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Abstract

Learning and inferring underlying motion patterns
of captured 2D scenes and then re-creating dynamic evo-
lution consistent with the real-world natural phenom-
ena have high appeal for graphics and animation. To
bridge the technical gap between virtual and real envi-
ronments, we focus on the inverse modeling and recon-
struction of visually consistent and property-verifiable
oceans, which inherits the advantages of deep learning
and differentiable physics to learn geometry and con-
stituting waves in a self-supervised manner. First, we in-
fer the hierarchical geometry using two networks, which
are optimized via the differentiable renderer. Second,
we extract the wave components from a series of in-
ferred geometry through a network equipped with a
differentiable ocean model. Then, the ocean dynam-
ics can be evolved by the reconstructed wave compo-
nents. Through extensive experiments, we verify that
our new method yields satisfactory results for both ge-
ometry reconstruction and wave estimation. Moreover,
this newly proposed approach outperforms the SOTA
methods. The new framework has the inverse model-
ing potential to facilitate a host of graphics applications,
such as the rapid production of physics-accurate scene
animation and its re-editing guided by real ocean scenes.

Keywords: Inverse Modeling, Surface Reconstruction,
Wave Estimation, Ocean Animation, Differentiable Ren-
dering.
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1. Introduction and Motivation

In recent years, realistic ocean simulation and its pho-
torealistic rendering have achieved great success in sim-
ulators, movies, and video games. However, they are
insufficient for the most complex VR/AR scenarios and
the digital-twin modeling of natural phenomena, which
rely heavily on real-world scene reconstruction, prediction,
evolution, and physical re-editing. For example, video
or geometry-based end-to-end fluid predictions contradict
physics and lack realism due to the fluid’s changeable ge-
ometry. Hence, real-world ocean reproduction and physics-
guided re-editing in virtual environments remain urgent re-
search priorities. In the real world, the ocean surface motion
is always simulated via a sum of wave trains. To estimate
model-based deformation rather than directly deforming 3D
shape, we would like to reconstruct not only ocean geom-
etry but also the component wave trains for model-based
deformation.

Meanwhile, geometry reconstruction from images or
videos has recently been improved by merging a deep learn-
ing network with its inverse process, differentiable ren-
dering, which has been demonstrated to achieve consider-
able performance using a self-supervised training method.
Hence, in this study, we aim to propose a deep learning and
differentiable physics coupled framework for dynamic in-
verse modeling from real ocean videos including geometry
reconstruction and component wave estimation, as shown
in Figure 1. With the convincing visually and property-
consistent reconstruction, our work can enhance the virtual-
real fusion simulation of ocean-related natural phenomena.
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Figure 1. The overview of our framework. Given a sequence of monocular images, we use two encoder-decoder networks to reconstruct
the hierarchical ocean geometry GG for each image I;. The hierarchical geometry includes the macrosurface normal N; and the microfacet
roughness R; corresponding to the two sub-networks, respectively. Then we can acquire a sequence of ocean hierarchical geometry Gy,,.
Moreover, we use an MLP network to estimate the wave spectrum from the reconstructed geometry sequences. Each wave is represented
by a set of parameters {h;,w;, 0; }. These networks are trained by combining differentiable rendering and differentiable ocean modeling

as loss functions.

Particularly, we concentrate on the water surface of calm
deep ocean alone, ignoring huge waves or waves on the
coasts and shores.

The core of our algorithm is the wave trains estimation
by self-supervised deep learning networks. Some oceanog-
raphy studies have estimated wave spectrum on deep oceans
using data captured by buoy motion sensors [26] or SAR
images [39] and analyzed the frequency from height data,
Such as Pierson-Moskowitz spectrum [30] and Jonswap
spectrum [ 2]. Rather than the complicated acquired data,
we intend to utilize common images to reconstruct their
wave spectrum for deep oceans. Therefore, the extraction
of geometry from images is an essential task. For ocean
animation, researches commonly use three-hierarchical ge-
ometry to model surface, including the displacement, the
normal of macrosurface, and the roughness of microfacet.
Under a fixed perspective, large-amplitude waves influence
displacement, large-amplitude and middle-amplitude waves
affect the normal of geometry, and small-amplitude waves
determine the microfacet (roughness). We adapt the above
considerations for ocean simulation and rendering in the
backward process. However, in the forward process, we just
need to reconstruct two hierarchies of them and use them
to infer component wave trains, i.e., normal and rough-
ness, which can satisfy both re-rendering and inferring wave
trains.

In summary, our main contributions include:

e Inverse modeling of the hierarchical ocean ge-

ometry from videos. We propose a self-supervised
deep learning framework to reconstruct hierarchical
geometry from ocean images with differentiable ocean
rendering. The hierarchical geometry contains the
normal of the macrosurface at the pixel level and the
roughness of the microfacet at the sub-pixel level.
Moreover, we utilize another deep learning network
to estimate the wave trains from the sequence of the
inferred hierarchical geometry with a differentiable
ocean model as loss function.

¢ Model-driven dynamic ocean generation by rep-
resenting the surface with wave trains. Based
on the estimated ocean wave parameters, we can
generate hierarchical geometry at different view
distances through the ocean model, which provides
a model-driven method for evolving, predicting, and
re-editing the dynamic ocean.

¢ New scenes synthesis based on differentiable
renderer. Our physical ocean renderer supports
synthesizing variable view images and new lighting
scenes. Due to its differentiability, the renderer can
also be utilized for image-based parameter fitting,
including camera parameters, ambient light, and sea
colors. Hence, image-based ocean style transfer can
be supported.



Our paper is organized as follows. We review the most
related works of our study in the next section. Then we
overview our algorithm in Section 3 and present the details
of dynamic ocean inverse modeling in Section 4. In ad-
dition, we show our experiments and results in Section 5.
And in Section 6, several expanded applications using our
framework are presented. Finally, we conclude and explore
avenues of future work in Section 7.

2. Related Work

Our work is closely relevant to ocean modeling and ren-
dering, differentiable rendering and 3D reconstruction. We
briefly review them in the following categories.

2.1. Ocean Surface Modeling and Rendering

Ocean modeling in computer graphics mainly includes
physical fluid simulation, wave geometric modeling, and
wave spectrum-based modeling. The first kind of approach
simulates the sea surface based on the Navier-Stokes equa-
tions, which calculate in detail the motion of water parti-
cles. This ocean dynamic are clear and realistic, but the
computation is complex [19, 15]. The wave shape model-
ing methods consider that ocean surface travel by a series of
waves and the shape of each wave can be described as dif-
ferent mathematical equations. The theory developed from
early sinusoids [24] to later Peachy model [29] and Gerstner
model or trochoids proposed by Fournier and Reeves [7].
The Gerstner model solves the Euler fluid equations for
gravity waves in deep water exactly. The advantage of this
method is that the wave model is simple, the solution of
the mathematical function is easy to obtain, and the ocean
wave model is similar to the real scenes. However, due to
the simple mathematical function, the generated wave mod-
els are solitary, weakly random, and only ideal for calm sea
surface simulation. In oceanography, empirical wave spec-
trum approaches are proposed by aggregating the observed
real ocean into mathematical distributions. The main wave
spectrums include Pierson-Moskowitz spectrum, Jonswap
spectrum, generalized A, B spectrum, Tessendorf spectrum
and TMA Spectrum, etc. The Pierson-Moskowitz spectrum
gives the energy distribution of gravity waves as a function
of their frequency. Hasselmann et al. [12] proposed the
Jonswap spectrum by multiplying an extra peak enhance-
ment factor on the Pierson-Moskowitz spectrum to improve
the fit for different scenes, then extended this model with
a wave direction parameters [|1]. The research [3] fitted
the TMA spectral form to over 2,800 wind sea spectra to
test its viability and to determine if any parametric rela-
tionships could be established linking the spectral param-
eters to the external wind field. These methods are costly
while improving real-time and realism. Bruneton et al. [4]
and Podee ef al. [31] combined them together, i.e., us-
ing wave spectrum and wave geometry equations to sim-

ulate the ocean surface when low amplitude. They usually
simulate the breakers or splashes generated by the waves
of higher amplitude by using physical methods [15]. re-
searchers focus on adding interaction details on the large
open ocean surface through the combination of physical
models. Huang et al. [17] simulated ships, splashes, and
waves on a vast ocean by designing a hybrid time-stepping
algorithm that combined a FLIP domain and an adaptively
remeshed Boundary Element Method (BEM) domain for
the incompressible Euler equations. Xiong et al. [42] mod-
eled complex vortex-interface interaction problems on the
free surface by combining the expressiveness of the Cleb-
sch wave function in describing vortical structures with the
level-set function’s capacity to follow interfacial dynamics.
By analyzing the above methods, we combine the expanded
three-dimensional trochoids wave and the ocean wave spec-
trum to model the ocean surface animation. Meanwhile, we
implement the process as a differentiable ocean model.
Researches in ocean rendering can be dated back to the
work of Fournier and Reeves. Tessendorf et al. [36] pre-
sented a sophisticated lighting model for realistic repro-
duction of ocean waves, while Ashikhmin and PremozZe et
al. [1, 32] presented a light transport approach for the com-
plex lighting effects of the ocean. However, traditional
physically-based rendering is time-consuming and imprac-
tical for real-time applications. Hu et al. [16], Schneider
and Westermann [35] studied real-time water surface ren-
dering. Bruneton et al. [4] accelerated the rendering with
high performance hardware and incorporated more sophis-
ticated lighting models, such as reflection, refraction, and
Fresnel terms. Podee et al. [3 1] approximated the reflection
direction distribution for the water surface as an elliptical
Gaussian distribution and integrated the reflection contri-
bution throughout the rendering interval time to avoid re-
flection aliasing and flickering. While these methods use
a pipeline to render images, they do not meet the require-
ment of differentiability. Hence, we would like to combine
differentiable renderings with sophisticated lighting ocean
rendering to realize our differentiable ocean renderer.

2.2. Differentiable Rendering

Differentiable rendering differentiates the rendering op-
eration, allowing it to be utilized to optimize parameters or
reconstruct scenes from observations. Existing approaches
can be roughly divided into two categories: mesh rasteri-
zation based rendering and ray tracer-based rendering. For
example, OpenDR [23], DiRT [14], and Neural Mesh Ren-
derer (NMR) [ 18] manually defined approximated gradients
of the rendering operation to alter the position of the face.
In contrast, SoftRasterizer [22] and DIB-R [5] redefined the
rasterization as a continuous and differentiable function, al-
lowing gradients to be computed automatically. Forrester et
al. [6] first sampled the surface using non-differentiable



rasterization, then applied differentiable, depth-aware point
splatting to produce the final image. For ray tracer-based
or volume-based differentiable rendering, Li ez al. [21] rep-
resented each 3D point as a multivariate Gaussian and per-
formed occlusion reasoning with grid discretization and ray
tracing. Such methods require an explicit volume to per-
form occlusion reasoning. Mitsuba 2 [27] are proposed by
developing differentiable rendering for implicit surface rep-
resentations with a focus on reconstructing rigid objects. In-
spired by them, we aim to adopt the SoftRasterizer method
to make our ocean rendering model differentiable due to the
ocean surface represented by mesh.

2.3. 3D Reconstruction

The last few years have clearly shown the effectiveness
of neural networks for 2D and 3D reasoning [8, 10]. At first,
most 3D reconstruction methods rely on supervised train-
ing methods and costly annotations, which makes it chal-
lenging to collect all properties of 3D observations. Xie et
al. [40] reconstructed ocean surface normal by an image-to-
image translation network to cycle translate images and 2D
surface normal maps. Recently, there has been a surge in
efforts to integrate graphics rendering processes into neu-
ral network pipelines. Specifically, the common 3D self-
supervision pipeline is applied by integrating the rendering
layer to the predicted scene parameters, then applying the
loss by comparing the rendered and input image in various
ways. Liu ef al. in SoftRasterizer method and Chen et al. in
DIB-R method predicted the mesh of objects by using dif-
ferentiable rendering. Li et al. [21] and Nimier-David et
al. [27] reconstructed the volume of objects by combin-
ing ray tracer-based DR. More researches are being con-
ducted in a variety of applications, such as image-based
training of 3D object reconstruction [38], human pose es-
timation [28], hand pose estimation [2], and face recon-
struction. NeRF [25] reconstructed a 3D geometry model
using an implicit representation. For fluid reconstruction,
Thapa et al. [37] reconstructed the dynamic fluid surface us-
ing a deep neural network and a differentiable renderer that
renders the refractive distortion of an underwater reference
background image. Li et al. [20] inversely modeled the gas
parameters and reconstructed high-resolution scenes. Qiu et
al. [33] used a conditional generative model to rapidly re-
construct the temporal density and velocity fields of gaseous
phenomena based on the sequence of two projection views.
Inspired by them, we will reconstruct the ocean surface us-
ing DR-based deep learning networks, whereas we antic-
ipate surface normal and roughness simultaneously based
on ocean surface characteristics.

3. Algorithmic Overview

The goal of our method is to reconstruct dynamic ocean
models from videos for prediction or re-editing. Because

the dynamic ocean is propelled by a sequence of waves that
comprise the ocean wave spectrum, we estimate the com-
ponent waves from the original data for dynamic ocean re-
construction. However, direct estimation is not feasible.
Due to the causality between surface geometry and com-
ponent waves, we adopt a two-step framework, first recon-
structing the geometry of the ocean surface and then esti-
mating wave parameters. In a wave spectrum, the wave-
lengths vary from a few millimeters to several hundred me-
ters, and their frequencies also change accordingly. Some
high-amplitude waves affect surface displacement, while
very small-amplitude waves have a negligible impact on the
surface displacement, which is with respect to the viewing
distance. Some waves with high and middle amplitude have
an impact on the macrosurface normal. While some minor
waves affect the roughness of the microfacet. Thus, we re-
construct ocean surface geometry at two explicit and im-
plicit levels, the normal of the macrosurface as well as the
roughness of the microfacet, and estimate the whole compo-
nent wave trains based on the two-layer geometry. Overall,
to make realistic and vivid animations of the ocean surface,
we need to recover accurate 3D geometry, including normal
and roughness, and estimate implicit geometry representa-
tion, i.e., the component wave parameters.

Given a sequence of monocular images I;,,, we use two
encoder-decoder neural networks to reconstruct the ocean
hierarchical geometry G, from each image I;. The hierar-
chical geometry includes its surface normal /V; and rough-
ness R, corresponding to the two sub-networks, respec-
tively. Thus, we can acquire a sequence of ocean geome-
try Gy,,. Moreover, we use a Multilayer Perceptron (MLP)
network to estimate the wave trains from these geometric
sequences. Each wave is represented by a set of param-
eters, including the amplitude h;, the angular frequency
w;, and the wave direction ;. Ocean rendering can be
regarded as the inverse of geometry reconstruction, while
ocean modeling by superposing several wave trains to gen-
erate the geometry is the inverse of component wave es-
timation. Hence, we train our networks for geometry re-
construction and wave estimation using a differentiable ren-
derer and a differentiable ocean model as loss functions in a
self-supervised way. In other words, we extract the hierar-
chical geometry from the image, then render it with known
extrinsic variables into a new image I, and ensure consis-
tency between I, and the input image [;. Similarly, we es-
timate wave parameters using an MLP network and synthe-
size a time series of surface geometry using a differentiable
ocean model. Then, we measure the consistency of the gen-
erated and the input geometry of the MLP network. The
procedure is overviewed in Figure 1. The data generated by
networks is marked by "to distinguish it from ground truth,
which is omitted without ambiguity.



4. Dynamic Ocean Inverse Modeling
4.1. Differentiable Ocean Model

Ocean surface motion is the superposition of numerous
wave trains of different amplitudes, frequencies, directions,
and chaotic phases. Each wave can be modeled by the Ger-
stner wave (trochoid), which is originally proposed by solv-
ing Euler fluid equations for gravity waves in deep water. In
mathematics, the trochoid is the trajectory curve of a fixed
point on the radius of a circle as the circle rolls down a
specified line, as shown in Figure 2 (top). In this study, we
model ocean surface waves using the extended 3D trochoid,
as shown in Figure 3. And the trochoid equation in three
dimensions is:

x hcosfsin (wt — k - X)
p(z,y,t) = [ Yy ] + [ hsinfsin (wt —k-X) |, (1)
0 hcos (wt — k- X)

where the displacement p in the plane coordinate of point
X at time ¢ is computed by the function p(z,y,t), and
X = [ *

Y
are the wave parameters involving amplitude, angular fre-
quency, wave vector and wave direction, respectively. Ac-
tually, there is a certain internal relationship between these
parameters, i.e., wave vector k = [k cos 8, ksin 6], and the
wave number k = w?/g. Therefore, we simplify the wave
parameters from {h,w,k, 0} to {h,w, 6}, which can deter-
mine a trochoid shape of ocean waves.

The regular pattern of the infinite constituent wave trains
is studied in oceanography by summarizing the observed
real ocean into a mathematical distribution. Different em-
pirical wave spectrums are modeled for different ocean
scenes, such as Pierson-Moskowitz spectrum and Jonswap
spectrum [12], as shown in Figure 4. The general spectrum
formula is:

is the ocean surface at rest. h,w,k, and 6

2
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where, «, 5, 0,7y, and wy are parameters that determine the
wave spectrum. When v = 1, the formula is the Pierson-
Moskowitz spectrum, otherwise it is the Jonswap spectrum.
The amplitude of waves h is positively correlated with v/S.
Here, we simulate the ocean surface using the two spec-
trums, which reflect the hidden patterns of different com-
ponent waves when wind speed is less than 25 km/h and
the surface of the ocean does not produce whitecaps. Al-
though various customized ocean spectrums may be utilized
for specific phenomena, the two spectrums can handle the
majority of wave instances and are rather efficient.

We simulate the ocean surface with discrete wave spec-
trums, where we sample N wave trains from the spectrum
and express the parameter set of each wave as {h;,w;, 0;}.
Then, we superimpose these surface waves. Actually, the
details of surface geometry in ocean images are propor-
tional to the viewing distance. Waves with wavelengths
longer than the distance of the pixel can impact the macro-
surface. Waves with a wavelength less than the distance of
the pixel, such as at sub-pixel level, not only have no effect
on surface height but also cause signal aliasing. In con-
trast, the sub-pixel wave affects the microfacet rather than
the macrosurface. Therefore, we employ a Nyquist filter to
calculate the weight of each wave being used, as shown in
Figure 2(b). The blue line represents the weight to filter
the long wave that affects displacement. The red line rep-
resents the weight to filter the middle and long waves that
affect the normal of the macrosurface. And the green line
represents the weight to filter the short wave that affects the
roughness of the macrosurface. More details can be found
in the Bruneton’s work. Hence, we superpose the waves to
generate hierarchical ocean geometry with the weight of the
Nyquist filter.
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Figure 2. (a): 2D trochoid Waves formed by the trajectory curve
of a fixed point on the radius of a circle as the circle rolls along a
given line. The wave travels along the x-axis. The wave number
is k = w?/g. The wavelength is A\ = 27/k. The wave speed is
Vp = w/k. The parameters, amplitude h and angular frequency
w, determine the shape of a trochoid for ocean waves; (b): The
weight for three wave hierarchies using the Nyquist filter.
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Figure 3. 3D trochoid waves. The wave propagates in the direction
of the wave vector Kk in the x-y plane. 6 denotes the angle between
the vector k and the x-axis. k = [k cos 0, k sin 0], where k is the
wave number. The parameters, amplitude h, angular frequency w,
and wave direction 6, determine the shape of a Gerstner surface

wave.

The wave spectrum determines the characteristics of the
ocean surface. As a result, given a sequence of surface ge-
ometry, constituent waves can be deduced, similar to the
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Figure 4. The ocean wave spectrum. It depicts the hidden pat-
terns of various component waves in various scenes. The main
wave spectrums include Pierson-Moskowitz spectrum and Jon-
swap spectrum.

wave spectrum estimation, which is the inverse of ocean
surface modeling. In our framework, we use the model not
only to simulate ocean datasets but also to estimate con-
stituent waves by making the model differentiable, as de-
scribed in Section 4.4.

4.2. Differentiable Ocean Rendering

The most recent ocean animation study portrays the
ocean surface using hierarchical geometry, including dis-
placement, surface normal, and roughness, which achieves
good performances in both geometry simulation and realis-
tic rendering. We adopt the three hierarchical models for
ocean geometry to maintain more details on the surface.
Specifically, we model the surface using a triangle mesh
that is driven by large waves at the grid level for geome-
try deformation. Then, project and interpolate the grid into
image space. For more details, we add more middle waves
at the pixel level to the normal computed using the trian-
gle mesh. Besides, the roughness of the microfacet in each
pixel is estimated by measuring the slope variance of these
little waves. The image can be rendered using the normal
and roughness values for each pixel. When implementing
the algorithm, instead of rasterizing in a traditional render-
ing pipeline, we use the SoftRas method in [22], i.e., a con-
tinuous and differentiable rasterization function. Accord-
ing to the preceding description, the computation of the en-
tire hierarchical geometry can be completed. We consider
the reflected light from the sun and sky dome, as well as
the refracted light from the water. Overall, we compute
displacements to alter the geometry and compute normals
and roughness to render images by our differentiable ocean
renderer under certain lighting conditions. The renderer is
used to both generate the realistic images as a dataset and
to be the loss to optimize the related networks. Given an
ocean image and its corresponding geometry, the differen-
tiable renderer can also be used to fit the camera and lighting
information of the image by iterative optimization.

4.3. Geometry Reconstruction Network

Because the normal and roughness of the ocean surface
are closely related to the ocean image during the rendering,
we reconstruct them from the ocean photographs by merg-
ing a deep learning network with differentiable rendering.
Specifically, given a single color image I, as input, we use
two Res-Net neural networks [13], sub-netl and sub-net2,
to reconstruct the ocean hierarchical geometry G, includ-
ing surface normal N; and roughness R;. Then, a differ-
entiable renderer is applied to render a new image I, by
inputting the normal Ny, the roughness R;, and extrinsic
variables. We also calculate the difference between the new
re-rendered image I, and the input image I;. Due to the dif-
ferentiability of our ocean renderer, the error gradient can
be propagated back to the network parameters to optimize
the networks. The loss function is defined as:

Limage = By, [T — Lill2]. 3)

The normal map is a dense field with numerous details.
In contrast, the roughness map has a relatively low fre-
quency. And for the synthetic data, the real normal and
roughness can be captured easily. Hence, we use a spatial
discriminator D,, and a spatial discriminator D, for surface
normal and roughness to enforce that the inferred data spa-
tial distribution is similar to the real data. We also use a
temporal discriminator Dy,, and Dy, to maintain temporal
coherence. The spatial discriminators and the temporal dis-
criminator reference the method [41]. As a result, the over-
all loss is defined as:

LTotal :aLI'mage + ﬁlLDn + /BQLDT'+

€]
N Lpin +v2LDtr,

where, «, 1, 32,71 and 7, are the weights of each part.
Lpn, Lps, Lptn, Lpts are the losses of the corresponding
discriminators. In our experiment, we use the synthetic data
and the total loss function to train the networks.

4.4. Wave Parameters Estimation Network

To reconstruct a dynamic ocean, we need to estimate
the constituent waves from real-world images and videos.
In the previous section, we reconstructed ocean geometry
from images, including normal and roughness. The goal of
this section is to estimate the parameters of various con-
stituent waves based on the time sequence of the recon-
structed ocean geometry. We use a UNet [34] to extract
features from the series of geometries, and use an MLP net-
work to extract wave parameters from these features. Dur-
ing training, we use our differentiable ocean model to gen-
erate a series of new geometries based on the extracted wave
parameters and measure the consistency of the new geom-
etry with the input. A cosine similarity loss is applied for



normal vector and an MSE loss is used for roughness. The
formula for the cosine similarity loss function is:

Leos = Ey, 5, [(1 = cos(Ng, Ny))]. )
The formula of Ly for roughness is defined as:
Ly =Ep g [I1R: — Rella)- ©6)

The total loss function for our wave estimation network
includes two terms above, which is defined as:

Lgeom = als + /BLCOS7 (7N
where « and (3 are the weights of each part.

5. Experiments
5.1. Data Preparation and Network Training

We generate the dataset with our differentiable ocean
modeling and ocean rendering algorithms, which are imple-
mented in Taichi (https://taichi.graphics/) framework due to
its automatic differentiation feature. Our dataset includes
ocean image sequences, normal, roughness, and wave pa-
rameters, as well as camera position and lighting conditions.
To ensure sufficient variation in physical motions and dy-
namics, we randomly sample the wave trains from various
wave spectrums and use a random camera and lighting se-
tups. For our dataset, we generate 2,000 scenes with dif-
ferent initial conditions and each scene includes 10 frames.
In order to test the generalization ability to new scenes that
did not appear in the training set, we randomly selected 200
completed scenes as the test set. To monitor model over-
fitting to determine the number of training epochs, we ran-
domly divided the rest of the fragments into a training set
and a validation set in a ratio of 9:1.

Our networks are implemented in Python 3.8 with Py-
Torch 1.11.0, and the differentiable ocean model and dif-
ferentiable renderer are written in the Taichi framework.
Our networks are optimized using Adam with ¢ = le — 8§,
B1 = 0.9 and B3 = 0.999 on a single NVIDIA GeForce
RTX 2080 SUPER GPU. We split the training process into
two phases. Sub-netl and sub-net2 are trained together with
loss function Lp,q; for 200 epochs, We alternately train the
four auxiliary discriminators and the generator, like typical
GANS training [9]. The wave parameter estimation network
is then trained for 100 epochs using the loss function Lgeom
on data generated by sub-netl and sub-net2.

5.2. Results and Evaluations

Geometry Reconstruction. We evaluate our network
sub-netl and sub-net2 of ocean geometry reconstruction on
the testset. They are exhibited in Figure 5, including the
input original image I;, our reconstructed normal N, and

roughness Ry, and the re-rendered image I, based on our re-
constructed results. Besides, ground truths and error maps
are also provided. It can be seen that the reconstructed nor-
mal and roughness are close to the ground truth, and the re-
rendered image is also comparable to the input image. The
given error maps show that both our reconstructed results
and the re-rendered image have low errors. Furthermore,
we quantitatively evaluate our generated results using dif-
ferent error metrics. The quantitative evaluation results are
shown in the first line of Table 1. We use the mean absolute
error (MAE) for the normal in spherical coordinates, the co-
sine similarity (CosSim) for the normal in Cartesian coor-
dinates, and the mean square error (MSE) for the roughness
and MSE for the image. These error values are at a very
low level. In addition, we calculate the percentage of er-
ror angle between our normal and ground truth within each
range. The error angle within 10° is up to 78%, and more
than 90% of normal is within 15°. We also compare our
method to other variants that use UNet [34] or ResNet, and
use different forms of normals as output (i.e., 3D vector in
Cartesian coordinate or 2D in spherical coordinate). Their
quantitative evaluation results are shown in Table 1. In com-
parison, we find that our framework using ResNet and the
output form of 3D normal is the top performer.

Our network sub-netl uses a ResNet for normal recon-
struction, similar to the surface reconstruction network in
the method [40], which combines surface reconstruction
network with a neural rendering network for adversarial
training. While we train our network using a differentiable
renderer as a loss function. In addition, we add another
structure for the roughness reconstruction of microfacets.
Thanks to these improvements, the reconstruction result is
significantly improved, and our framework supports more
complicated re-editing such as varying camera position and
varying lighting. The comparison is shown in Figure 6.

Wave Parameters Estimation. We test our wave pa-
rameter estimation network on the testset, and the results are
shown in Figure 7. The results include 60 waves, each with
three parameters, namely {h;,w;,0;}. The left in Figure 7
shows the amplitudes of 60 waves, the middle is the angu-
lar frequency, and the right is 6 representing wave spreading
direction. In the left figure, the amplitudes in green are pre-
dicted by our network, while the amplitudes in blue are cor-
rected by the wave spectrum, i.e., enforcing the frequency
of component waves to fit the spectrum distribution and en-
forcing the frequency and amplitudes to be negatively corre-
lated using Equation 2. The corrected results achieve better
performances. Table 2 illustrates the quantitative evaluation
for estimated parameters. We use the MAE and the MSE
to measure the distance between estimated parameters and
ground truth, both of which have low values. As shown in
Figure 8, we compare the final synthesized geometry based
on our estimated component waves to the geometry directly



Table 1. Quantitative comparisons of our results with ground truth

Method Roughness  Image Normal Error Angle of Normal
MSE MSE  MAE-SpereN CosSim-VecN  Within 5°  Within 10°  Within15°
ResNet-VecN 0.0170 0.0161 0.1667 0.0113 38.12% 78.19% 93.38%
ResNet-SpereN 0.0169 0.0181 0.2394 0.0141 30.03% 70.57% 90.19%
UNet-VecN 0.0187 0.0331 0.2912 0.0323 27.76% 68.35% 87.98%
(a) Image (b) Roughness (¢) Normal (a) Ground-truth Normal (b) Predicted Normal by () predicted Normal by Our Network

Ground Truth

Our results

Error

Figure 5. The results of generated geometry. Top: the input im-
age and the ground truths of roughness and normal; Middle: Our
re-rendered image and our reconstructed results of roughness and
normal; Bottom: the error maps between our results and ground
truths. Each column shows images, roughness and normal maps.
Three normal components are mapped to the RGB color compo-
nents.

reconstructed by our first-step networks, i.e., the intermedi-
ate results as well as the second step input. Both the nor-
mal and the roughness are extremely analogous. In some
small areas, our final results maintain more details while
the generated result by the network is fuzzy, as shown in
the close-up of the normal. More results are illustrated in
the supplementary video. The estimated wave parameters
can be applied to synthesize new scenes that are property-
consistent with the source ocean video.

6. Applications

Image-based Parameter Fitting. Our framework can
extract imaging parameters from observed images, such as
illumination, camera positions, and sea colors. First, the
surface normal and roughness can be reconstructed using
the methods described above. Then the lighting parameters
can be optimized iteratively by the differentiable renderer.
In other words, we use our ocean renderer to generate a new
image with the reconstructed normal, roughness, and a se-
ries of initial parameters, then match the rendered results
with the input original image. Due to our renderer’s dif-

(e) Image by Neural rendering

(d) Input Image (f) Image by Our Diff Rendering

in the Compared method

Figure 6. Comparisons of normal reconstruction and image re-
rendering. Left: the input image (bottom) and the ground-truth
normal(top); Middle: the reconstructed normal and re-rendered
image by the compared method; Right: our reconstructed normal
and re-rendered image. Our results are cleaner than the compared
method because of using the differentiable renderer instead of neu-
ral rendering and reconstructing microfacets simultaneously.

ferentiability, the gradient of the lighting parameters can be
calculated using gradient propagation. Thus, the parameters
can be optimized incrementally. The lighting parameters in-
clude the color of sky light, the color of Sun light and the
direction of Sun light. The optimization is run for 400 iter-
ations using Adam. We show the convergence plot of loss
and various parameters during iterations in Figure 9. The
loss has been reduced to 1le — 6 and all the optimized pa-
rameters have converged to their ground truths. To be more
intuitive, we compare the rendered images with the fitted
parameters and the random initial parameters to the ground
truth. The results are given in Figure 10. The extracted
imaging parameters can be used for ocean-style transfer
and rendering homologous scenes. Our final experiments
of ocean re-rendering in Figure 14(c) are based on the esti-
mated illumination, camera positions, and sea colors by this
method.

Geometry-based Wave Parameters Fitting. In the
above framework, we use the network to estimate the pa-
rameters of component waves, which uses a differentiable
ocean surface model as the loss to train the network. In ad-
dition, the parameters of component waves can also be esti-
mated via iterative optimization by the differentiable ocean



Amplitude Angular Frequency Wave Spreading Direction

—e—The Estimated Amplitude —e— The Estimatied Spreading Direction

—e—The Estimated Angular Frequency

—e—The Corrected Amplitude 60 —+—The Ground-truth Angular Frequency 25 —— The Ground-truth Spreading Direction

~—+—The Ground-truth Amplitude

Figure 7. Results of parameter estimation. Left: the amplitude of each wave. The parameters in green are predicted by the network, while
the amplitudes in blue are corrected by the wave spectrum, which achieves better performance. Middle: our estimated angular frequencies
versus the ground truth. Right: our estimated 6 against the ground truth. The estimated parameters (in blue) are close to the ground truth
(in yellow).

Table 2. Quantitative measurements of estimated wave parameters against the ground truth
Method Amplitude Angular Frequency Spreading Direction
MSE 0.00004 0.03522 0.08431
MAE 0.00518 0.13100 0.22691

Close-up
Normal

Normal

Roughness]

Generated by networks Our Final Results Ground Truths

Figure 8. Comparisons of the geometry directly reconstructed by
the network with the geometry synthesized based on the estimated
wave parameters. They are extremely similar. In some parts, the

former are blurry while our final results maintain more details.

model. Specifically, the hierarchical geometry is modeled
with a set of randomly initialized waves, which are then
matched to the real geometry to optimize the wave parame-
ters. Thanks to the differentiable ocean modeling approach,
our fitted geometry can converge towards the ground truths,
as shown in Figure 11. Figure 12 shows the parameter opti-
mization of four waves.

Animation Prediction and Ocean Scene Re-editing.
We can reconstruct and forecast the dynamic ocean using
our framework, which includes component wave param-
eter estimation, ocean surface advection, and ocean ren-
dering and re-editing depending on the predicted parame-
ters. Figure 13 shows the reconstructed and predicted ocean
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Figure 9. Convergence of lighting parameters. (a): the logarithmic
error with the number of iterations. (b-d): the color of sunlight,
the color of sky light, and the direction of sunlight, respectively.
The parameters (in dark colors) converge to the ground truths (in
light colors) after several iterations.

based on estimated wave parameters. The predicted dy-
namic ocean is realistic, and our model-driven technique
can forecast ocean animation over a long period of time with
minimal error. Moreover, our framework supports scene re-
editing, including changing camera and lighting parameters.
Figure 15 shows an example of re-editing the scene on syn-
thetic data. (a) is the re-simulated results with the lighting
Dsun = [1.0,—1.5] and camera ¢f = 1.5,ch = 10. (b)
and (c) are the re-edited scenes with changed camera pa-
rameters, and (d) has the changed lighting parameters.

We also apply our framework to real-world ocean sce-
narios. Figure 14 displays the reconstructed ocean and re-
edited scenes with varying ambient lighting. The recon-
structed images in (c) are based on the reconstructed nor-



Lsun = [90.62, 80.66, 59.86]
Esky = [ 2.85, 5.62,10.90]
Dsun= [1.40, 0.90]

Lsun= [70.63, 70.66, 29.86]
Esky = [0.85, 0.62, 0.91]
Dsun= [0.80, 1.50]

Lsun= [89.80, 79.97, 59.52]
Esky=[2.35, 5.55, 10.79]
Dsun=[1.399, 0.899]

Al Loss=1.76E-06

(a) Ground Truths (b) Initial Random Parameters  (c) The Estimated Parameters

Figure 10. The results of lighting reasoning. From left to right: the
rendered images with ground truth lighting, random initial light-
ing, and the estimated lighting, respectively. The value of each
parameter is displayed above each image. The images rendered by
our predicted lighting and the ground truths are visually indistin-
guishable. The error is six orders of magnitude negative.
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Figure 11. Optimization of wave parameters. The loss gradually
converges to zero after several iterations.
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Figure 12. Optimization of wave parameters. Each figure shows
a plot of the fitted wave parameters for four waves (lines in dark
color) over the number of iterations. Our results converge to their
ground-truth wave parameters (lines in a light color) gradually.
Each wave includes four parameters of amplitude, angular fre-
quency, wave vector in x direction, and wave vector in y direction.

mals in (b) and the estimated illumination, camera posi-
tions, and sea colors by our method. The small error in
(d) between our reconstructed images and the input images
illustrates the effectiveness of our framework for both re-
constructing geometry and estimating imaging parameters.

The re-editing scene in (e) demonstrates our framework pro-
vides the possibility to create more novel scenes with vary-
ing lighting. Furthermore, we show another example of re-
editing scenes with varying camera parameters in Figure 16
for this real scene. Our method can replicate the ocean mo-
tion trends while generating more diverse scenery. More re-
sults of ocean dynamic inverse modding and re-editing are
shown in the supplemental video.

Limitations. Our networks for reconstructing geome-
try have high generality for ocean scenes, while our pro-
posed model is based on the deep water waves model of
Pierson-Moskowitz spectrum and Jonswap spectrum, which
are good at deep water waves but can hardly work for the
coasts and shores. Hence, our algorithm shares the spec-
trum’s constraints. That is to say, restricted by the wave
model, the network for wave estimation can only cover
calm deep oceans. For more complicated scenes, e.g. rough
oceans or large-scale interactions between the ocean and
solid objects immersed or floating in it, the wave spectrum
cannot be estimated. Furthermore, the scenes do not con-
tain whitecaps, which develop when wind speeds exceed 25
km/h. There is a reason to assume that the reconstruction
of ocean scenes with whitecaps can be implied using the
same framework with different renderers and ocean spec-
trums. Furthermore, our experiments rely on the synthesis
data, and future work will include capturing ocean images
and working with real data. We did not consider shadowing
cases because, for distant views, its effects are already taken
into account in the Ross BRDF in our renderer. Although
we did not specifically consider self-shadowing for close
views, if such scenes exist in our dataset, our data-driven
model can learn how to deal with them automatically.

which mentioned that self-shadowing or shadowing from
other objects can be provided with a shadow map for close
views, which for distance views its effects are already taken
into account in the Ross BRDF. In our dataset, we did
not consider shadowing cases. If these scenes exist in our
dataset, our data-driven model can be automatically learned
how to deal with it.

7. Discussion and Conclusion

To reproduce a dynamic ocean based on real ocean video
in a virtual environment, this study has detailed a revolu-
tionary ocean inverse modeling method from images that
takes advantage of deep learning, differentiable rendering,
and differentiable ocean model. To drive the ocean mo-
tion, we not only reconstruct the ocean surface hierarchi-
cal geometry from images but also estimate the component
waves of the surface geometry. Specifically, we design two
sub-networks to extract the normal of the macrosurface and
the roughness of the microfacet and train them in a self-
supervised manner with a differentiable ocean renderer as a
loss function. Afterward, we use an MLP network to esti-



Our Predicted Image Ground-truth Image Our Predicted Normal Ground-truth Normal Our Predicted G d-truth
—— .

Frame=0

Frame=100

Frame=500

Figure 13. Reconstruction and prediction of the ocean. The first two columns are our predicted and ground-truth images. The middle two
columns display our predicted normal maps and ground truths. The last two columns show our predicted roughness and ground truths. We
show the results at frames 0, 100, and 500, respectively.

(a) Input Image

(b) Predicted Normal

(¢) Reconstructed Image

(d) Image error

(e) Ambient Light

(f) Re-editing scenes

Figure 14. Real scene reconstruction and re-editing. From top to bottom: the captured real scenes, reconstructed normal, reconstructed
scenes, image error, reference ambient light and the novel synthetic scenes by re-editing using corresponding light. We show the results at
frames 100, 200, 300, and 400, respectively.



(d) Re-edited Scenes
[=300,c6=1.5,cl=10]
Dsun=[1.4, -1.0]

(a) Re-simulated Scenes  (b) Re-edited Scenes
[#30,c8-1.5,ch=10,L1,] [1=70,c0=0,ch=
Dsun=[1.0, -1.5]

(¢) Re-edited Scenes
3

Rendered
images

Figure 15. Re-editing the scene by changing imaging parameters,
including the camera view cf, camera height ch, and direction
of sunlight Dsun. (a): the re-simulated scene at ¢ = 30 with
¢ = 1.5,ch =10, Dsun = [1.0, —1.5]; (b): the re-edited scene
at t = 70 with ¢ = 0,ch = 10; (c): the re-edited scene at
t = 120 with ¢ = 0, ch = 8; (d): the re-edited scene at t = 300
with Dsun = [1.4,—1.0].

Re-simulated Scenes Re-edited Scenes Re-edited Scenes
with ch=15 with ch=10 with ch=5

Rendered
images

Figure 16. Re-editing the real scene by changing camera parame-
ters. From left to right: the camera height decreases, i.e., from the
initial value ch = 15 to the re-edited value ch = 10 and ch = 5.

mate component wave parameters from a sequence of hier-
archical geometry, using the differentiable ocean model as
a loss function. The dynamic ocean can be reconstructed
and forecasted by using approximated waves. Besides, the
ocean scenes can be re-edited flexibly, such as by trans-
ferring illumination and varying views. Our differentiable
renderer and ocean model can be used individually to fit
the lighting parameters from images or fit wave parame-
ters from geometry sequence. The experiment results have
proved that our framework has exhibited effectiveness and
usability for dynamic ocean reconstruction.

It would be worthwhile to investigate whether our strat-
egy may be extended to more general applications. More-
over, we intend to explore a novel method by combining
other sophisticated models, such as shallow water equa-
tions or differentiable physical fluid simulation, to recon-
struct more scenarios in the future.
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