger value means more communication between two
processes, and vice versa. When the value is 0, it means that
the two processes have no communication. As shown in the
table, although each process has a unique tree structure, the
process-correlation value between a pair of processes is equal
because the above tree structure describes the specific process
communication relationship, whereas the process-correlation
only describes the closeness of communication between any
pair of processes.

The following example demonstrates the symmetry of pro-
cess correlations in the process-correlation tree. According to
the tree structure shown in Figure 3(a), the identifiable con-
nection path between processes p1 and p2 becomes evident,
visually highlighted by the presence of a red line Further,
the process correlation tree of processes p1 and p2 can be
drawn, as shown in Figure 3(b). Three paths from p1 to p2 are
shown on the left, and three paths from p2 to p1 are shown
on the right. Each path corresponds to the same process and
depth because the physical node does not change during the
process of communication. Therefore, the communication
relationship between processes does not change whether a
message is sent or received. According to Equation 3, R(1, 2)

is equal to R(2, 1).
As depicted in Figure 3, there exists a strong hierarchical

association among processes. Therefore, after obtaining the
inter-process associations, we employ hierarchical cluster-
ing [66] to cluster the processes based on these associations.
The clustering method follows a bottom-up strategy, itera-
tively merging nodes into increasingly larger clusters based on
their similarity or distance. The specific algorithmic workflow
for the communication cluster extraction method based on
inter-process associations is outlined below:

1. Initially, all processes within the process set are treated
as individual clusters, forming the leaves of the hierarchical
structure.

2. Subsequently, based on the associations among the
processes within a cluster, we compute a pairwise linkage
metric between every pair of clusters. In this study, the average
distance metric is adopted, as defined by Equation 3.

3. The two clusters with the maximum linkage metric are
merged into a single cluster, forming a non-leaf node in the
hierarchical tree.

4. Steps 2 and 3 are iteratively performed until the associa-
tion between any two clusters falls below a threshold. In this
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Fig. 4 (a) The communication regions graph, where each commu-
nication region is encoded by a certain color. (b) The latency mode
of the graph, where the color goes from blue to red, indicates that
the latency increases from low to high.

study, the threshold is set to 2, and clustering ceases when
there is only a single communication message between two
clusters.

Applying the clustering method to the example data
shown in Figure 3 forms two communication regions,
namely, Region1 = {P1, P2, P3, P4} and Region2 =

{P5, P6, P7, P8}. All processes inside these regions commu-
nicate much more than those betweenRegion1 andRegion2.
4.2.2 Visualization of Communication Regions
A communication region graph is designed to illustrate the
relationship between processes within a region and the rela-
tionship between regions. Figure 4(a) shows a total of 1024
processes, which are divided into 8 communication regions.
A graph node represents a process, whereas a link between
two nodes represents the communication between processes.
Each region is represented by a color for users to intuitively
understand the complex communication relationship. Our
design aims to show the overall clustering results and not just
a single process.

Through spatial clustering of process nodes, we find the
process nodes with the closest communication and divide
them into the same area to further visualize them. Users
can select specific process node regions for detailed analysis
according to the clustering results in the communication
region graph.

To improve the visual experience of users, we use 2D force-
directed edge building (FDEB), an edge bundling algorithm, to
avoid cluttered connections. The system also provides many
functions, including zooming in/out, translating, rotating,
and dragging, for users to further observe and analyze the
clustering results.

We also calculate the communication latency of each
region using the message latency calculation method provided
by the Equation 2. The communication latency of regions
is characterized by the communication region graph. As
shown in Figure 4(b), as the color goes from blue to red, the

Compression

growth trend&&>!"#

Compression

steady trend&&>!"#

Fig. 5 Features of communication latency over time, which are
used to generate temporal latency abstraction using the sliding
window algorithm. The red line denotes gtregion, and the important
growth trend period andsteady trend period are circled by ellipses.
The other features are compressed (reserve part of the data).

communication latency of a region goes from low to high. This
graph synchronously displays the process communication
delay information between different regions in real-time.
Users can select those regions with high communication
latency for analysis as shown in Figure 4.

5 COMMUNICATION-DEPENDENCY-
BASED DAG

This section discusses the construction of communication-
dependency-based DAG Section 5.3 (R2), the temporal evo-
lution of PCL events abstraction Section 5.1, and the com-
munication dependency extraction method Section 5.2.

5.1 Temporal Evolution of Process Communication
Latency Events Abstraction

A sliding-window-based algorithm is proposed to extract the
features of PCL events within communication regions. This
algorithm generates an abstraction of temporal evolution.

First, gtregion is defined as the average latency of all
messages in the region (Section 4.1) . Second, we define two
important features to be extracted, namely, the growth trend
period and steady trend period, as illustrated in Figure 5.
For other unimportant periods, we reserve three timestamps
to compress the time period, namely, start, mid, and end.
Based on the features defined above, we use the sliding-
window-based algorithm to generate the temporal latency
abstraction.

The growth trend period refers to a time interval during
which the delay data exhibits a sustained increasing trend. This
could indicate changes within the communication network
leading to a gradual rise in message delays. An example of
this feature is depicted in Figure 5, showing a steady upward
trend in delay data.

Conversely, the steady trend period implies that despite
stable communication latency, delays are consistently main-
tained at a higher level, making it difficult to revert to lower
values. The illustration in Figure 5 further clarifies this point,
emphasizing fluctuations in message delays at a higher level.
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Fig. 6 Evolution of the latency of a communication region. The
abstraction of communication latency of segments is generated based
on temporal latency features. A slider component is used to select a
certain period to analyze.

For time intervals of lesser importance, we opt to re-
tain three timestamps denoting the start, midpoint, and end,
allowing us to compress these periods effectively.

Building upon the definitions provided above, we employ
a sliding-window-based algorithm to generate the abstraction
of temporal latency. We believe that this approach better
captures the features of events within the communication
area, offering valuable insights for subsequent analyses.

We also design a temporal evolution view of region com-
munication latency to help users locate those periods with
high latency. The temporal evolution view of PCL events
shows the overall latency abstraction over time, which can
help users interactively explore these events. The DAG (Sec-
tion 5.3) is constructed in the period that users have selected
through the slider component below. The symbols in Figure 6
are defined as follows:

• X-axis: continuous time periods.
• Circle: Communication latency of a period.
• Color of circle: Communication latency of a region

(Equation 2).
• Size of circle: Number of messages delayed in a region.
• Arrow point: Details of the communication latency.

5.2 Communication Dependency Among Processes

Based on the physical time order of communication events,
the logical time is calculated using the Vector Clock ap-
proach [67]. This approach involves the following mathemat-
ical formulation:

For each event e, let vecp[e] represent the logical time
associated with event e belonging to process p. Depending
on the type of event:
1. In the case of a Send event from process i to process j, the
logical time is updated as follows:

vecp[e] = vecp[e] + 1 (4)

2. For a Receive event where process i receives from process
j, the logical time is updated as follows:

vecp[e] = vecp[e] + 1 (5)
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Fig. 7 Calculating the logical time using Vector Clock. Three
processes are involved. The x-axis represents the time, whereas the
blue line represents the process of communication.

3. Furthermore, for each process p, the logical time vecp[e]

is updated as:

vecp[e] = max(vecp[e], vecp[j]) (6)

The proposed discipline captures the communication de-
pendency among processes. This discipline enhances the
understanding of how events are interconnected within the
context of logical time calculations.

We then define the communication dependency among
processes based on two disciplines, which are described as
follows with reference to Figure 7.

Discipline 1: For events a and b, b depends on a (a→ b).
If ∀i, 1 ⩽ i ⩽ N , then Va [i] ⩽ Vb [i]. In Figure 7, events a
and b are in blue circles. Given that Va [1] = 0 ⩽ 0 = Va [1],
Va [2] = 0 ⩽ 1 = Va [2], Va [3] = 1 ⩽ 1 = Va [3], we have
a→ b (i.e. msg1send → msg1receive).

Discipline 2: Events c and d are concurrent events that
do not depend on each other. If ∃i, 1 ⩽ i ⩽ N , then
Va [i] > Vb [i]. Figure 7, events c and d are in red circles.
Vc [2] = 3 ⩽ 4 = Vd [2] and Vc [3] = 2 > 1 = Vd [3], c and
d are concurrent events.

Based on the extracted communication dependency, all
communication events are ordered by logical time. A logical
time-based communication events collection is performed to
construct DAG in Section 5.3.1.

5.3 DAG of Communication State

The DAG is constructed using our proposed algorithm (Al-
gorithm 1 in Section 5.3.1) based on the communication
dependency described in Section 5.2. We introduce here
our visual designs of the DAG (Section 5.3.2) as well as a
new glyph called CS-Glyph for characterizing the process
communication state, the visual layout, and the interactions.
5.3.1 DAG Construction
Based on the communication dependency of events (their
logical time order) described in Section 5.2, we construct the
DAG using Algorithm 1.
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Fig. 8 The DAG of Figure 7 calculated by Algorithm 1. A node
represents a process, the number in a node represents process id,
and the links represent the messages between processes.

Figure 8 shows the DAG of communication events presented
in Figure 7. A node represents a process, the number in a
node represents the process ID, and the links represent the
message between processes. The DAG clearly shows the
communication latency among processes.

To further optimize the DAG, we introduce the load balance
for processes. mcp is defined as the sum of messages (sent
and received) of process p during a period, whereas LBp

represents the load balance of p.
First, AD is calculated as

AD =

∑n
i=1 |mci −mcavg|

n
(7)

whereAD is the arithmetic average deviation, n is the number
of processes communicated during this period, and mcavg is
equal to 1

n

∑n
i=1 mci.

We calculate LBp as

LBp =
|mcp −mcavg|

AD
(8)

5.3.2 Visual Designs in DAG

We designed CS-Glyph to show the communication state of
processes in DAG. This glyph represents a node in DAG. As
shown in Figure 9, the circular CS-Glyph consists of two
parts, namely, an ellipse in the center and multiple bar charts
in the border. The symbols in the CS-Glyph are defined as
follows:

• Ellipse in the center: a process with an ID number.
• Color of ellipse: latency of compute node of a process.
• Flatness of ellipse: load balance of a process.
• Greater flatness: greater load imbalance of a process.
• Bar charts inside the border: messages received by a

process.
• Bar charts outside the border: messages sent by a pro-

cess.
• Length of bar chart: message transmission time.
• Height of bar chart: message size.
• Color of bar chart: latency of the process computed

using Equation 1.
A hierarchical layout and edge-bounding of links are ap-

plied to DAG for a clearer display. As shown in Figure 9,
the above designs can address the low rendering efficiency

Algorithm 1 DAG construction algorithm
Input: the set of communication events S (logical

time in ascending order)
Output: DAG G = (V,E)

process V = (pid, eventlist)← ∅;
communication dependency E = edge(Vi, Vj)←
∅;

foreach ev in S do
// two types of event: Send and

Receive

if ev is a Send event then
if ∃v ∈ V, v.pid = ev.pid then

find the newest created node vi (there may
exist multiple nodes in V which satisfy
the condition) such that vi.pid = ev.pid,
push ev into vi.eventlist;

end if
else

create a new node v, v.pid = ev.pid;
end if

end if

else
// ev is a Receive event

if ∃vi ∈ V , vi.pid = ev.pid, vi.eventlist
does not contain Send events then

push ev into vi.eventlist;
end if
else

create a new node v, v.pid = ev.pid;
end if
if the Send event corresponding to ev is in
vj .eventlist then

create edge (Vi, Vj) adding into the E;
// edge Vi → Vj

end if
end if

end foreach

of large-scale process communication. In the vertical di-
rection, the nodes of DAG are placed on different layers.
In the horizontal direction, the nodes show a dependency
relationship.

Some interactions are also offered to help users easily
obtain the process communication state, hence facilitating
their exploration of communication latency among processes.
The interaction operation is discussed in detail as follows.
(1) Overview and Zooming: Users can effortlessly access

the communication status information for the entire
DAG by employing familiar actions like translating and
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Fig. 9 Visual design of the CS-Glyph and layout of the DAG. The
CS-Glyph is a circle with two parts of information, namely, an ellipse
in the center and bar charts in the border. The ellipse represents the
process with a process ID, and the bar charts represent the messages
sent (outside the border) and received (inside the border).

zooming in/out. These interactions facilitate a holistic
understanding of communication patterns and statuses
across the system.

(2) Process-Level Control: For a more focused perspective,
users have the ability to selectively view or conceal the
communication status of specific processes. Achieved
by simply double-clicking on a graph node, this action
effectively folds or unfolds the connected nodes to the
right, allowing users to tailor their view to their analytical
needs.

(3) Hover Interaction: A seamless means of acquiring
in-depth insights is through cursor hovering. By hover-
ing over a node, users gain detailed information about
the associated process. Simultaneously, this action also
highlights the pertinent links, offering a comprehensive
visualization of the communication dynamics surround-
ing that specific node.

These interactions enhance user engagement and empower
efficient exploration of the communication status within the
DAG, ultimately contributing to a more comprehensive un-
derstanding of the underlying data.

6 PCL Events Attribution Strategy
In this section, we analyze the characteristics of different PCL
events causes. Furthermore, we summarize the attribution
strategies (R3) and the optimization methods of different PCL
events (R4).

A1 Poor process-to-processor mappings. This problem
is caused by too much inter-node communication. Therefore,
poor process-to-processor mapping occurs when DAG has
many CS-Glyph pairs with ellipses that are colored differently.
To address this problem, we present a view that helps users

(a)

(b)

(c)

Fig. 10 (a) Mapping analysis view of a period. (b) Communication
pattern analysis view of a period. (c) Background analysis view of a
period.

analyze the mapping timing variation of their simulations. As
shown in Figure 10(a), the mapping view consists of a line
chart and a pie chart. The line chart shows the mapping for each
duration, where the x-axis represents the duration, which can
be defined by users, whereas the y-axis represents the number
of inter- and intra-node communications. Meanwhile, the pie
chart summarizes the mapping as a whole. The red component
represents the count of inter-node communications. A high
proportion of the red color denotes poor mapping.

O1 Optimize the node mapping scheme. To optimize
the mapping, users can map the processes that frequently
communicate with one another to the same physical node.
Our system prompts users to minimize the communication
transmission between physical nodes as much as possible to
reduce the hop count of message transmission and the risk of
congestion. The system can also recommend high-efficiency
mapping by using the graph partitioning algorithm.

A2 Poor communication patterns. Generally, communi-
cation patterns can describe the process communication load
balance. The flatness of ellipse in the center of CS-Glyph
represents this information. A higher flatness means poor
communication patterns.

As shown in Figure 10(b), we provide an area chart to
display the communication load balance of the simulation.
In this view, the x-axis represents the duration, whereas
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Fig. 11 Visualization of MiniFE running with 512 processes on TH-1A. (a) is the spatial view showing the process of communication of
regions. (b) is the evolution view showing the temporal latency abstraction of a region. (c) is the DAG view showing the communication
latency among processes in detail. (d) is the attribution view with three parts, namely, mapping analysis (d1), communication pattern analysis
(d2), and background traffic analysis.

the y-axis represents the average communication load of a
process, which we calculate using Equation 8. The area chart
is rendered with a gradient color ranging from yellow to red,
with red indicating that the communication load in the current
duration is imbalanced.

O2 Optimize the simulation communication algorithm.
Fixing a poor communication pattern requires modifying the
communication algorithm of the simulation. Users can employ
combined communication to avoid some poor point-to-point
communication patterns, hence improving parallelism and
further reducing the traffic for a single process.

A3 Background traffic. Background traffic varies by time.
If the transmission time of the same size message varies dra-
matically in the inter-node communication, then we consider
this transmission time to be influenced by background traffic.
In the DAG, the bar chart with the same height across all
CS-Glyphs has different colors.

The view in Figure 10(c) records the variance in the trans-
mission time of different messages and reflects the influence
of background traffic. In this view, the x-axis represents the
duration, whereas the y-axis represents the average trans-
mission time of different message sizes for each duration.

Fig. 12 Statistics of inter- and intra-node communication after
remapping. The number of inter-node messages was reduced from
1385144 to 1159653.

We calculate and then normalize the average message trans-
mission time. We also color the line as gray where the y
value shows the least fluctuation. A greatly fluctuating y value
indicates serious background traffic.

O3 Optimize the simulation running environment.
When performance degradation is caused by background
traffic, users do not need to modify the algorithm or commu-
nication mapping. Our system will prompt these users to just
wait for the congestion to ease and run the simulation again.

7 EXPERIMENTAL RESULTS
We analyze in this section the causes of PCL events in two
simulations. We invite three experts to evaluate the system
and provide detailed feedback.

7.1 MiniFE

MiniFE is a proxy application for unstructured implicit finite
element codes. We run this application with 512 processes
on TH-1A. However, this program has poor performance.
As shown in Figure 11, we use PCLVis to analyze the PCL
events in MiniFE to help users improve the communication
performance of this parallel program.

Figure 11(a) shows the 5 communication regions of
MiniFE. The processes within each of these regions com-
municate with one another intensively. We select the yellow
region from Figure 11(a1), which has many PCL events.
Figure 11(b) shows the PCL temporal evolution of the yellow
region. The color of durations #1 and #2 is unusually red,
which confirms the presence of communication latency in
these durations. Our system only has one DAG for users at
the same time. Nevertheless, to better display the effect and
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Fig. 13 Visualization of NPB CG running with 512 processes. (a1) shows the communication latency of regions, where each region is
encoded by a certain color. (a2) is the latency mode of (a1). (a3) is a region with high latency. (b) is the latency evolution of region a3, which
has three phases. (c) is the DAG graph of Phase1, which shows the communication latency among processes. (d) is the attribution view
of Phase1. Three views are displayed to analyze the causes of PCL events, namely, the mapping (d1), communication pattern (d2), and
background traffic (d3).

save space, Figure 11(c) flips the DAG for display and places
the DAGs of durations #1 and duration #2 together.

Analysis of Duration #1:
To analyze the causes of PCL events in duration #1, we

display the communication details of the process inside the
yellow region during duration #1 in Figure 11(c-duration
#1). The upper CS-Glyphs represent the sender, whereas
the lower CS-Glyphs represent the receiver. The bar chart
in each CS-Glyph is colored red, thereby indicating that a
significant amount of time has been spent on communication.
These CS-Glyphs have the same characteristics. Specifically,
the ellipses of CS-Glyph pairs are flat and have different
colors, which suggests that those processes belonging to
different nodes communicate with one another intensively.
We combine with Figure 11(d) for in-depth analysis. In
Figure 11(d1), the proportion of inter-node communication is
larger than that of intra-node communication, and the number
of internode communications in duration #1 rapidly increases.
The message transmission time is affected by background
traffic when the messages need to be transmitted across inter-
node links. Figure 11(d3) shows that the transmission time
increases dramatically in duration#1, whereas Figure 11(d2)
shows that the communication load balance of MiniFE has
no significant impact on performance. Therefore, the PCL
events in duration #1 are caused by poor process-to-processor
mapping.

Apart from attribution, PCLVis can also provide some

possible optimization methods. To address the poor process-
to-processor mapping, we propose a remapping algorithm
based on graph partition and then remap MiniFE to obtain
a better mapping and to reduce the 225491 messages being
transmitted across inter-node links (Figure 12).

Analysis of Duration #2:
Figure 11(c-duration#2) shows the communication depen-

dency and state of PCL events in duration #2. Compared with
Figure 11(c-duration#1), this view has fewer links, and the
height of the bar charts is higher. Figure 11(d) shows that
the number of communication decreases (Figure 11(d1)), but
the transmission time of large messages greatly increases
to 47462 bytes (Figure 11(d3)), hence suggesting that the
transmission of large bytes in MiniFE leads to communication
latency. Therefore, the PCL events in duration #2 are caused
by background traffic. When the program is disturbed by
background traffic, the system will prompt users to change
the job node or adjust the simulation running time.

7.2 NAS Parallel Benchmarks Conjugate Gradient

We then analyze the PCL of NAS parallel benchmarks
conjugate gradient (NPB CG) using PCLVis. These bench-
marks are derived from computational fluid dynamics (CFD)
applications and consist of five kernels. We use the conjugate
gradient as our kernel, which we run with 512 processes
on TH-1A. We easily identify the process mapping problem
using PCLVis. To clearly illustrate other causes of latency,
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a b1

b3

b2

Fig. 14 Visualization of Phase2 in Figure 13. (a) is the DAG graph of Phase2. Many CS-Glyphs have dark red bar charts, which indicate
high communication latency. Three views are displayed to analyze the causes of PCL events, namely the mapping (b1), communication
pattern (b2), and background traffic (b3).

we optimize the mapping using a graph-based mapping al-
gorithm as a pre-processing step. Therefore, this section will
not discuss the mapping problem in detail.

The visualization result is shown in Figure 13. As shown
in Figure 13(a1), the 512 processes are divided into 16 com-
munication regions. The communication among processes
within each region is similar to that in others. We then switch
to the latency mode (Figure 13(a2)), and find that the com-
munication latency of one region (Figure 13(a3)) is higher
than that of others. Therefore, we select the specific region
with higher communication latency for further analysis.

We initially observe the temporal evolution of communica-
tion latency in region a3.Figure 13(b) shows 3 communication
phases, namely, Phase1, Phase2 and Phase3, which we ana-
lyze separately as follows.

Analysis of Phase1:
As shown in Figure 13(c), many CS-Glyphs in the DAG

have a dark red color. To obtain additional information about
the communication latency among different processes, we
compare these dark red CS-Glyphs with the light-colored
CS-Glyphs and find that the ellipses in the former are much
flatter than those in the latter, thereby suggesting that the com-
munication load of the dark red processes is very unbalanced.
The DAG also suggests a potential problem with the commu-
nication pattern due to the highly unbalanced communication
load.

To identify the cause of communication latency, we use
the attribution view for further analysis. As shown in Fig-
ure 13(d1), the intra-node communication is much greater
than the inter-node communication because we have already
improved the process mapping. Meanwhile, Figure 13(d2)
shows that the average load balance of processes greatly varies

over time. Multiple peaks can be found in Figure 13(d2),
which indicate a poor communication pattern. The lines in
Figure 13(d3) change smoothly with a low value, which
indicates low background traffic in this phase, thereby prov-
ing that communication latency is mainly caused by poor
communication patterns.

Therefore, our system prompts the users to modify the
simulated communication algorithm to improve the commu-
nication pattern.

Analysis of Phase2:
Figure 14(a) shows many CS-Glyphs in the DAG with

a dark red color. We initially check the ellipses in these
CS-Glyphs and find that these ellipses have low flatness,
thereby confirming that the dark red processes have a balanced
communication load. In other words, this particular phase
exhibits a good communication pattern. We also examine
the bar charts (representing messages) of the same height
(representing message size) and find that messages of the
same size have different colors, thereby suggesting that some
background traffic may interfere with the communication in
our simulation.

To identify the cause of communication latency, we use
the attribution view for further analysis. We observe Fig-
ure 14(b2) directly because the process mapping has already
been improved. We find that the average load balance of
processes steadily varies over time and maintains a low value.
This communication pattern can be considered good. Further-
more, the lines exhibit significant changes with high values
as shown in Figure 14(b3), thereby confirming a high level
of background traffic in this phase and further substantiating
that the latency is primarily caused by background traffic.



14 F. A. Author, S. B. Author, T. C. Author

Our system then prompts the users to just wait for the con-
gestion to ease and run the simulation again. After analyzing
Phase3, We find that it is similar to Phase1. Therefore, we do
not present here the visualization results for Phase3.

8 Discussion
In this section, we have extended invitations to three domain
experts to conduct an in-depth analysis of their simulations
through the utilization of our PCLVis system. The synopsis
of their feedback and our subsequent discussions pertaining
to the experts’ input are presented as follows:

8.1 Expert feedback on the PCLvis system

The Flowchart of PCLVis System
Like a traffic jam, all experts want to know “where”,

“how”, “what”, and “why”. Where is the latency? How is
the latency evolved? What happened in the processes with
latency? Why does the latency occur?

Our flowchart has fully answered these four questions:
the spatial view for locating latency; the evolution view for
showing the evolution of the latency; the DAG view for
analyzing the details; attribution view for the reason of the
latency.

The Spatial View
All experts hope to find the worst latency region from their

large-scale simulations on supercomputers. Also similar to
the traffic jam, the latency would occur in a region, but not one
process, because it can propagate from one process to another.
For locating the latency region, all experts are happy with our
spatial view design. Here is one of their comments: ”It’s so
great. The complicated process-communication network with
more than 1,000 processes has been instantly visualized into
several logic regions. I can also find the worse latency region
in the latency mode.”

In relation to the clustering algorithms employed within
the spatial view, the majority of experts express contentment
with methodologies capable of categorizing processes based
on their pertinence. Nonetheless, there exists an expert who
articulates a desire for heightened temporal efficiency within
the current algorithm. This viewpoint seamlessly converges
with our forthcoming endeavors and serves as a focal point
for our future pursuits.

The Evolution View
The experts also want to know the evolution of one latency

region. This is because it can help to trace the source of the
latency. The experts were satisfied to use the sliding window
for finding the period of interest by observing the colored
circles, which represent the latency. Meanwhile, they are

also like our temporal latency abstraction strategy, which
can successfully hide all unimportant temporal features. By
using it, they can quickly locate the most important period
for further analysis.

The DAG View
Experts also try to understand the details of the latency

among several processes, like their dependencies, load bal-
ance, and so on. They highly rate our DAG view with the
following 3 features: 1) It is a good idea to use DAG for vi-
sual analytics of communication dependencies; 2) Interactive
exploration is a good choice for resolving the scalability prob-
lem; 3) The CS-Glyph has been well designed to show enough
information for users, including load balance, send/receive
messages, latency, and so on.

The Attribution View
Attribution is the most important one for users. All ex-

perts found the reasons for the latency in their large-scale
simulations by using our PCLVis system.
• Expert A: from the result in Figure 1, I found that there

are so many inter-node process communications in the
attribution view (d1). This is a poor process-to-processor
mapping. With guidance from the system-recommended
graph division, I have successfully optimized his sim-
ulation. The ratio between intra-node communication
and inter-node communication has been improved from
252545/281753 to 325064/209234.
• Expert B: Through the system’s communication pattern

analysis and DAG view, it is found that a large number
of load-unbalance cases exist, which is the main reason
for the communication latency of my simulation. This is
difficult to detect by using existing tools. By checking
and revising the simulation code for the unbalanced
process IDs, the efficiency of my simulation has been
improved. One possible suggestion is to list all possible
breakpoints for users, although it may be out of the scope
of this system.
• Expert C: My situation is that the efficiency of my

simulation is unstable. I have checked my code again
and again but found nothing. With the help of PCLVis,
the reason is the communication latency caused by the
fluctuation of background traffic.

8.2 Experts Feedback on Current System Limitations

Experts acknowledged the system’s effective latency analysis,
noting its assistance in resolving communication delays.
However, they foresee greater convenience through real-time
communication latency analysis. This enhancement will allow
for easier use and analysis.
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• Expert: At present, the PCLvis system can help me
analyze and locate the latency region in my simulation.
But it’d be even cooler if I could perform real-time
analysis and latency region location on my running
simulations.

9 Conclusion
In this paper, we proposed the PCLVis framework to visually
analyze the causes of PCL in a large-scale simulation. First,
we developed a spatial PCL event locating method. Second,
we designed a process-correlation-tree-based spatial clus-
tering algorithm to generate communication regions. Third,
we designed a communication-dependency-based DAG that
can help users interactively explore the communication la-
tency among processes in a communication region. We also
designed a new glyph called CS-glyph to show the communi-
cation state of each process. Before constructing the DAG,
we proposed a sliding-window-based method to generate
an abstraction of PCL events over time, which displays the
evolution of communication latency in a region. Finally, we
developed a PCL event attribution strategy to help users im-
prove the efficiency of their simulations. Several simulations
running on the supercomputer TH-1A were analyzed using
the proposed PCLVis system. Users greatly improved the effi-
ciency of their simulations by following the recommendations
of our PCLVis system. Furthermore, the temporal efficiency
of PCLVis necessitates augmentation, serving as the focal
point of our imminent pursuits. We aspire to achieve real-time
analysis of PCL events.
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The scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience, 2010, 22(6):
702–719, doi: 10.1002/cpe.1556.

[15] De Kergommeaux JC, Stein B, Bernard PE. Pajé, an interactive
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