
Efficient Collision Detection using Hybrid Medial Axis Transform and BVH for
Rigid Body Simulation

Xingxin Li 1,2 Junfeng Yao 1,2 * Rongzhou Zhou 1,2 Qingqi Hong 1,2

1Xiamen University, China
2Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage

of Fujian and Taiwan Ministry of Culture and Tourism

Abstract

Medial Axis Transform(MAT) has been recently
adopted as the acceleration structure of broad-phase
collision detection. Compared to traditional BVH-
based methods, MAT can provide a high-fidelity vol-
umetric approximation of 3D complex objects, result-
ing in higher collision culling efficiency. However, due
to MAT’s non-hierarchical structure, it may be out-
performed in collision-light scenarios because several
cullings at the top level of a BVH may take a large num-
ber of cullings with MAT. We propose a collision detec-
tion method that combines MAT and BVH to address
the above problem. Our technique efficiently culls col-
lisions between dynamic and static objects. Experimen-
tal results show that our method has higher culling effi-
ciency than pure BVH or MAT methods.

Keywords: Collision detection, Physical simulation.

1. Introduction

Most physically-based animations have to efficiently
handle collision problems to prevent visual artifacts like
penetration or overlap between 3D meshes. For both real-
time and offline simulators, collision detection(CD) is their
major performance bottleneck. Especially in scenes where
objects generally have tens of thousands or even hundreds
of thousands of triangle primitives, it is infeasible to per-
form pair-wise primitive overlapping tests in a brute-force
way. A large research effort has been invested in speeding
up collision detection by culling out non-colliding primi-
tives. These collision culling algorithms can be classified
into broad-phase culling techniques like Bounding Volume
Hierarchy(BVH) [2, 7], spatial subdivision [5], medial elas-
tics [11], and narrow-phase culling techniques like normal
cone [21, 23], orphan set [18], and representative trian-
gles [4, 19].

*Corresponding author: yao0010@xmu.edu.cn

Another factor that affects performance comes from the
type of collision detection algorithm chosen. To ensure
high efficiency, interactive applications often employ dis-
crete collision detection (DCD). However, it only detects
collisions at discrete moments, which often leads to prob-
lems of penetration or tunneling, which hinders its applica-
bility. In contrast, continuous collision detection [16, 3, 22]
is a more accurate alternative. CCD considers trajectories
of objects or primitives in a time interval by interpolation
and checks for the first collision event, including collision
time and location. The problem with CCD is that it is more
time-consuming and can fail due to float-point rounding er-
rors.

Inspired by Lan et al.’s [11] and Song et al.’s [17]
works, we present an efficient collision culling and detec-
tion method using medial axis transform and BVH in rigid
body simulation. For dynamic objects in the simulation,
we interpolate the bounding sphere along its moving trajec-
tory to obtain a medial cone and convert collision culling
between dynamic objects into cone-cone overlap tests. For
static objects, we use oriented bounding box(OBB) as leaf
primitive to build a BVH structure to ensure higher culling
efficiency. The overlapping test between a medial cone
and OBB is formulated as an intersection test between a
4D conic section and the parametric domain, which can
be solved following a similar routine of cone-cone col-
lision culling. For narrow phase collision detection, our
method simply performs pair-wise medial primitive level
CD instead of triangle level CD. Experiments show that our
method can produce realistic results in collision-rich scenes
at interactive speed and achieve higher performance than
traditional BVH methods.

2. Related Work

In this section, we briefly introduce the previous works
on continuous collision detection algorithms, including col-
lision culling, parallel collision detection, and collision han-
dling.

1



Collision culling is a critical process for existing colli-
sion detection algorithms because of limited computing re-
sources. BVH is a primarily adopted high-level culling al-
gorithm for CCD and DCD. Various types of bounding vol-
ume have been explored such as Axis-Aligned Bounding
Box (AABB) [2], Object-aligned Bounding Box (OBB) [6],
Bounding Sphere [7, 8], Boxtree [27], Spherical Shell [10],
etc. For deformable body simulation, these BVHs have to
be updated to satisfy shape changes in each frame. Many al-
gorithms are presented to quickly refit or reconstruct BVHs,
including linear time refitting [13], selective restructur-
ing [15, 26], and parallel reconstruction [14, 9]. Most Low-
level culling algorithms are designed for self-collision in
CCD by removing duplicate elementary tests based on con-
nectivity information of mesh. Orphan Sets [18] and Rep-
resentative Triangles [4, 19] are the low-level culling algo-
rithms for many CCD applications with self-collisions, es-
pecially for cloth simulation. Orphan Sets [18] precomputes
an orphan set from adjacent collision pairs and removes the
primitives among all adjacent pairs that are not in the orphan
sets. Representative Triangles [4, 19] assigns each primi-
tive to a unique triangle to guarantee no duplicate elemen-
tary test would be checked. Besides, many techniques han-
dle deformable objects by computing some bounds related
to deformation and using them for self-collision culling.
Barbič and James [1] computed self-collision culling cer-
tificates in subspace to accelerate self-collision culling.
Based on the observation that a self-collision occurs under
large local deformation, Zheng and James [28] proposed an
energy-based metric to improve the effectiveness of self-
collision culling. Wong et al. [24] proposed a technique that
accelerates continuous collision detection by performing ra-
dial view-based culling based on the skeleton structure, but
the skeleton needs to be precomputed and the overhead for
models undergoing topology changes can be high.

Elementary tests of CCD are performed by finding the
roots of a cubic polynomial equation, which is derived from
coplanar conditions. These elementary tests are typically
implemented using finite-precision or floating-point arith-
metic and use error tolerances, resulting in the tests being
prone to error, such as false negatives. Many exact cubic
solvers are proposed to avoid these errors, and there is an
excellent review of the topic [25] recommended to readers.
Brochu et al. [3] proposes an exact CCD algorithm by cal-
culating non-constructive predicates for parity of the num-
ber of collisions. Wang [22] performed forward error anal-
ysis to check the existence of exact vertex-triangle or edge-
edge intersection to reduce false positives. Tang et al. [20]
presented a geometrically exact CCD algorithm based on
the exact geometric computation paradigm to perform reli-
able Boolean collision queries.

Recently, Medial Axis Transform(MAT) has been intro-
duced as the acceleration structure of collision detection.

Medial elastics [11] is the first work to use MAT for colli-
sion detection, mainly proposing a semi-reduced projective
dynamics framework that seamlessly combines collision de-
tection and model reduction using MAT. On this basis, Song
et al. [17] proposed a continuous collision detection algo-
rithm at the medial primitive level for rigid body simula-
tion. It divides the higher-order problem of computing the
first time of contact between the medial primitives into find-
ing the nearest sphere pair between primitives and the CCD
problem of two moving spheres and solves it quickly in an
alternate iterative manner. Lan and colleagues give the me-
dial primitive level CCD problem analytic formulation and
a numerical solution in Medial-IPC[12].

3. MAT Preprocessing

Existing MAT approximation approaches generate me-
dial mesh with quite some degenerated cases which will
have a performance impact on subsequent collision detec-
tion method. In this section, we will cover the detailed al-
gorithm to detect and filter out these degenerated medial
primitives before using them.

3.1. Degenerated Medial Cone

The degenerated case of the medial cone is quite simple.
A medial cone C = {m1,m2} degenerates into a sphere if
and only if one medial sphere encapsulates the another, as
shown in Fig.1. This degeneration can be trivially identified
by checking whether the distance of 2 spheres’ centers plus
the smaller radius is less than the larger radius.

Figure 1: Degeneration of medial cone

3.2. Degenerated Medial Slab

Similar to medial cone, the main reason for the degenera-
tion of medial slab can be summarized as the severe overlap
of the volumes of medial spheres or cones. It can be cate-
gorized into the following two cases according to the cause
of degeneration.

• Case 1 Medial spheres overlapping. In this case, me-
dial sphere with maximum radius encapsulates one or
both other two spheres. Based on the number of en-
capsulated spheres, slab may become medial cone (1
sphere) or medial sphere (2 spheres).

• Case 2 Medial cones overlapping. As Fig.2 shows, the
conical surface of a medial cone divides the space into



two parts. If the smallest sphere falls into the internal
region, the slab will degenerate into cone.

Figure 2: Degeneration of medial slab Case 2
Detecting Case 1 is simply performing previous degen-

erated medial cone tests for each edge of a slab. On the
contrary, Case 2 is much more complicated, we will elabo-
rate on how to detect this type of degeneration.

Consider a medial slab S and let c1, c2, c3 be the cen-
ters of medial spheres at three vertices of S, whose radii
are r1, r2 and r3 respectively. Without loss of generality,
assume that r1 ≥ r2 ≥ r3. We use Γij to donate the
conical surface formed by medial sphere mi and mj . The
most intuitive way to detect whether sphere m3 falls in the
internal region is computing the surface distance between
m3 and Γ12. However, suffered from numerical errors, this
method will produce false positive or false negative errors.
To avoid these errors, the distance threshold needs to be ad-
justed specifically for some slabs, which means it is hard to
tune.

Let Ci
ij be the intersection circle of Γij and mi. we no-

tice that if m3 falls in the internal region, circle C1
12 and C1

13

will have at most one intersection point on m1, as shown in
Fig.3. With this key observation, the detection of Case 2
can be simplified to check the number of intersections of
C1

12 and C1
13.Computing the intersection point of the inter-

section circles can be converted into the calculation of the
intersection point of two conical surfaces.

Figure 3: Illustration of different cases of C1
12 and C1

13. The
intersection points are highlighted in red.

We take Γ1
12 and Γ1

13 as an example to show how to com-
pute their intersection point p. Fig.4 gives an illustration
of the computation process. Here, n⃗ represents the normal

vector of plane c1c2c3. cp is the projection point of p on
the plane. v12 and v13 are the vertical feet of cp on edge
c1c2 and c1c3 respectively. Since we can simply rotate n⃗ by
90 degrees around c1c2 with v12 as pivot to obtain v12cp,
cp can be calculated by performing an intersection test of
plane v13cpp and line v12cp. p can be calculated from cp
and n⃗ based on the geometric relationship. In the implemen-
tation, once we compute the intersection point p, checking
the existence of p is equivalent to checking whether p is
on sphere m1.If there is a point p not on m1, it means that
m3 falls in the internal region. After preprocessing, degen-
erated medial primitives will be simplified into spheres or
medial cones based on their degeneration types.

Figure 4: The computation process of intersection point of
conical surfaces Γ1

12 and Γ1
13.

4. Collision Culling

Since the simplified MAT can provide a high-fidelity vol-
umetric approximation of the original 3D shape with orders
of magnitude fewer primitives than triangle mesh, we use
it instead of triangle mesh in collision detection. Due to
MAT’s non-hierarchical structure, pair-wise medial primi-
tive intersection tests can be executed entirely in parallel on
the GPU. But it would be a waste of performance to perform
all tests indiscriminately for those time steps where no or
very few collisions occur. Especially as the number of ob-
jects increases, the simulation performance will get worse.

To avoid this problem, common implementations use a
two-phase approach: broad-phase and narrow-phase. In
broad-phase, collision tests are usually based on bounding
volume only to quickly prune away pairs of objects that do
not collide with each other and output the potential collid-
ing pairs. In our simulation framework, we use bounding
sphere and bounding box for dynamic objects and static ob-
jects respectively in broad-phase. Assume the trajectory is
linearized in each time step, bounding spheres at the initial
position and end position form a medial cone that has con-
stant radius variation, as shown in Fig.5. In this way, the
broad-phase collision detection between dynamic objects is
converted into a cone-cone intersection test. As both cones



have constant radius variation, the problem can be further
simplified. In particular, when the time step is large, the tra-
jectory can be approximated by a chain of medial cones in
the form of piece-wise interpolation, which is equivalent to
approximating curves with discrete linear segments.

Figure 5: Bounding medial cone(s) formed along trajectory

4.1. Cone-OBB collision culling

For static objects, we use BVH of OBBs in broad-phase
collision culling. Consider an oriented bounding box B de-
fined by a corner point o and orthogonal set of basis vectors
{û, v̂, ŵ} and a medial cone C. Let c1, c2 be the centers
of medial spheres at two vertices of C, whose radii are r1
and r2 respectively. On B, arbitrary point v can be defined
through trilinear interpolation as:

v = o+ ût1 + v̂t2 + ŵt3, t1, t2, t3 ∈ [0, 1]. (1)

The center c and radius r of an arbitrary sphere on C can be
defined though linear interpolation as:

c = t4c1 + (1− t4)c2, r = t4r1 + (1− t4)r2, 0 ≤ t4 ≤ 1.
(2)

The minimum surface distance between B and C can be for-
mulated as:

min f(t1, t2, t3, t4) = ∥v − c∥ − r =
√
S − (r1 − r2)

t4 − r2,
s.t. t1, t2, t3, t4 ∈ [0, 1].

(3)
where

S = At21 +Bt22 + Ct23 +Dt24 + Et1t2 + Ft1t3 +Gt1t4

+Ht2t3 + It2t4 + Jt3t4 +Kt1 + Lt2 +Mt3 +Nt4

+O,

A = ∥û∥2, B = ∥v̂∥2, C = ∥ŵ∥2, D = ∥c2 − c1∥2,
E = 2û · v̂, F = 2û · ŵ, G = 2û · (c2 − c1),

H = 2v̂ · ŵ, I = 2v̂ · (c2 − c1), J = 2ŵ · (c2 − c1),

K = 2û · (o− c2), L = 2v̂ · (o− c2),M = 2ŵ · (o− c2),

N = 2(c2 − c1) · (o− c2), O = ∥o− c2∥2.
(4)

Once f(t1, t2, t3, t4) is less or equal to zero, we know that B
and C do overlap. So, instead of the actual minimum value,
our only interest is if there exists at least one real solution
for f(t1, t2, t3, t4) = 0. Since both

√
S and r are positive,

f(t1, t2, t3, t4) = 0 is equivalent to:

g(t1, t2, t3, t4) = S − ((r1 − r2)t4 + r2)
2

= At21 +Bt22 + Ct3 + (D − (r1 − r2)
2)t24 + Et1t2

+ Ft1t3 +Gt1t4 +Ht2t3 + It2t4 + Jt3t4 +Kt1

+ Lt2 +Mt3 + (N − 2r2(r1 − r2))t4 +O − r22 = 0.
(5)

g(t1, t2, t3, t4) is essentially a quadratic function of
t1, t2, t3 and t4. Setting g(t1, t2, t3, t4) equal to zero de-
scribes a 4D conic section that divides the 4D space into
two regions. g = 0 will have at least one real solution if
and only if the conic section intersects with the parametric
domain which is a tesseract. By setting one or more pa-
rameters to 0 or 1, we can reduce the dimensionality of the
problem which eventually yields a quadratic equation. We
can verify if the quadratic equation has at least one solution
between 0 and 1 to secure the collision. If g = 0 does not
overlap with any boundary of the tesseract region, we still
need to check the situation when g = 0 is a 4D hyperellip-
soid that encloses the parametric domain. Specifically, if the
value of g at the center of the hyperellipsoid is negative, we
can secure the collision. In practice, if the dynamic object
remains static or only has rotational motion at the current
time step, C will degenerate into a sphere. For this case, we
can simply perform a sphere-OBB intersection test.

After broad-phase collision culling, we will perform me-
dial primitive level continuous collision detection on GPU
for pairs of objects that may collide.

4.2. Implementation Details

We approximate the 3D shape of MAT by a medial mesh
Ms. Each point Mi in Ms is denoted as a medial sphere and
is represented by a 4-dimensional point m = (c, r), where
c ∈ R3 is the center of the medial sphere and r is its radius.
The edges of Ms are represented by two medial spheres Mi

and Mj as eij = {Mi,Mj}. Similarly, the triangular faces
of Ms are denoted as fijk = {Mi,Mj ,Mk}. Each edge or
face of the medial mesh defines a simple composite volume
primitive. The envelope volume element obtained by lin-
ear interpolation of the medial spheres Mi and Mj , that is,
(1−t)Mi+tMj , t ∈ [0, 1], is called the medial cone, which
consists of two medial spheres and the cone surface they
form. The primitive given by the surface {Mi,Mj ,Mk} is
called the medial slab, which is obtained by linearly inter-
polating the three intermediate spheres Mi, Mj , and Mk,
that is,a1Mi + a2Mj + a3Mk, where ai(i = 1, 2, 3) >= 0,
a1 + a2 + a3 = 1, and it consists of three medial spheres,
three conic surfaces, and two triangles.

We store broad-phase bounding primitives and simpli-
fied MAT in a generalized medial mesh structure that con-
tains a list of medial spheres and a list of primitive indices.
The first index of each primitive is used to identify its type(-
2 for sphere, -1 for medial cone, and valid index for medial



slab). We add the bounding sphere at the end of the sphere
list and the corresponding indices at the start of the prim-
itive list for dynamic objects. For static objects, we reor-
ganize the basis vectors and corner point of its OBB into
three 4D vectors and store them at the end of sphere list,
and the indices of these vectors form a primitive. The de-
tailed structure is shown in Fig.6.

Figure 6: Structure of the generalized medial mesh.

5. Experimental Results

We implement our algorithm in python, using
Taichi(CUDA backend) for GPU parallel computation.
All experiments are run on a Windows desktop computer
with a 3.0GHz Intel Core i7-5960X CPU and an NVIDIA
RTX 2060S(8GB memory). We tested our framework on
a variety of complex models in collision-rich scenes. In
the preparation stage, the medial meshes of all models
used in the experiments are calculated and simplified using
Q-MAT. Then, we construct the broad-phase bounding
primitives and generate the generalized medial mesh for
each object. Tab.1 reports the detailed MAT and geometry
information for all models used in experiments.

Model # Tri. # MC # MS ϵ

Deer 16,932 100 42 2.02%
Cow 19,324 163 80 1.03%

Armadillo 86,382 210 116 1.21%
Bear 20,278 119 60 0.61%
Bug 17,276 61 17 0.47%

Dolphin 10,506 121 62 0.55%
Spider 22,098 56 7 0.71%
Bunny 69,630 201 125 1.10%

Dinosaur 30,000 318 170 0.78%
Torus 1,152 26 0 0.03%

Table 1: MATs and geometry information of models. # Tri
is the total number of triangle faces in the original mesh. #
MC and # MS represent the total number of medial cones
and slabs in the simplified medial mesh. ϵ records the one-
side Hausdorff distance error from the original surface to
MAT.

Culling performance Fig.7 shows a typical example,
where several deers and cows collide with some static stairs.
From Tab.1, if there is no broad-phase collision culling, we

need to perform about 330,000 times medial primitive level
CCD tests per frame. But in the vast majority of frames,

(a) MATs

(b) Broad-phase bounding prim-
itives

Figure 7: Structure of the generalized medial mesh.

these deer and cow models do not collide with each other,
so there is no need to perform all tests. In the particular
frame that Fig.7 shows, after collision culling, there are only
about 1,500 tests left, resulting in a significant performance
boost. Detailed time statistics are given in Fig.8. It is very
clear that after applying broad-phase collision culling, the
efficiency of collision culling and detection has been signif-
icantly improved.

Figure 8: Detailed time statistics of applying broad-phase
collision culling.
Comparison with BVHs To quantify the collision perfor-
mance, we compare our algorithm with BVHs of different
bounding primitives in several scenes. In Fig.9, a bunch
of models falls over a few glassy rods. Each rod’s medial
mesh contains only a single medial cone. The total number
of primitive pairs in this scene is about 2.1 million, which
means that brute force execution of all tests is exceedingly



time-consuming even on GPU(∼25ms). To quantify the
collision performance, we set the total number of leaves in
BVH to be the same as the number of medial primitives.
Fig.10(top) records the detailed time statistics of collision
detection with BVHs of different bounding primitives and
MAT. It is clear that MAT-based CC/CD is much more ef-
ficient than traditional BVHs. However, since we use the
medial cone as the broad-phase bounding primitive for dy-
namic objects, the collision culling efficiency between dy-
namic objects is similar to that of BVH of Bounding Sphere
but lower than that of BVH of OBB. The efficiency im-
provement of our method is mainly due to the fact that
the MAT does not contain tree-like data structures, and the
broad-phase collision culling only requires a modest num-
ber of cone-cone and cone-obb overlapping tests.

Figure 9: Nine different models fall over a few glassy rods.
The average times for collision culling and collision detec-
tion are 0.15 ms and 6.78ms, respectively.

More examples More examples are shown in Fig.11 with
per-frame time statistics in Fig.10. To quantify the colli-
sion performance, we also set the total number of leaves
in BVH to be the same as the number of medial primi-
tives. In Fig.11(top), a dinosaur model(in yellow) flies into
a group of objects at speed of 100m/s. Medial-primitive
level CCD can detect all those collisions without any pene-
tration or tunneling artifacts. Fig.11(bottom) shows an ar-
ray of 51 torus falls to the ground. Since the overall number
of primitive pairs in this scene is smaller than in the first
two scenes, the collision performance remains high even in
those collision-rich frames (100-110 frames) where culling
efficiency is very low.

6. Conclusion and Discussion

In this paper, we present a hybrid MAT and BVH method
for collision culling and detection in rigid body simulation.
For broad-phase collision culling, we use the medial cone as
the bounding primitive to enclose the trajectory of dynamic

Figure 10: From top to bottom: Detailed timing statistics
of MAT, OBB, and Bounding Sphere for scenes in Fig.9,
Fig.11(top) and Fig.11(bottom). The average CC/CD time
of MAT: 6.48ms,10.42ms,1.67ms;The average CC/CD time
of OBB: 16.76ms,27.81ms, 6.15ms;The average CC/CD
time of bounding sphere:27.76ms,41.75ms, 8.84ms.

objects and BVH of OBB for static objects to ensure high
culling efficiency. As each object’s bounding primitive is
combined with its input medial mesh, the broad-phase CC
and narrow-phase CD can be executed seamlessly on GPU.
Also, since we only construct the BVH of the static object,
there is no overhead of updating the BVH during the simu-
lation.

However, our hybrid MAT and BVH collision detection
method also have several limitations. For dynamic objects,
we directly use the bounding sphere along the object tra-
jectory to form a medial cone as the broad-phase bounding
primitive, which can only provide poor bounding quality.
Especially in those collision-rich animations, low bound-
ing quality results in low culling efficiency, which in turn
leads to an increase in the number of CCD tests that need
to be performed in the narrow phase. In the future, we
would like to try to generate hierarchical MAT to address
this limitation. Using multiple layers of MAT, collision
culling between dynamic objects can be done in the same
way as BVH, improving culling efficiency while maintain-
ing a modest number of overlapping tests.

7. Acknowledgment

The paper is supported by the Natural Science
Foundation of China (No. 62072388), Col-laborative
Project fund of Fuzhou-Xiamen-Quanzhou Innovation
Zone(No.3502ZCQXT202001),the industry guidance
project foundation of science tech-nology bureau of



Figure 11: Top: A dinosaur flies into a group of objects at
high speed. The total number of primitive pairs in this scene
is around 3.8 million. Bottom: An array of 51 torus falls
to the ground. Each torus only contains 26 medial cones,
resulting 66,300 primitive pairs in total.

Fujian province in 2020(No.2020H0047), the natural
science foundation of science technology bureau of Fujian
province in 2019 (No.2019J01601), the creation fund
project of science technology bureau of Fujian province
in 2019(No.2019C0021), and Fujian Sunshine Charity
Foundation.

References

[1] J. Barbiĉ and D. L. James. Subspace self-collision culling.
ACM Trans. Graph. (TOG), 29(4):81, 2010. 2

[2] G. v. d. Bergen. Efficient collision detection of complex de-
formable models using aabb trees. Journal of graphics tools,
2(4):1–13, 1997. 1, 2

[3] T. Brochu, E. Edwards, and R. Bridson. Efficient geomet-
rically exact continuous collision detection. ACM Transac-
tions on Graphics (TOG), 31(4):1–7, 2012. 1, 2

[4] S. Curtis, R. Tamstorf, and D. Manocha. Fast collision de-
tection for deformable models using representative-triangles.
In Proceedings of the 2008 Symposium on Interactive 3D
Graphics and Games, I3D ’08, page 61–69, New York, NY,
USA, 2008. Association for Computing Machinery. 1, 2

[5] M. de Berg, J. Comba, and L. J. Guibas. A segment-tree
based kinetic bsp. In Proceedings of the Seventeenth Annual
Symposium on Computational Geometry, SCG ’01, page
134–140, New York, NY, USA, 2001. Association for Com-
puting Machinery. 1

[6] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hi-
erarchical structure for rapid interference detection. In Com-
puter graphics and interactive techniques, pages 171–180.
ACM, 1996. 2

[7] P. M. Hubbard. Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Com-
puter Graphics, 1(3):218–230, 1995. 1, 2

[8] D. L. James and D. K. Pai. Bd-tree: output-sensitive colli-
sion detection for reduced deformable models. ACM Trans.
Graph. (TOG), 23(3):393–398, 2004. 2

[9] D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and
A. Kensler. Fast, effective bvh updates for animated scenes.
In Proceedings of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, I3D ’12, page 197–204,
New York, NY, USA, 2012. Association for Computing Ma-
chinery. 2

[10] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar.
Rapid and accurate contact determination between spline
models using shelltrees. In Computer Graphics Forum, vol-
ume 17, pages 315–326. Wiley Online Library, 1998. 2

[11] L. Lan, R. Luo, M. Fratarcangeli, W. Xu, H. Wang, X. Guo,
J. Yao, and Y. Yang. Medial elastics: Efficient and collision-
ready deformation via medial axis transform. ACM Transac-
tions on Graphics (TOG), 39(3):1–17, 2020. 1, 2

[12] L. Lan, Y. Yang, D. Kaufman, J. Yao, M. Li, and C. Jiang.
Medial ipc: Accelerated incremental potential contact with
medial elastics. ACM Trans. Graph., 40(4), jul 2021. 2

[13] T. Larsson and T. Akenine-Möller. A dynamic bounding vol-
ume hierarchy for generalized collision detection. Comput-
ers & Graphics, 30(3):450–459, 2006. 2

[14] C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and
D. Manocha. Fast bvh construction on gpus. Computer
Graphics Forum, 28(2):375–384, 2009. 2

[15] M. A. Otaduy, O. Chassot, D. Steinemann, and M. Gross.
Balanced hierarchies for collision detection between fractur-
ing objects. In 2007 IEEE Virtual Reality Conference, pages
83–90, 2007. 2

[16] X. Provot. Collision and self-collision handling in cloth
model dedicated to design garments. In D. Thalmann and
M. van de Panne, editors, Computer Animation and Simu-
lation ’97, pages 177–189, Vienna, 1997. Springer Vienna.
1

[17] S. Song, L. Lan, J. Yao, and X. Guo. Continuous collision
detection with medial axis transform for rigid body simula-
tion. Commun. Inf. Syst., 22(1):53–78, 2022. 1, 2

[18] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha. Interactive
continuous collision detection between deformable models
using connectivity-based culling. In SPM ’08: Proceedings
of the 2008 ACM symposium on Solid and physical modeling,
pages 25–36, New York, NY, USA, 2008. ACM. 1, 2

[19] M. Tang, D. Manocha, S.-E. Yoon, P. Du, J.-P. Heo, and
R. Tong. VolCCD: Fast continuous collision culling between



deforming volume meshes. ACM Trans. Graph., 30:111:1–
111:15, May 2011. 1, 2

[20] M. Tang, R. Tong, Z. Wang, and D. Manocha. Fast and ex-
act continuous collision detection with bernstein sign classi-
fication. ACM Transactions on Graphics (TOG), 33(6):1–8,
2014. 2

[21] P. VOLINO and N. M. THALMANN. Efficient self-collision
detection on smoothly discretized surface animations using
geometrical shape regularity. Computer Graphics Forum,
1994. 1

[22] H. Wang. Defending continuous collision detection against
errors. ACM Transactions on Graphics (TOG), 33(4):1–10,
2014. 1, 2

[23] T. Wang, Z. Liu, M. Tang, R. Tong, and D. Manocha. Ef-
ficient and reliable self-collision culling using unprojected
normal cones. Computer Graphics Forum, 36(8), 2017. 1

[24] S.-K. Wong, W.-C. Lin, C.-H. Hung, Y.-J. Huang, and S.-Y.
Lii. Radial view based culling for continuous self-collision
detection of skeletal models. ACM Transactions on Graphics
(TOG), 32(4):1–10, 2013. 2

[25] C. K. Yap and V. Sharma. Robust Geometric Computation,
pages 1860–1863. Springer New York, New York, NY, 2016.
2

[26] S.-E. Yoon, S. Curtis, and D. Manocha. Ray tracing dy-
namic scenes using selective restructuring. In Proceedings of
the 18th Eurographics Conference on Rendering Techniques,
EGSR’07, page 73–84, Goslar, DEU, 2007. Eurographics
Association. 2

[27] G. Zachmann. Minimal hierarchical collision detection. In
ACM symposium on Virtual reality software and technology,
pages 121–128. ACM, 2002. 2

[28] C. Zheng and D. L. James. Energy-based self-collision
culling for arbitrary mesh deformations. ACM Trans. Graph.
(TOG), 31(4):98, 2012. 2


