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In this document, we provide additional details, explana-
tions, and experiments to support the original paper. Below
is a summary of the contents:

• Approximation of the posterior distribution and final
likelihood of the joint distribution of observed variable
y and hidden state z.

• Theoretical deduction of concrete steps of EM algo-
rithm and the specific expression of involved parame-
ters.

• Theoretical proof of the proposed proposition that two
points lie in the same cylinder if and only if their sym-
metric function Eq. 15 equals to zero.

• Detailed explanations of our proposed point-pair sam-
pling method and the corresponding pseudo-code of
the algorithm.

• Experimental details of competitors along with their
parameter settings in our experiments and more qual-
itative results of different overlapping rates on TUM
RGB-D and KITTI datasets.

1. Distribution Approximation and the Final
Likelihood Function

To simplify the computation, we use the mean field to
approximate the posterior distribution PG(z|β):

PG(z|β) ≈ Pmf (z|β) =
∏
i

Pmf
i (zi|β, z̃), (1)

where z̃ = E[PG(z|β)] is the expectation of z under the
parameter β and each component of the above equation only

relies on the local information:

Pmf
i (zi|β, z̃) =

exp(β
∑

i′∼i wi,i′ziz̃i′)

exp(β
∑

i′∼i wi,i′(+1)z̃i′) + exp(β
∑

i′∼i wi,i′(−1)z̃i′)
.

(2)
As the observation y is conditionally independent given

z in the hidden Markov model, then the conditional density
function f has the following form:

f(y|z, θ) =∏
i

(N(yi|µ+1,Σ+1))
(1+zi)/2(N(yi|µ−1,Σ−1))

(1−zi)/2,

(3)
where N represents the density function of the k-
dimensional normal distribution with parameters µ+1,Σ+1

(inliers) or µ−1,Σ−1 (outliers):

N(yi|µ+1,Σ+1) =

1

(2π)k/2
√

detΣ+1

exp{
1
2 (yi−µ+1)

TΣ−1
+1(yi−µ+1)}.

(4)

We adopt k = 4 in our case. We unify these parameters by
θ. Hence the likelihood of the joint distribution becomes

Pmf (y, z|β, θ, z̃) = f(y|z, θ)Pmf (z|β) =∏
i

Pmf
i (zi|β, z̃)(N(yi|µ+1,Σ+1))

(1+zi)/2

·(N(yi|µ−1,Σ−1))
(1−zi)/2.

(5)

2. EM Algorithm

We use EM algorithm to calculate the estimated hidden
state iteratively. The specific iterative steps are listed as fol-
lows.

(1) E-step: We replace the hidden state zi with
E[zi|yi, z̃, β, θ)], where
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Figure 1. Left: Points p and q together with their normals lie in the
same cylinder, hence satisfying (p− q) ⊥ (np + nq) Right: The
situation that p and q have different curvatures. In this situation p
and q are not the right corresponding points but they are without
punishment in Eq. 15.

E[zi|yi, z̃, β, θ)] =

P (zi = 1|yi, z̃, β, θ)− P (zi = −1|yi, z̃, β, θ),
(6)

P (zi = 1|yi, z̃, β, θ) ∝

exp(β
∑
i′∼i

wi,i′ z̃i′)
1

(2π)k/2
√
detΣ+1

·exp{
1
2 (yi−µ+1)

TΣ−1
+1(yi−µ+1)},

(7)

P (zi = −1|yi, z̃, β, θ) ∝

exp(−β
∑
i′∼i

wi,i′ z̃i′)
1

(2π)k/2
√
detΣ−1

·exp{
1
2 (yi−µ−1)

TΣ−1
−1(yi−µ−1)}.

(8)

(2) M-step: We use the estimated hidden state to update
the parameters. The results are as follows.
For inliers,

n+1 =
∑
i

1 + zi
2

, (9)

µ+1 =
1

n+1

∑
i

1 + zi
2

yi, (10)

Σ+1 =
1

n+1

∑
i

1 + zi
2

(yi − µ+1)(yi − µ+1)
T . (11)

For outliers,

n−1 =
∑
i

1− zi
2

, (12)

µ−1 =
1

n−1

∑
i

1− zi
2

yi, (13)

Σ−1 =
1

n−1

∑
i

1− zi
2

(yi − µ−1)(yi − µ−1)
T . (14)

3. Theoretical Proof of Proposed Proposition

The symmetric function of point cloud registration is

(p− q) · (np + nq), (15)

Proposition 1. Points p and q together with their normals
np and nq lie in the same cylinder, if and only if Eq. 15
equals zero.

Proof. ” ⇐ ”: (1) If np = nq , we get np ⊥ (p − q)
and nq ⊥ (p − q). In this situation, two points lie on the
cylinder that takes (p− q) as one of the generatrix.

(2) If np ̸= nq , then np and nq can generate a plane
S with p on it. Then we have (np × nq) ⊥ S. Translate
q along the direction of np × nq (or its negative direction)
until it is on plane S. We call the intersection point as q′

and its normal as nq′ , where nq′=nq . Since p and q′ lie on
the same plane S with their normals satisfying

(p− q′) · (np + nq′) = 0, (16)

we can conclude that p and q′ together with their normals
np and nq′ lay in the same circle. Then we generate the
cylinder based on this circle and the axial direction np×nq .
According to our construction of cylinder, q and nq also lies
on it.

“ ⇒ ”: If p, q and their normals are on the same cylin-
der, this situation is illustrated in Fig. 1. Let q′ be a point on
the same circle as p and its normal direction n′

q is equal to
nq . Since (np+nq) ⊥ (p−q′) and (np+nq) ⊥ (q−q′),
we can get (np+nq) ⊥ (p−q), which means Eq. 15 equals
to zero.

4. Point-Pair Sampling Method

According to our sampling method, we aim to sample the
point pairs for transformation stability. For sake of that, the
unconstrained direction should be avoided. So we sample
the point pairs to let the condition number c = λ1

λ6
of C be

as close to one as possible.
Specifically, we define vi = [(p̃i + q̃i) × ni,ni],

i = 1, 2, · · · , n. Then we sort vi by its projection value
on the eigenvalue xk which determines the constraint of
vi in the direction xk, and record it in the list Lk, k =
1, 2, · · · , 6. After modeling the sorted lists L1, · · · ,L6,
we randomly choose a point pair (p̂1, q̂1), and let v̂1 =
[(p̂i + q̂i) × ni,ni]. We then initialize t1, t2, · · · , t6 as
t1 = (v̂1 · x1)

2, t2 = (v̂1 · x2)
2, · · · , t6 = (v̂1 · x6)

2,
and delete v̂1 from the sorted lists L1, · · · ,L6. After ini-
tialization, each time we select the point pair from the top
of a certain list based on the minimal value of t1, · · · , t6,
which can be viewed as the current estimation of the eigen-
values. We then update the value of t1, · · · , t6 as t1 =
t1+(v̂j ·x1)

2, t2 = t2+(v̂j ·x2)
2, · · · , t6 = t6+(v̂j ·x6)

2.
The whole procedure is summarized in Algorithm 1.

5. Experimental Settings, Details, and More
Qualitative Registration Results

The competitors along with their parameters used in our
experiments are listed in Table 1.



Table 1. The compared methods and their parameter settings in experiments.
Methods Parameters Implementations

P2P-ICP [1] Metric: pointToPoint; MaxIterations: 200 MATLAB code
motion: rigid3d https://ww2.mathworks.cn/products/matlab.html

P2N-ICP [3] Metric: pointToPlane; MaxIterations: 200; MATLAB code
motion: rigid3d https://ww2.mathworks.cn/products/matlab.html

GMM [4] Downsample: 0.2; motion: rigid3d MATLAB code
https://github.com/bing-jian/gmmreg

CPD [5] Downsample: 0.2; Noise Weight: 0.5; MATLAB code
motion: rigid3d www.bme.ogi.edu/˜myron/matlab/cpd

G-ICP [6] Maximum Correspondence Distance: 0.07; C++ code
MaxIterations: 100 https://github.com/isl-org/Open3D

FGR [9] Maximum Correspondence Distance: 0.025; C++ code
Annealing Rate: 1.4 https://github.com/isl-org/Open3D

S-ICP [2] Norm: 0.4; MaxIterations: 100; Optimization: ADMM; C++ code
Penalty Increase Factor: 1.2 https://github.com/OpenGP/sparseicp

FR-ICP [8] Robust Function: WELSCH; para: 0.1; use AA?: true; C++ code
MaxIterations: 100 https://github.com/yaoyx689/Fast-Robust-ICP

HMRF-ICP [7] EM inlier: Gaussian; EM outlier: logistic; MATLAB code
MaxIterations: 200; EM-MaxIterations: 150 https://github.com/JStech/ICP

Ours EM inlier: Gaussian; EM outlier: Gaussian; MATLAB code
MaxIterations: 200; EM-MaxIterations: 150 Our code will be publicly available online

In our low overlapping tests, four representative meth-
ods, namely Sparse ICP, Fast and Robust ICP, HMRF-ICP
and Ours, are chosen to analyze the influence of differ-
ent overlapping rates on registration results. Fig. 2 shows
more qualitative registration results with different overlap-
ping rates.

In our sequence point cloud test, we choose KITTI se-
quence dataset and align the point clouds in the sequence
whose index intervals are 1, 4 and 8. More experimental re-
sults when intervals equal to 1 and 4 are presented in Fig. 3.
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(a) Overlapping rate=0.9896

(b) Overlapping rate=0.7887



(c) Overlapping rate=0.6986

(d) Overlapping rate=0.4945

Figure 2. More qualitative registration results under different overlapping rates. The first row illustrates the original point clouds attained
by RGB image and depth map. The second row and the third row show the registration results of different methods and their log-scale
color coding. Our method has the most reliable results under a set of low overlapping rates.



(a) Index interval = 1

(b) Index interval = 4

Figure 3. Registration results of the KITTI dataset with the index interval equal to 1, 4. Red boxes indicate methods that have relatively
large deviations.



Algorithm 1: The Proposed Geometrically Sta-
ble Point-Pair Sampling

Input: Corresponding point pairs (pi,qi) together
with the normal pairs (np,i,nq,i),
i = 1, 2, · · · , n; Desired number of point
pairs m;

Output: Chosen point pairs with their normal
(p̂i, q̂i,np̂i

,nq̂i
), i = 1, 2, · · · ,m.

1 Form the covariance matrix C and then perform
eigenvalue decomposition λ1 ≥ λ2 ≥ · · · ≥ λ6;
The corresponding eigenvectors are denoted as
x1,x2, · · · ,x6; Define vi = [(p̃i + q̃i)× ni,ni],
i = 1, 2, · · · , n.

2 for k = 1 to 6 do
3 Lk = [vσk(1), · · · ,vσk(n)] where

(vσk(1) · xk)
2 ≥ · · · ≥ (vσk(n) · xk)

2

4 end
5 Randomly choose a point pair (p̂1, q̂1),

v̂1 = [(p̂i + q̂i)× ni,ni] let
t1 = (v̂1·x1)

2, t2 = (v̂1·x2)
2, · · · , t6 = (v̂1·x6)

2.
Delete v̂1 from the sorted lists L1, · · · ,L6.

6 for j = 2 to m do
7 ts = min

i=1,··· ,6
ti.

8 Find v̂j from the top of the sorted list Ls and
choose the corresponding point pair (p̂j , q̂j).

9 t1 = t1 + (v̂j · x1)
2, t2 =

t2 + (v̂j · x2)
2, · · · , t6 = t6 + (v̂j · x6)

2.
10 Delete v̂j from L1, · · · ,L6.
11 end
12 return the chosen point pairs with their normal

(p̂i, q̂i,np̂i
,nq̂i

), i = 1, 2, · · · ,m.


