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Abstract

In this paper, we present a new and innovative frame-
work for acquiring high-quality SVBRDF maps. Our
approach addresses the limitations of current methods
and proposes a new solution. The core of our method
is a simple hardware setup, consisting of a consumer-
level camera and LED lights, and a carefully designed
network that can accurately obtain the high-quality
SVBRDF properties of a nearly planar object. By cap-
turing a flexible number of images of the object, our
network uses different sub-networks to train different
property maps and employs appropriate loss functions
for each of them. To further enhance the quality of the
maps, we also improve the network structure by adding
a novel skip connection that connects the encoder and
decoder with global features. Through extensive exper-
imentation using both synthetic and real-world mate-
rials, our results demonstrate that our method outper-
forms previous methods and produces superior results.
Furthermore, our proposed setup can also be used to
acquire physically-based rendering maps of special ma-
terials.

Keywords: Acquisition Setup, SVBRDF Acquisition,
Material Capture, Global Skip Connection.

1. Introduction

The spatially-varying bidirectional reflectance distribu-
tion function (abbr. SVBRDF), modeled as a function of
6-dimensional space (light-view directions (4D) and spa-
tial location (2D)), describes how the incident light is dis-

tributed in various exit directions after being reflected by
a particular surface. Under the assumption of the Cook-
Torrance BRDF model with GGX normal distribution func-
tion, which is mostly used in physical-based rendering,
SVBRDFs can be parameterized using the four parameter
maps: diffuse, specular, normal and glossiness. Traditional
acquisition of these SVBRDF parameters tend to densely
sample over the 6D space to obtain plausible results, but
their procedures are low in efficiency and often limited by
expensive hardwares [13, 6, 17].

Recent studies have demonstrated how deep learning can
be applied to obtain SVBRDF parameters in a convenient
way [18, 7, 8, 4, 11]. These studies aim to recover the re-
flectance properties of a material from one or several flash
photographs captured by a cell phone camera. Such meth-
ods make estimations based on prior knowledge that the net-
work has received and show that photographs of the same
material captured under different illuminations may lead to
contrasting results.

As a critical factor in the acquisition task, the illumina-
tion is always changed: indoor or outdoor, sunny or cloudy,
noon or night, etc. Therefore, suffering from miscellaneous
illuminations Fig. 1, the results of these studies could only
meet the entertainment needs of ordinary users while fail-
ing to the needs of professional designers who have strict
requirements on the accuracy of reconstruct the SVBRDF
maps of the material. In order to delve into the relation-
ship of the acquisition quality and lighting, it is neces-
sary to set up a stable illumination environment. Recently,
Kang [15] proposed a framework for joint acquisition of
the Physicallly-Based Rendering (abbr. PBR) maps and the
shape of a 3D model. By controlling different LEDs, the de-
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Figure 1. Examples of SVBRDF acquisitions under different illu-
minations. The first three rows show the results generated by the
method in [11]. The 4-th row shows our result with stable illu-
minations. The bottom-left shows the photo of the real material
captured by a SLR camera under the standard illumination of D65
light box in a dark room.

vice can generate a stable illumination environment. How-
ever, the setup of their method requires 24, 576 white LEDs
and an Intel Cyclone 10 FPGA, which makes the hardware
quite complex and expensive.

In this work, we propose a consumption level setup to
obtain high-quality SVBRDF maps, and develop a novel
network to delve into the effects of different lighting. We
first design a piece of easy-to-use equipment to control stray
light interference. With this setup, the photos we take are
under stable illuminations. This brings a considerable ad-
vantage for the input: the testing illuminations are almost
the same as the training illuminations. Thus, our network
can learn the illuminations by all training samples. By tak-
ing the prior knowledge of the illuminations, our network
can generate rather accurate inference result. Then, we an-
alyzed the characteristics of different maps in the rendering
function. Based on these analyses, we build our network as
four independent networks to eliminate the entanglements
between maps, trained with properly designed loss func-
tions. We also propose a novel skip connection structure to
learn the local and global features. Extensive experiments
on both synthesis and real data have been carried out. The
results show that our method works better than prior works,
even at the resolution up to 3072 × 3072. Moreover, we
delve into the acquisition quality with different numbers of
the input using our proposed setup.

In summary, the main contributions of our work are as
follows:

• We propose a novel simple setup for high-quality
SVBRDF acquisition. Using our setup, the illumina-
tions between training and test samples can keep well,

which helps to study the relationship between acquisi-
tion quality and the number of input images.

• We design a novel skip connection that passes the
global information learned from encoders to decoders.
Global skip connection makes up for the shortcomings
of general skip connection that can only pass local in-
formation.

• We make extensively studies on the reconstructed re-
sults with different numbers of input images. Using
our proposed hardware setup, we can get up to 24 im-
ages under different illuminations. We test and analyze
the effect of different number of image inputs on the
reconstruction results, and give a relevant comparison.

2. Related work

Depending on the subject of interest, SVBRDF maps ac-
quisition can be classified into two categories: nearly-plane
and 3D objects. Works about the Nearly-plane objects can
be further classified into single-image based methods and
multi-images based methods according to the number of
inputs. In this section, we will briefly review the related
works of single-image based nearly-plane appearance ac-
quisition, multi-images based nearly-plane appearance ac-
quisition, and 3D object appearance acquisition.

2.1. Nearly-plane Objects Appearance Acquisition

Single-image based method only inputs one image to the
network. Thus, the choice of photography is fairly impor-
tant for the final result. It is common to choose the image
that was captured under the flashlight emitted by the hand-
held device [18, 7, 26, 11]. Under such lighting conditions,
the entire material will be illuminated, and the light and
shadow information on the surface will be recorded in the
photo. At the same time, the input image can be easily ob-
tained through a mobile phone. Because of the limitation of
input information, single-image based methods often show
less accuracy than multi-image methods and sometimes fail
to produce plausible results.

Multi-images based method requires several images
which are captured in different illuminations [8, 12, 10]. It
is more complicated than single-image estimation but works
better in terms of accuracy. Deschaintre et al. [8] show that
their method gets better results with the increasing of input
images. In addition to deep learning methods, traditional
optimization methods also benefit by adding images. Re-
sults in Gao et al. [10] and MaterialGan [12] also perform
better with more images as optimization targets.

Optimization methods put forward high demands on
users because they need to record many complicated param-
eters of the light and camera [12, 10, 25]. Rachel et al. [3]
propose a method that utilizes video to estimate these pa-
rameters. Nevertheless, it requires a large amount of storage



space. In addition, deep learning methods will fail when the
captured light does not match the training images.

2.2. 3D Object Appearance Acquisition

In addition to acquiring of the appearance of the nearly-
plane objects, some methods have also been proposed to this
purpose for 3D objects. To tackle this task, a special device
should be applied, such as a camera with a specific linear
polarizer [5, 9] or with the RGB LED array [19]. Holroyd et
al. [13] design a spherical gantry equipped with a projector-
camera pair on two mechanical arms, using phase-shift pat-
terns for 3D geometry. Tunwattanaponget et al. [23] built
a structure with an LED arm that orbits rapidly to create a
continuous spherical illumination with harmonics patterns
to obtain SVBRDF parameters of the object. Other simi-
lar dome structures of multiple cameras are also proposed,
using structured light patterns for 3D geometry and repre-
senting reflectance as bidirectional texture functions (BTF).
To get rid of the dependence of structure light, Giljoo et
al. [20] use conventional 3D reconstruction technique, in-
cluding SfM, MVS and mesh reconstruction. Xia et al. [24]
propose to recover the 3D shape and isotropic SVBRDF pa-
rameters from a captured video sequence of a rotating ob-
ject. Recently, Kang et al. [15] propose to build a cube-
shape device light stage to capture many photos under dif-
ferent light fields and design a deep-learning based frame-
work to capture both the reflectance and 3D shape of the
object. However, the proposed device is quite complex,
containing thousands of LEDs and complex control circuit
boards. In contrast, we design a simpler device that only
contains many LEDs to form the illumination environment
in this work.

3. Proposed Method

3.1. Problem Overview

A spatially varying material can be well rebuilt by the
pixel-level reflectance properties stored in SVBRDF maps.
With the assumption of the Cook-Torrance microfacet spec-
ular shading model and GGX normal distribution function,
the reflectance model used in this paper is formulated as fr:

fr(v, l, ρ, α, n, F0) =
ρ

π︸︷︷︸
Pd

+
D(v, l, α)G(v, l, n)F (v, l, F0)

4(v · n)(l · n)︸ ︷︷ ︸
Ph

,

(1)
where v and l indicate the unit vectors of the camera and

light directions; ρ, α, n, and F0 are the spatial-varying dif-
fuse albedo, roughness, normal and specular albedo of the
material surface. fr has two terms, with the first term being
the diffuse part Pd and the second term being the highlight
part Ph. Our goal is to estimate ρ, α, n and F0 from a set
of images I = {Ii}.

The illumination greatly influences the photo Ii. From
Eq. 1, it is clear that lights and the view directions are two
significant factors for an image Ii. Our observation shows
that different illuminations will make a well-trained net-
work fail and yield an erroneous result. Fig. 1 shows a
failed example by highlight-aware network[11]. Because
of the illumination mismatch, the diffuse map generated by
their network is darker and uneven in brightness. Being
highly affected by the color variance, the predicted normal
diverges from reality. Our solution to these problems would
have a stable illumination in the capture environment. By
fixing the v and l between training samples, we expect our
network to concentrate more on estimating the SVBRDF
maps (ρ, α, n and F0). Thus, our problem is simplified to
estimate the SVBRDF parameters from a reflectance model
modeled as:

fr(ρ, α, n, F0) = Pd(ρ) + Ph(D(α)G(n)F (F0)) (2)

As an image Ii is the combined effects of lights, and all
the four SVBRDF maps, multiple sets of SVBRDF maps
might reach the same radiance under a special lighting con-
dition, making it insufficient to infer an accurate map from
merely a single image. Mutually complementary informa-
tion contained in multiple images of the same material un-
der different lights can be essential to alleviate the ambigu-
ities in this problem. Experiments have been done to show
how the number of input images affects the training results
in Sec. 4.3. In our method, we define the number of images
|I| to be N . Then, our task becomes to find a generator
network G:

{ρ̂, α̂, n̂, F̂0} = G({I1, ..., IN}) (3)

Through training the network G, we expected to find an
optimal network weight θopt that minimize the loss L:

θopt = argminθ

∑
i=1

L(G({Ii1, ..., IiN}, θ), ρi, αi, ni, F i
0)

(4)

3.2. Acquisition Setup

The hemispherical shell provides a fixed position for the
LEDs and the camera. It also minimizes light interference
from outside, ensuring that only LEDs light the material.
The material stage is at the center of the hemisphere and
provides a flat surface for the real material. The camera
is vertically placed on the top of the hemispherical shell,
facing the material stage.

The LED positions of our equipment are illustrated in
Fig. 2. These LEDs are distributed at three different lev-
els on the hemispherical shell. In a polar coordinate system
originating at the center of the hemisphere, eight equidis-
tant LEDs are installed at each level, with the angle between



Figure 2. The positions of lighting LED.

each level being 22.5 degrees. When the system starts work-
ing, the LEDs will be lighted up in turns to create illumi-
nation in different directions. Meanwhile, the camera will
capture the material on the stage when one LED is turned
on. By the end of capturing procedure, we get 24 images,
each lit by only one LED. Fig. 3 shows an example of the
captured images of a leather material.

Under the material stage, there is a bottom LED. It will
turn on to provide the blue or green light for the material
stage when the material has a transparent property. When
the bottom LED is in operation, it will first emit a green
light, allowing the camera to capture an image of the ma-
terial with a green background. After that, it will emit a
blue light to capture an image with a blue background. In
Sec.4.5,we explain how to determine the transparency of a
material by using these two special images. The material
stage scatters the light emitted by the bottom LED, making
it evenly illuminate the material stage.

Prior to the acquisition, we calibrated the camera in our
setup with an X-Rite ColorChecker Passport to guarantee a
high color accuracy during capturing. The light intensity is
also adjusted between the hardware and rendering environ-
ment with an 18% grey card. By minimizing the L1 distance
between the captured photo and its corresponding rendering
image, we get a scale parameter, a totally of 24 parame-
ters. The color and light intensity calibration can further
narrow the illumination gap between the training and test-
ing dataset.

3.3. Proposed Network

Our property map generation networks leverage the clas-
sical U-net[21] as the baseline for its ability on image-to-
image problems. Fig. 5 shows an overview of our acqui-

sition method, with the top-half showing our training pro-
cedure and the bottom-half showing how we make an in-
ference with real materials. In the training phase, pair-
wise training samples (R1, ..., Rn) for our supervised learn-
ing network are generated through rendering with known
ground truth SVBRDF parameters (denoted as dt, st, gt,
and nt) under the same light settings as our acquisition
equipment, using the reflectance model we defined in Eq. 2.
When making inference on real materials, captured images
of material (I1, ..., In) under different light positions by our
acquisition device are input to the four different networks
(Gd, Gs, Gg , Gn) to generate the corresponding SVBRDF
maps (dp, sp, gp, np). In the following, we will introduce
the details of our network architecture and the loss func-
tions.

3.3.1 Separated Generation Networks for Four Maps

A key distinguishing feature of our framework to other
works is that we employ four independent networks to gen-
erate the four different maps separately. Many recent works
have adopted the ”one-to-four” architecture[11, 26] for the
acquisition task of SVBDRF by having a shared encoder
for extracting compact features from input images and four
separate decoder branches to recovery the per-pixel diffuse
albedo, specular albedo, normal and roughness from the
learned features. The rationale behind such network design
pattern is straightforward. Since the four maps have differ-
ent emphases on different features, the synthesis of different
maps requires four decoders to decode feature maps differ-
ently. However, such architecture has several drawbacks.
Firstly, in our experiments, we notice that the four maps
could hardly reach accurate results simultaneously. Because
the four decoders share a same encoder, gradients received
by the encoder are related to all four maps. Suppose a net-
work has already learned to predict three maps out of four
correctly. In that case, the non-zero gradient produced by
the rest will impose changes to the encoder, indirectly af-
fecting the correctness of other maps. Secondly, as the four
decoders decode from the same feature maps, the gradients
of four branches tend to reward the encoder that extracts
features needed by all four branches. In summary, this net-
work architecture leads to a high degree of entanglement in
the feature space. Accordingly, we suggest using a separate
network for each map, and then each network can be bet-
ter at predicting a specific map. To mitigate inconsistencies
in different maps, we use a render loss, calculated from the
estimated map and the ground truth maps, during the train-
ing of the networks. Fig. 6 shows a comparison of maps
generated by one network and four networks.

Fig. 7 visualizes the averaged feature maps over chan-
nels of the four encoders at the second downsampling layer.
As shown in the figure, our diffuse network Gd tends to ex-



Figure 3. The images of a leather material captured by our device under the 24 LED lights.

Figure 4. The appearance of our acquisition device.

tract features that follow the material pattern, eliminating
the interference caused by height changes and uneven light.
Similarly, features extracted by our glossiness network Gg

are immune to the height differences, presenting the map
in a nearly flat manner. In contrast, as the network most
sensitive to the changes in height, the normal network pays
more attention to information extracted from moving shad-
ows and brightness. Unlike the other three, the specular net-
work Gs focuses more on the micro-reflection highlights on
the surface of the fabric. These results have further proven
the different emphasises on features of the four maps.

The expanded details of our network architecture are
shown in Fig. 8. Before being inputted to the encoder, the
N captured images I1, ..., IN are stacked as a 72-channel
input. Subsequently, a single convolution layer is utilized
to map the 72-channel input layer into an abstract feature
map with the same resolution as I, but with more condensed
(compressed) 64 channels. Our downsampling block con-
sists of three consecutive 3× 3 convolution layers activated
by LeakyRelu. We do the downsampling at the first con-
volution layer with a stride to be 2. At this layer, we also
increase the number of feature channels by 32 and reduce
the feature size to one half. We set the stride of the fol-
lowing two convolution layers to 1 and keep the number
of feature channels and size. Symmetrical with the down-
sampling block, keeping the last two convolution layers the
same, our upsampling block replaces the first convolution
layer by a transposed convolution with a stride to 2. It also
reduces the feature channels to the same number of channels

as the corresponding encoder layer and doubles the size of
feature maps.

To fully exploit features at different scales, our gener-
ation network downsamples the input images seven times
through a sequential of 7 downsampling blocks and recov-
eries the SVBRDF maps in the same resolution as I with
7 upsampling blocks. An additional middle convolution
layer (bottleneck layer) is employed between encoder and
decoder to refactorize the features learned from the encoder.

Skip connections [21] are made between encoder and
decoder at the same depth to preserve details at different
scales. However, our experiments have revealed that skip
connection via concatenation is not sufficiently capable of
producing pleasant results for leaving unevenness on the
generated maps. A skip connection with a global feature
learning block is introduced to mitigate this problem for
learning common features that span across the entire pla-
nar material. Design details and our further analysis about
this structure will be explained in Sec. 3.3.2.

3.3.2 Global Skip Connection

Although a plain skip connection [21] between encoder and
decoder layers through concatenation could produce gener-
ally acceptable results, our observations show that uneven-
ness in brightness could pollute the generated maps, leaving
stains on the generated maps even the material surface has
evidently uniform reflectance properties (See Fig. 9). Con-
catenation fusion mechanism between lower-level features
from encoder and high-level features from the decoder po-
tentially produces a semantic gap [27]. Inspired by [14], we
introduce a new designed global feature skip connection to
U-net to tackle this issue. These connections allow the de-
coder to be aware of the information of other regions. In
this way, some information-lack regions can infer their in-
formation through data of information-full regions.

Our global feature skip connection starts with abstract-
ing a condensed channel-wise global feature vector from the
encoder Ei at level i by using global average pooling. Sub-
sequently, a multi-layer perceptron with one layer of hidden
units activated by SeLU is leveraged to blend the condensed
features at different channels before expanding back to their



Figure 5. Overview of our proposed method.

Figure 6. Comparison between one network strategy and 4 net-
works strategy. From top to bottom, the first row is the reference
maps; the second row is the maps generated with one network
strategy; the third row is the maps generated with 4 networks strat-
egy.

Table 1. RMSE comparisons between glossiness map generated w/
and w/o global skip connections (GloSkip).

w/o GloSkip w/ GloSkip

RMSE 0.052626 0.040709

original size by a broadcast operation illustrated in Fig. 10.
The final output of this module will later be fused with the
corresponding layer from decoder Di using element-wise
addition. With Di and Ei being the ith layer in decoder and
encoder, this process can be expressed by Eq. 5:

Di+1 = UP (FC (M (Ei)) +Di, Ei) (5)

Figure 7. Feature maps generated by the four networks.

where UP(·) indicates a upsample operation, and M(·)
represents global average pooling.

Although reaching outstanding performance in generat-
ing clear and uniform results, global skip connections are
not employed to generate normal maps after careful consid-
eration. By broadcasting an average value across the planar
and enforcing such a feature to the decoder, global skip con-
nections blur the final result, especially for normal maps, as
its estimation requires high-frequency information.

3.4. Loss Function

Having four generation networks to reproduce SVBRDF
maps in high quality, we carefully design specialized joint
loss functions Ld, Ls,Ln and Lg respectively for Gd, Gs,
Gn and Gg , depending on the different characteristics of
maps they generate. Sharing some common regularizing
terms in all loss functions, loss functions for all four maps
consist of a map loss Lmap and a rendering loss Lrender

calculated by averaging the mean absolute error between



Figure 8. The architecture of our network with global feature skip connections.Four maps are generated through separate networks, and
this figure only shows one of them as an example. The four networks share a similar architecture with only a slight difference at the final
convolutional layers. Gd and Gs have no additional processing modules to the network structure shown in the figure. In contrast, both Gg

and Gn nets undergo an extra layer of convolution with sigmoid and tanh function as active functions, respectively.

Figure 9. Three examples of the glossiness map generated w/ or
w/o global skip connections (GloSkip).

Figure 10. The comparison of the general skip connection and our
global skip connection. The encoder features is first compressed to
a value with unit size, and the global skip connection broadcasts
it to a complete map. In a general skip connection (left), every
field in the decoder can only get information in the corresponding
encoder field. It only passes local information, but our global skip
connection (right) broadcast the global information to every field
in the decoder.

images rendered with the predicted material maps in com-
parison to the ground truth map using N novel lightings.

Being a slightly different with a conventional render-
ing loss, since the SVBRDF parameters in our method are
generated separately by four networks, the rendering loss
for each network Gx uses one predicted map with 3 other
ground truth maps as shown in Eq. 6 where the ground truth
maps θ = {dt, st, gt, nt}, and x ∈ {d, s, g, n}.

Lrender,x =

N∑
i=1

MAE(Rl,v((θ\{xt}) ∪ {xp}),Rl,v(θ))

(6)
The map loss Lmap in our method is computed as the

l1 norm between predicted maps and ground truth maps us-
ing MAE. Finally, two weighted factors λmap and λrender

are applied to the map loss and rendering loss respectively,
which are set to be 1 and 1/24 in our experiments. At this
stage, we could formally defined the four joint loss func-
tions Ld, Ls,Ln and Lg as following:

Ld = L1(dt, dp) + Lrender,d + (1− SSIM(dp, dt)) (7)

Ls = L1(st, sp) + Lrender,s (8)

Lg = L1(gt, gp) + Lrender,g (9)

Ln = L1(nt, np) + Lrender,n + Lc (10)

where xp represents one of the predicted maps and
xt represents one of the ground truth maps, for x ∈
{d, s, g, n}. xt and SSIM(·) is the SSIM between these
two maps.

As a directional value, we use an additional cosine loss
Lc to evaluate the orientation difference between predicted
normal np and ground truth normal nt:

Lc =

(
− nt

|nt|
· np

|np|
+ 1

)
. (11)



4. Experiments

4.1. Dataset and Training

In this work, we collected 352 real materials, including
cloth, leather, fabric with metallic luster or pattern, and fluo-
rescent materials. We first generated the SVBRDF maps of
these real materials using the commercial material scanner
device X-Rite TAC7 Appearance Scanner [1], and then
calibrated these maps by professional technical artists under
the standard illumination in D65 light box in a dark room.
We also expand the dataset by mixing many SVBRDF maps
from public datasets. And finally, the new constructed
dataset consists of 3184 examples. Each example contains
SVBRDF maps and 24 rendered images. To get the 24 ren-
dered images, we used 3D software to create a virtual digital
twin model of our acquisition device shown in Fig. 4, then
generated the 24 images using Blender Cycles [2] for each
example. The resolution of the SVBRDF maps and virtual
images is 512 × 512. In our experiments, we use 2184 for
training and 1000 for test.

We implement our method using Tensorflow 2.4. For the
loss optimization, we use the Adam optimizer [16]. The
learning rate starts with 10−4. All other hyperparameters
are set as default values. When training, the batch size is set
to 4 for 2000 epochs. Fig. 11 shows two results generated
by our method.

Figure 11. SVBRDF maps of two real materials generated by our
method. The left-bottom is the photo of the material captured by
a SLR camera under the standard illumination in D65, while the
right-bottom shows the rendering result using the generated maps.
The resolution of the maps is 3072× 3072.

4.2. Results

We conducted our experiment using two images(No.0
and No.16) as input. Fig. 12 shows one example using our
method and the methods in [8], [12], and [11]. Our method
yields closer results to the ground truth, especially for the
normal map, while the other methods generate wrong nor-
mal results (the normal maps of the flower shape of the cloth
are wrong), which will lead to incorrect re-rendering results.
We also conduct a numeric experiment on our dataset. For a
fair comparison, we fine-tune these methods on our dataset.
Tab. 2 lists the numeric results. Compared to other methods,
our method has a significant advantage in diffuse, normal,

Table 2. RMSE comparisons on our dataset using two images as
input. Here, d, n, s, g , and r indicate the diffuse, normal, specular,
glossiness, and the rendered image, respectively.

[8] [12] [11] Ours

d 0.082861 0.006006 0.054556 0.000306
n 0.004437 0.005079 0.005232 0.000791
s 0.007402 0.013387 0.010090 0.046552
g 0.088811 0.132340 0.095743 0.044373
r 0.077482 0.009083 0.044927 0.000602

Table 3. RMSE comparison between previous works([8], [12],
and [11]) and our method on real materials with 2 images input.
The second row shows the metrics on re-renderings under 24 lights
using our device, while the third row are under novel lights.

RMSE [8] [12] [11] Ours

24 lights 0.066352 0.017784 0.068793 0.013180
Novel lights 0.196887 0.087135 0.202598 0.053856

glossiness, and rendering loss. For specular maps, our re-
sults are not as good as the method proposed in [8]. This
is mainly because the materials we used are mostly fabrics,
which have less prominent specular properties. Therefore,
the specular maps produced by our method are not as good
as those produced by the method presented in [8].

Figure 12. The reconstruction results using two images as in-
put. Under the side lighting conditions, our rendering results can
clearly see the shadow texture generated by the surface bump. [8]
and [12] have only blurred dim or almost invisible surface shad-
ows.

As pointed out in [8] and MaterialGan [12], the recov-
ered SVBRDF maps will become better with the increasing
number of the inputs. We also conduct experiments and val-
idate this conclusion on our hardware setup using our pro-
posed method. We use the photos captured by our device



Figure 13. RMSE in different number of input.

Figure 14. Comparisons of the normal maps with different num-
bers of input images.

Table 4. The image numbers we input in the experiment.

input No.

1 0
2 0, 16
3 0, 16, 23
6 0, 4, 8, 12, 16, 20
10 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
16 0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23

and respectively train our network on the training dataset
using 24, 16, 10, 6, 3, 2, 1 photos as input (the numbers of
the selected photos are listed in Tab. 4). The RMSEs of dif-
fuse, glossiness, normal, and specular maps are computed
on our test dataset. The hyperparameters used for training
are the same for all different inputs. The numeric results
are drawed as line graphs shown in Fig. 13. From these
four line graphs, it can be seen that the RMSE decreases
as input images increase. For the specular maps, the curve
oscillates when the input number is small, but it tends to de-
cline steadily when the number increases. Diffuse, normal,
and glossiness maps get a significant improvement at the
beginning. When the input number rises to 6, the decline of
RMSE slows down. Thus, if considering the qualities of the
maps only, one can train the networks with as many inputs

as possible. And the more images are input, the more de-
tails of the result closer to the ground truth. Fig. 14 shows
the comparison of the normal maps using different number
images as input, and we can see that the details can be ob-
tained well when the number is bigger than 6. Thus, if con-
sidering the training cost / quality ratio, selecting 6 images
as input is a better choice.

4.3. Comparisons with More Images as Input

We compare our method with the methods in [8], Ma-
terialGan [12], and [11]. Because the input of [8] or Ma-
terialGan [12] are multiple images, for fair comparisons,
we directly utilize the 24 rendered images (or the images
cropped from the photos captured by our device) as input.
For the method in [11], we traverse the results of the 24
images (or the cropped photos captured by our device for
real materials) and choose the best one for comparison. We
conduct qualitative and quantitative experiments to evaluate
our method on our dataset and real materials.
Comparisons on our dataset. Fig. 15 shows an example of
the comparisons in our dataset. The diffuse maps acquitted
by [8] and [11] are darker than the ground truth, which will
cause darker results for re-rendering. In contrast, the dif-
fuse maps acquitted by our method and MaterialGan [12]
are compatible with the ground truth. For the normal maps,
our result contains more details and is closest to the ground
truth, while the results acquitted by [11] and [12] tend to
be flatter. For the result acquitted by [8], the direction of the
edge changes more intensely.

Note that MaterialGan [12] needs to record precise pa-
rameters of the camera and illumination, making obtaining
SVBRDF maps become more complicated. In contrast, our
method does not require complex parameters because the il-
luminations of our input images is under fixed control. Our
network can learn the stable illuminations between training
samples and use the learned parameters for inference. Thus,
the quality of the maps can be guaranteed by the stable il-
luminations provided by our device, and it does not need
additional optimization.

Tab. 5 and Tab. 6 show the numerical comparisons on our
dataset. The numeric results demonstrate that our method
acquits the best results in diffuse, normal, and glossiness
maps, while the method of Guo Jie et al. [11] has the lowest
RMSE and Guo Yu et al. [12] has the lowest LPIPS in spec-
ular maps. Although our method does not get the best re-
sult of specular maps, it obtains the best diffuse and normal
maps, which play more important effects for re-rendering.
Comparisons on real materials. We validate our method
on 85 real materials which are not in our dataset. The in-
put photos are captured using our device. We use 3 novel
lights to evaluate the results, and capture the photos of real
materials using a SLR camera. Then, we render the mate-
rials with the recovered SVBRDF maps in the digital twin



Figure 15. An example of comparison with the methods in [8], [12], and [11]. The diffuse maps, specular maps, and the rendering results
are shown in Gamma space, while the glossiness maps are turned to roughness maps for more clearly visualization.

Figure 16. An example of a real material.

illuminations. Fig. 16 shows an example of our results and
the comparisons. It shows that the normals generated by
the methods in [12] and [11] are wrong. Actually, the re-

Table 5. RMSE comparisons on our dataset. d, n, s, g , and r in-
dicate the diffuse, normal, specular, glossiness, and the rendering
image, respectively.

[8] [12] [11] Ours

d 0.102023 0.005124 0.054556 0.000423
n 0.006479 0.004360 0.005232 0.000247
s 0.033632 0.012154 0.010090 0.025878
g 0.102216 0.140183 0.095743 0.040709
r 0.087551 0.006833 0.044927 0.000301

gion of the heart shapes are flat, but the normals recovered
by these two methods are concave. Besides, the recovered
diffuse maps do not contain the heart shape pattern, which
means that these two methods cannot distinguish the color
and shadow information for planar exemplar materials. For
the maps generated by [8], the recovered diffuse map is
gray while the color of the material is white. Thus, the
re-rendering results are very different from captured pho-



Figure 17. Statistics from 31 synthetic examples and 31 real materials. We compute the Learned Perceptual Image Patch Similarity(LPIPS)
on the re-rendering images and the Root Mean Square Error(RMSE) on SVBRDF maps. In the metrics, a lower value indicates a higher
accuracy. Our outputs are more concentrated in the areas with lower values which means that we get more accurate results on most
examples.

Table 6. LPIPS comparisons on our dataset. d, n, s, g , and r in-
dicate the diffuse, normal, specular, glossiness, and the rendering
image, respectively.

[8] [12] [11] Ours

d 0.306619 0.133610 0.286742 0.063140
n 0.205903 0.246912 0.364797 0.151345
s 0.716021 0.692563 0.747934 0.721130
g 0.656656 0.579437 0.519371 0.495239
r 0.299803 0.179935 0.318218 0.130414

tos. Tab. 7 lists the RMSE comparisons of re-rendering re-
sults with captured photos between previous work and our
method for 85 real materials. Fig. 17 shows the numerical
details. Since GuoJie et al.’s method [11] is based on a sin-
gle image, we did not compare the performance with it in
statistics. It demonstrates that our method can achieve the
best results on SVBRDF acquisitions for real materials.

Performance. We evaluate the runtime performance on
a PC with 3.0 GHz Intel Core i7 processor and NVIDIA
GeForce RTX 3090 GPU. For the input image of the res-
olution 512 × 512, it takes around 0.11s using the method
in [11] because it only takes one image as input. For the in-
put from 2 to 24 images, our method takes between 0.300s
and 0.480s, while it takes about 2.93s using the method
in [8] . In comparison, MaterialGan [12] requires around
660s with the same input on the same platform because of
its lengthy optimization.

4.4. Ablation Study

As discussed in Sec.3.3.1, gradients received by the en-
coder in a one-to-four architecture are related to all four de-
coders. Gradients from the other three maps could affect
the correctness of the one that has been correct. We do abla-
tions studies on how the one encoder architecture performs
to validate it. In addition, we compared the performance
of our global skip connection and global track[7] to prove
the superiority of our method. The result is shown in the
Table.8.

Table 7. RMSE and LPIPS comparisons between previous
works([8], [12], and [11]) and our method on real materials. The
second row shows the metrics on re-renderings under 24 lights us-
ing our device, while the third row are under novel lights.

RMSE [8] [12] [11] Ours

24 lights 0.069047 0.013157 0.068793 0.012600
Novel lights 0.204769 0.072937 0.202598 0.067823

LPIPS [8] [12] [11] Ours

24 lights 0.470221 0.377422 0.498515 0.284123
Novel lights 0.630545 0.516387 0.611689 0.422746

Table 8. RMSE comparisons of the ablation study.

1 encoder Global track Ours
d 0.017557 0.021936 0.011774
s 0.019679 0.022555 0.018615
n 0.023288 0.036720 0.020182
g 0.037449 0.052994 0.032916

4.5. Acquisition of Special Materials

In addition to leather and fabric, our simple hardware
setup can also be used to acquit the PBR maps of some
special materials, such as mesh, metallic, and fluorescent
materials, as shown in Fig. 18 to 21.

In order to simulate the hollow of the mesh, an alpha
map α is needed. As illustrated in Fig. 2, our hardware has
a bottom LED light. Before capturing transparent material,
the light stage emits blue and green light respectively and
camera takes the background images Bb and Gb. The im-
ages with the material Bc (with blue light) and Gc (with
green light) is taken when capturing. According to Alvys’
method[22], we have:{

Bc = αF + (1− α)Bb,
Gc = αF + (1− α)Gb,

(12)

where F is the color of the object. Since Bb, Gb, Bc and
Gc are known, by solving Eq. 12, α can be obtained. Fig. 18
and Fig. 21 show the reconstructed alpha maps using our



Figure 18. Reconstruction of a mesh material with metallic pat-
terns. The first row shows the maps obtained using our device and
method.

Figure 19. Reconstruction of a fabric material with metallic pat-
terns. To better express the metallic luster of materials, the work-
flow for reconstructing such materials employs the metallic work-
flow.

Figure 20. Reconstruction of a fluorescent material.

method.

For the materials with metallic luster or pattern, we train
the networks using the same proposed method with the
metallic workflow (render by the base color, metallic, nor-
mal, and roughness maps). Fig. 18 and 19 show two ex-
amples of the reconstructed metallic maps. For fluorescent
materials, the emissive map can be also obtained in a similar
way. Two examples of the reconstructed fluorescent mate-
rials are shown in Fig. 20 and 21. It should point out that
the displacement map is converted from the normal map in
the reconstruction.

Figure 21. Reconstruction of a mesh-fluorescent fabric.

4.6. Compare with Handheld Devices

Compared to handheld devices like smartphones, our
setup is capable of achieving better results, albeit with a
slightly more complex setup. By utilizing our setup, we
can generate alpha maps of materials by controlling the bot-
tom LED, which is not possible with smartphones. Fig. 22
showcases the difference in the maps generated using pho-
tos taken with our setup versus those captured by a hand-
held device. The left image features a mesh fabric, with
the second row demonstrating maps and renderings cap-
tured by a smartphone. Without our device, calculating al-
pha maps is impossible, and the background color cannot
be seen through the hole in the mesh.

Furthermore, it is challenging to ensure consistency in
the generated maps across different illumination conditions
for the same material on handheld devices when using deep
learning methods. This difficulty arises because it is dif-
ficult to guarantee that the illumination conditions in pho-
tos captured by handheld devices will be consistent with
those in the training dataset. As demonstrated in Fig. 1,
inconsistent maps result from different illuminations when
capturing photos, using the deep learning method described
in [11], which relies on handheld devices. Additionally, as
shown on the right of Fig. 22, our networks exhibit color
bias without the environment control provided by our setup.

5. Conclusions

In this work, we propose a novel setup and network to
obtain high-quality SVBRDF maps. We have highlighted
the importance of stable lighting patterns for deep learning
based methods, and delved into studying the relationship
of acquisition quality of different number images as input.
We also described the necessity of separating the genera-
tion network for each map. Then, we have shown that our
naive global skip connection can pass the global and local
information between decoder and encoder. We also explore
the effects of the input image number experimentally. Our
results show that our method outperforms existing methods



Figure 22. The top images in each example are the reference fabric
captured using DLR under the D65 light box. The second row
shows the maps and re-rendered images generated using a mobile
phone. The third row displays the generated results using our setup
with 2 images, while the fourth row shows the results generated
with 24 images captured by our setup.

in performance both on our dataset and real materials. And
our proposed method can also reconstruct the PBR maps
for special materials, such as mesh, metallic, and fluores-
cent materials. We believe that high-quality PBR maps of
more types of materials can be acquitted efficiently using
our proposed hardware setup.
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