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Abstract

Global Illumination (GI) plays a crucial role in ren-
dering realistic results for the virtual exhibition, e.g., the
virtual car exhibition. These scenarios usually include
all-frequency bidirectional reflectance distribution func-
tions (BRDFs), although the geometry and the light
configuration might be static. Rendering all-frequency
BRDFs in real-time is still challenging due to the com-
plex light transport. Existing approaches, including pre-
computed radiance transfer, light probes, or the most
recent path tracing-based approaches (ReSTIR PT), can
not satisfy both quality and performance requirements
at the same time. In this paper, we propose a practi-
cal hybrid global illumination approach, combining ray
tracing and cached GI by caching the incoming radiance
with wavelets. Our approach can produce close results
to offline renderers at the cost of only about 17 ms at
runtime and is robust over all-frequency BRDFs. Our
approach is designed for applications with static light-
ing and geometries, like the virtual exhibition.

Keywords: Real-time Global Illumination, All-
Frequency BRDFs, Haar Wavelets, Radiance Caching.

1. Introduction

The effects of realistic materials, all-frequency shadows,
and global illumination are significant for photorealistic
rendering, which enhances the renderings’ realism. How-

*Youxin Xing and Gaole Pan contributed equally to this work.
†Corresponding author.

ever, the computation of these effects is time-consuming,
especially for real-time rendering.

Our method mainly aims at virtual exhibitions, e.g., vir-
tual car exhibitions. The scenarios usually have dynamic
views in such an application and might cover all-frequency
bidirectional reflectance distribution functions (BRDFs),
but with static lighting and geometries. Therefore, we make
the same assumption in our paper.

In the real-time rendering domain, precomputed radiance
transfer (PRT) [1, 2, 3] and light probes [4, 5] are widely
used. The approaches based on PRT support all-frequency
shadows [3], glossy reflections, and dynamic lighting at the
cost of expensive storage. Most of the light probes-based
approaches only focus on diffuse materials. Rodriguez et
al. [6] can handle glossy interactions, but it isn’t suitable
for real-time rendering. Majercik et al. [7] can provide real-
time GI effects on glossy objects by forcing second-order
glossy reflections to maximum roughness.

Recently, path tracing combined with advanced sam-
pling strategies and denoising has become a possible solu-
tion for real-time global illumination. The advanced sam-
pling strategies include the resampled importance sampling
(RIS) [8] for direct illumination [9] or global illumina-
tion [10]. Both of them don’t work well for low-roughness
materials. Recently, Lin et al. [11] enabled all-frequency
material rendering, thanks to the generalized resampled im-
portance sampling (GRIS), but the results are not noise-free.

This paper aims to achieve real-time global illumination
effects with all-frequency shadows and interreflections on
glossy objects. For that, we propose a practical hybrid
global illumination solution, which combines ray tracing
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x,n Position and normal of shading point
V Binary visibility
Li Light source
Lo Outgoing radiance
Lirradiance Irradiance of a point
ωi,ωo Incident and outgoing directions
fr BRDF
fd, fg BRDFs of diffuse and glossy materials
fs Specular term of glossy materials’ BRDF
fc Clear coat term of the clear coat BRDF
Fc Fresnel term of the clear coat BRDF
γ Clear coat parameter
cbase Diffuse color defined for the material
T Transport operator
Ψj , Ψk Orthonormal basis functions
C Mathor scaling Coeffs
Di Detail wavelet Coeffs
lj , tk Coeffs of light and light transport
L,T Coeffs vectors of light and light transport
Cradiance Coeffs vectors of cached radiance
CBRDF Coeffs vectors of the glossy BRDF

Table 1. Notations.

and cached GI. The cached GI is responsible for direct il-
lumination from non-delta light sources (e.g., area lights,
environment maps) and the indirect illumination of objects
with low-frequency to intermediate-frequency BRDFs from
all light sources. The ray tracing handles the indirect il-
lumination of specular or near-specular materials from all
light sources and direct illumination from delta light sources
(e.g., point lights, directional lights).

In our cached GI approach, we use wavelets to represent
the incoming radiance and BRDFs at a precomputation step
and perform an efficient convolution during rendering. In
particular, we cache irradiance for the diffuse materials. In
the end, our method is able to provide high-quality results,
which match the references, with only about 17 ms.

2. Previous work

Precomputed radiance transfer (PRT). Sloan et al. [1]
use the spherical harmonic (SH) basis to restore soft shad-
ows, reflections, and caustic effects. Ng et al. [3] replace SH
with wavelets, so their method can represent all-frequency
shadows and reflections. Wang et al. [12] introduce PRT
and separable BRDF approximation, allowing for the ren-
dering of glossy objects in complex and dynamic lighting
environments. PRT-based approaches can handle global il-
lumination effects with dynamic lighting at the cost of ex-
pensive storage.

Real-time Monte Carlo path tracing. Recently, RIS has
been introduced into real-time rendering to sample direct il-

lumination [9], low-frequency GI [10], and high-frequency
GI [11]. The recent generalized form of RIS (GRIS) allows
for glossy indirect illumination. Müller et al. [13] further
introduce the neural radiance caching into real-time path
tracing to accelerate rendering by learning and rendering
the radiance distribution online with a neural network.

Light probes. The irradiance volume [14, 15] or light
probes-based approaches have been widely used in the
video game industry due to their efficiency. They subdi-
vide scenes into discretized points, represent the irradiance
distribution at these points during the precomputation, and
query the light probes during rendering. Majercik et al. [5]
proposed a dynamic solution for diffuse global illumina-
tion (DDGI). They update both the irradiance and visibil-
ity with ray tracing at runtime. Most of these works only
focus on diffuse materials, except one of the recent studies
by Rodriguez et al. [6], which allows for glossy interreflec-
tions. Unfortunately, it’s time-consuming and not suitable
for real-time rendering. Majercik et al. [7] have also ex-
tended the DDGI to glossy materials, but they force second-
order glossy reflections to maximum roughness leading to
unfaithful results.

Point-based global illumination. The point-based global
illumination (PBGI) is first proposed by Christensen [16]
for color bleeding in the offline rendering domain. The
point cloud and hierarchical structure are treated as a ge-
ometric proxy of the geometry, so they can be rasterized to
solve the visibility. PBGI has also been extended to real-
time rendering [17, 18], but they focus on diffuse global il-
lumination. They can not handle glossy interreflections and
caustics since the radiance is represented with SH. Later,
Wang et al. [19] replace SH with wavelets, allowing for
non-diffuse light transport, but their work is too heavy for
real-time rendering.

3. Background and overview

We first introduce the rendering equation and PRT in this
section. Then we give an overview of our approach.

3.1. Rendering equation

The rendering equation [20] is the core of global illumi-
nation:

Lo(x,ωo) =

∫
Ω

Li(ωi)fr(x,ωi,ωo)(n · ωi)dωi, (1)

where ωi is the incident direction, ωo is the outgoing di-
rection (also called a view direction), and n is the surface
normal. Lo is the outgoing radiance at a position x from the
view direction ωo, Li is the lighting and fr is the BRDF.



Figure 1. Overview of our hybrid global illumination method on a Vehicle scene. The precomputation is shown on the left, and the runtime
rendering is on the right. In the precomputation stage, each BRDF is precomputed as a half cube map and compressed with Haar wavelets
(left top). The scene is discretized into several point clouds by the mesh index (ID). The incoming radiance distribution of each point in
point clouds is also precomputed as a half cube map and represented with Haar wavelets. Then the whole spatial hierarchy (octrees) is
constructed to organize the lighting of the point clouds. Note that the wavelets for each half cube map are organized in a quadtree manner.
During rendering, given a shading point, we traverse the spatial hierarchy to get a cached point and then perform the convolution of BRDFs
and lighting caching, resulting in partial results. We compute the direct illumination of delta lights directly without caching and shoot rays
on the specular or near-specular surfaces, then combine with the cached GI to get the final rendered results.

3.2. Precomputed radiance transfer

The rendering equation can be reformulated to achieve
real-time rendering by caching a part of its composition,
like PRT [1, 2, 3].

Ng et al. [3] define a transport operator T , which in-
cludes both the BRDF and a visibility term:

T (x,ωi,ωo) = fr(x,ωi,ωo)V (x,ωi)(n · ωi). (2)

Then, Eq. (1) is transformed into the integral of the product
of the incoming light and the light transport operator:

Lo(x,ωo) =

∫
Ω

Li(ωi)T (x,ωi,ωo)dωi. (3)

To achieve real-time frame rates, Li and T are precom-
puted and represented with the appropriate orthonormal ba-
sis function Ψj(ωi) :

Li(ωi) =
∑
j

ljΨj(ωi), (4)

T (x,ωi,ωo) =
∑
k

tkΨk(ωi), (5)

resulting in the following final formation:

Lo(x,ωo) =

∫
Ω

(
∑
j

ljΨj(ωi))(
∑
k

tkΨk(ωi))dωi

=
∑
j

ljtj = L · T. (6)

Finally, the integral is converted into a dot product of the
coefficients vectors of L and T.

Compared with PRT, our method can compute and store
the radiance by highly compressed wavelet coefficients at
each point. Aided by the octree structure for query accel-
eration and the wavelet quadtree structure for fast convo-
lutions, our method can obtain all-frequency shadows and
interreflections at runtime.

3.3. Overview

The crucial insight of our approach is to cache the light-
ing and BRDFs in a precomputed step and then perform the
efficient convolution of these two components during ren-
dering. For the specular or near-specular effects and the
direct illumination of delta light sources that are too sharp
for the cached GI, we compute them by ray tracing.

More specifically, in the precomputation step (Sec-
tion 4), we generate the point clouds and represent the ma-
terials (BRDFs) with Haar wavelets first. Then we repre-
sent the lighting by caching the incoming radiance distribu-
tion on point clouds with wavelets and organizing the point



clouds into a spatial hierarchy constructed by octrees. Dur-
ing rendering (Section 5), we search the hierarchy to find the
incoming radiance distribution and then perform a product
of the wavelet coefficients for the lighting and the BRDF, as
shown in Figure 1.

4. BRDFs and Lighting precomputation

In the precomputation step, each mesh is discretized
into a point cloud (Section 4.1). Then, we precompute all
the BRDFs in the scene and represent each of them with
wavelets (Secion 4.2). Next, we precompute and compress
the incoming radiance distribution of each point and orga-
nize them into octrees (Section 4.3).

4.1. Point clouds generation

For each mesh in the scene, we generate a point cloud
with Poisson disk sampling [21]. Given a desired point
count M , we first generate more points with random sam-
pling, where the number of the points for each mesh triangle
is with respect to its area. In practice, we generate 5 × M
random-distributed points. Then we eliminate the points it-
eratively to obtain a uniformly distributed point cloud. Note
that the sample points are organized by a KD-Tree and or-
ganized into a heap structure for efficient elimination.

To decide which sample point to eliminate, we measure
the closeness of each point to its neighboring points with
weight. Wij is the weight between sample point i and j
(i ̸= j):

Wij = (1− min(dij , 2rmax)

rmax
)α, (7)

where dij is the distance between sample point i and j.

rmax is the maximum radius, set as
√

A2/(2
√
3n), where

A2 is an area of the sampling area [21]. n is a desired num-
ber of samples after elimination, and α is an exponential
constant used to control the weight, set as 8 in practice. The
weight Wi of sample point i is the sum of Wij correspond-
ing to sample point j within 2rmax distance from sample
point i.

At each iteration, we eliminate the sample point with the
highest weight and then adjust the weights of the remain-
ing sample points dynamically. The iteration stops when
the number of sample points meets the input point count.
This way, the distribution of the remaining points becomes
uniform.

4.2. BRDFs precomputation and compression

In our paper, we focus on three types of materials: dif-
fuse, glossy, and clear coat BRDFs.

As for the diffuse, we use the Lambertian diffuse mate-
rial:

fd(ωi,ωo) =
1

π
cbase, (8)

where cbase is the diffuse color.
Then, we use a Cook-Torrance model [22] for the glossy

material, which includes both a diffuse term fd defined by
Eq. (8) and a specular term fs:

fg(ωi,ωo) = fd(ωi,ωo)+fs(ωi,ωo), (9)

where fs is a typical microfacet model [23]:

fs(ωi,ωo) =
D(h)F (ωo, h)G(ωi,ωo, h)

4(n · ωi)(n · ωo)
, (10)

where D is the normal distribution function (NDF) [24], F
is a Fresnel term and G is the masking-shadowing func-
tion [25]. We use GGX as our NDF and Schlick’s approxi-
mation [26] for the Fresnel term.

Lastly, we add a clear coat term from the Google Fila-
ment engine [27] for the glossy material:

fclearcoat(ωi,ωo) = fg(ωi,ωo)(1− Fc)

+ fc(ωi,ωo), (11)

where fc is the clear coat BRDF, modeled with a typical
microfacet model, and Fc is the Fresnel term of the clear
coat BRDF:

Fc = (0.04 + 0.96(1− (ωo · h))5)γ, (12)

where γ is a clear coat parameter in the material, which
controls the strength of the clear coat effect.

Precomputation. The diffuse material is computed at
runtime, which is shown in Section 5.2. For each glossy
material, we precompute the distribution of the BRDF. We
sample the outgoing direction ωo uniformly by using the
equal cosine sampling in a hemisphere space. Then, for
each sampled ωo, we represent the distribution of the in-
coming direction ωi with a half cube map. Here, we use the
local coordinate system by aligning the z−axis of the cube
map with the surface shading normal. Finally, we compute
the BRDF value according to each ωo and ωi at each pixel
of the half cube map. The resolution of the cube map is set
to 128× 128 in practice.

Compression. We use the quadtree form wavelet trans-
form to project the half cube map of BRDFs onto Haar
bases. The quadtree is constructed in a bottom-up fashion.
Each node contains a mother scaling coefficient C, three
detail wavelet coefficients Di (i = 0, 1, 2), and four child
indices. The coefficients of the current node are computed
with the mother scaling coefficients of its child nodes, de-
fined by cj (j = 0, 1, 2, 3):

C =
c0 + c1 + c2 + c3

2
, D0 =

c0 − c1 + c2 − c3
2

,

D1 =
c0 + c1 − c2 − c3

2
, D2 =

c0 − c1 − c2 + c3
2

.

(13)



Figure 2. Results of ZeroDay using our method. The comparison between our final result and the reference is shown on the left. The result
of the convolution of BRDFs and lighting caching is shown on the right (top). The ray tracing result is shown on the right (bottom).

Table 2. Resolution of radiance cube map under different rough-
ness.

Roughness Resolution

[0.10, 0.35] 128×128
(0.35, 0.55] 64×64
(0.55, 0.65] 32×32
(0.65, 1.0] 16×16

If the child node is a leaf node, ci is the pixel color in the
half cube map. During compression, when all the coeffi-
cients of a node and its child nodes are below a certain
threshold (β), we discard them. This way, we can con-
trol the coefficient quadtree’s degree of compression by the
threshold. In practice, we set β to 0.2 when the roughness
value is greater than 0.2; otherwise, 0.1.

4.3. Lighting caching and octree construction

For each point in the point clouds, we precompute its
incoming radiance distribution or irradiance and organize
each point cloud into an octree.

Lighting caching. Object with different material type is
treated differently. We store the irradiance rather than in-
coming radiance for the object with the diffuse material
since it is view-independent:

Lirradiance(x) =
∫
Ω

Li(x,ωi)(n · ωi)dωi, (14)

where Lirradiance is the irradiance at the position x of each
point in the point clouds.

Different from the diffuse material, we precompute the
incoming radiance for the object with the glossy material,
regardless of whether it has a clear coat or not. During
caching, we locate a half cube map around each point and
compute the incoming radiance for the half cube map with
path tracing (the sample count is set as 128 for each path).
The resolution of the radiance cube map is determined by
the roughness of the object material, which is shown in Ta-
ble 2. Then we compress each half cube map with wavelets
in a quadtree form, the same as the BRDFs. The discard
threshold β is set to 1,000.

Octree construction. We organize the point clouds into
octrees, where each point stores the lighting caching, in-
cluding the irradiance or the incoming radiance represented
by wavelet coefficients in the quadtree form.

We construct the octree in an up-bottom fashion. Starting
from the axis-aligned bounding box (AABB) of the whole
mesh, each node is subdivided uniformly into eight child
nodes according to the AABB. This subdivision for each
node continues when the point count at each leaf node is
larger than a certain threshold (set as 30 in practice). Fi-
nally, the leaf nodes of the octree contain all the cached
points.

After constructing the octrees for all meshes, we up-
date the information of each node in a bottom-up man-
ner, including the bounding box and the normal. The leaf
node’s bounding box is computed by the bounding box of
its points, while the non-leaf node’s bounding box is com-
puted by the union of the bounding boxes of its child nodes.
The normal of each node is set as an average of the normals
in its points or child nodes.



Figure 3. Results of Vehicle using our method. The comparison between our final result and the reference is shown on the left. The result
of the convolution of BRDFs and lighting caching is shown on the right (top). The ray tracing result is shown on the right (bottom).

5. Real-time global illumination

During runtime, we compute the result of ray tracing
first. Then we search and convolute the BRDFs and lighting
caching. At last, we merge them to get the final real-time
global illumination.

5.1. Ray tracing

As for ray tracing, we compute the direct illumination
of delta lights and clear coat effects. And we also trace
rays to compute the indirect illumination for low-frequency
materials. For diffuse materials, the equation is as follows:

Lo(x,ωo) = fd(ωi,ωo)Li(x,ωi)(ωi · n). (15)

For glossy materials, the equation is as follows:

Lo(x,ωo) = fg(ωi,ωo)Li(x,ωi)(ωi · n). (16)

For glossy materials with clear coat effects, the equation
is as follows:

Lo(x,ωo) = fg(ωi,ωo)Li(x,ωi)(ωi · n)(1− Fc)

+ fc(ωi,ωo)Li(x,ωi)(ωi · n).
(17)

We trace an extra clear coat ray along the direction of the
original ray’s specular reflection to compute the clear coat
term. The maximum tracing depth is set to 3.

For objects with low-frequency materials, when the ray
(including the clear coat ray) hits the shading point with the
roughness that is less than 0.1, we treat it as a mirror. Be-
sides, we continue to trace the ray along the direction of the
perfect specular reflection until the ray hits the environment
map or reaches its maximum tracing depth. When the ray

hits the environment map, we compute the indirect illumi-
nation with the ambient light Lenv:

Lo(x,ωo) = F (ωo, h)Lenv(x,ωi), (18)

where F is a Fresnel term. In practice, the maximum tracing
depth is set to 4.

5.2. Convolution of BRDFs and lighting caching

During rendering, we search for the caching of BRDFs
and Lighting and then compute the convolution of them
in the quadtree form. The BRDFs coefficients are queried
through the material index (ID) and the view direction ωo

in the hemispherical space. The lighting caching is queried
by three steps. First, we find the octree by the mesh ID of
the shading point. Then we search for leaf nodes that con-
tain the target point in the octree by a distance threshold.
Finally, we select the most appropriate point for the shad-
ing point in the leaf nodes according to a mixed weight of
the position and normal direction.

After searching, for diffuse materials, we compute the
result by the diffuse color cbase and irradiance Lirradiance.

Lo(x,ωo) =
1

π
cbaseLirradiance(x). (19)

For glossy materials, we convolve the coefficients of
BRDFs CBRDF and cached radiance Cradiance in the
quadtree form to get the final result.

Lo(x,ωo) = CBRDF ⊗Cradiance. (20)

As for the glossy material with a clear coat, we addition-
ally multiply by the ratio (1− Fc) as follows:

Lo(x,ωo) = (CBRDF ⊗Cradiance)(1− Fc). (21)



Figure 4. Comparison between PRT [3] and our method on the BistroPart (top) and Dragon (bottom) scenes.

The clear coat term is computed by ray tracing.

We take the ZeroDay and Vehicle scenes as examples
to show the results of ray tracing and the convolution of
BRDFs and lighting caching, respectively, in Figure 2 and
Figure 3.

6. Implementation details

In this section, we focus on the details of the BRDFs
precomputation, lighting caching, octree construction, and
runtime rendering. While precomputing the BRDFs, we
dispatch the tasks to 16,384 GPU threads at once for GPU
acceleration. And the lighting caching tasks are dispatched
to 8,192 GPU threads in practice. We have implemented
our method on the Falcor GPU rendering framework (4.3
version) [28] for runtime rendering.

BRDFs precomputation. Before precomputation, for
BRDFs defined with textures (e.g., diffuse map), we cat-
egorize the BRDFs with similar properties (diffuse color,
etc.) into groups and then perform BRDF precomputation
for each group by treating it as a single BRDF. Note that the
indices of these groups are stored in the alpha channel of
the BRDF texture.

When computing the half cube maps for BRDFs, for a
ωo, we apply stratified sampling to ωi in the half cube map
to avoid the stripe artifacts in the rendering results. Dur-
ing compression, we store the coefficients of BRDFs and
cached radiance in the half data type to reduce the storage
size, which is sufficient to obtain the same rendering results
as the float type.

Lighting caching and octree construction. While com-
puting the lighting, we divide the radiance in each radiance
half cube map by the solid angle in the corresponding direc-
tion [29] for energy conservation. After computation, as for
diffuse materials, we add up all the incident radiance stored
in the half cube map to get the irradiance for each point.

We construct an octree for each mesh to improve the
query accuracy for the cached points at the intersection of
meshes. The reflections and shadows of objects with dif-
fuse materials or high-roughness glossy materials are view-
independent. Thus, on the objects with low-frequency re-
flections and shadows, we compute the result with sparse
points for lighting caching, which has a similar result with
the dense points (e.g., the inner shadow on the floor in Fig-
ure 4 bottom). In practice, during construction, we remove
the points that have minor energy differences with neighbor-
ing points by the probability based on the statistics of the



Figure 5. Comparison between ReSTIR PT [11] and our method on the scenes including VeachAjar (top), Vehicle (middle), Matballs
(bottom).

average energy differences in the whole point cloud. The
points elimination rate is about 47%.

Runtime rendering. We implement our method with
three passes: the V-Buffer pass, GI pass, and TAA pass.
In the V-Buffer pass, we generate the initial V-Buffer to
cache the instance type, instance index, primitive index, and
barycentric coordinates for each shading point. The GI pass
is the main pass that is used to compute ray tracing and
the convolution of BRDFs and lighting caching. Finally,
the results are merged to get the final global illumination.
We compute mipmap levels for normal maps in this pass
to reduce flicker artifacts. The TAA pass is used for anti-
aliasing.

While searching BRDFs, first, we get four BRDFs co-
efficient quadtrees from the four neighboring directions of
the view direction ωo. Then we perform the bilinear inter-
polation on the four quadtrees to reduce the discontinuity of
the rendering results and the storage of BRDFs coefficients
while using a sparse ωo sampling density. After the inter-
polation, the new quadtree’s depth is the same as the lowest
one in the four quadtree depths.

When querying the lighting caching in an octree, we

control the maximum number of searching points in all
searched nodes by a parameter m to improve the search
speed. Besides, we also discard the point whose energy is
lower than a set threshold. Because it is probably the point
under the object surfaces or in the folds and might influence
the search of other points.

During the convolution of BRDFs and lighting caching,
we control the traversal layers of quadtrees to balance per-
formance and quality. Besides, we reduce the computation
and offer a way to simulate the effect of the high-roughness
glossy materials by using a low quadtree depth. However,
it inevitably brings some artifacts. Therefore, we make a
tradeoff in practice.

7. Results

We first compare our global illumination method with
PRT [3], ReSTIR PT [11], and DDGI [5]. Next, we show
the performance measures of our method in different test
scenes and the parameter analysis in the Dragon scene. We
implement ReSTIR PT from the released code and reimple-
ment PRT by us. References are computed by standard path
tracing with multiple samples per pixel (spp). We quantify
the error by the mean squared error (MSE). All the results



Figure 6. Compared to ReSTIR PT [11] (a) on the ZeroDay scene, our approach (b) is noise-free and has similar quality with reference (c),
in about 17 ms per frame.

Table 3. Performance measures of our method in different test scenes. The precomputed storage includes the caching of BRDFs and
lighting.

Scenes Points Materials Precomputed time (h) Precomputed storage (GB) Runtime memory cost Runtime

BRDFs Lighting BRDFs Lighting Main (GB) GPU (GB) time cost (ms)

Dragon 81,579 2 2 4 2.55 0.57 3.8 4.4 11.9
BistroPart 400,000 3 0 10 0 0.02 0.678 1.01 6.65
VeachAjar 1,317,000 11 6 31 6.73 6.43 11.4 13.54 17.15
Vehicle 600,000 14 5 30 3.38 15.9 19.55 20.3 16.78
ZeroDay 692,000 6 2.5 20 4.39 1.61 6.66 7.99 16.85
MatBalls 500,000 5 2.5 13.5 6.28 7.75 14.71 15.2 17.8

are rendered on a high-end desktop machine (i9 10900k and
RTX 3090) at a resolution of 1920× 1080.

7.1. Comparison with previous work

Comparison with PRT. The BistroPart scene (Figure 4
top) contains three diffuse materials and an environment
map. In this scene, we have cached the irradiance at
400,000 points only. PRT has cached the visibility distri-
bution at 34,325 vertexes, the lighting distribution from the
environment map, and the BRDFs distribution of three ma-
terials. Compared with the 1.61 GB caching storage of PRT,
our method has an advantage in storage which is only 0.02
GB. And it is almost 6 times faster than PRT at runtime.

In the Dragon scene (Figure 4 bottom), there are two
glossy materials and an environment map. The caching of
our method consists of the radiance distribution at 81,579
points and the BRDFs distribution of two glossy materials.
The caching of PRT includes the visibility distribution at
100,277 vertexes, the lighting distribution from the envi-
ronment map, and the BRDFs distribution of two materials.
Our method’s caching size is 3.12 GB which is larger than
PRT’s (2.47 GB) because the BRDFs distribution of glossy
materials takes up most of the caching storage. At runtime,
the performance of our method is about 56 times faster than
PRT.

By comparison, PRT precomputes the lighting distribu-
tion from an environment map for every vertex, while our

method precomputes the independent lighting distribution
for each point. Thus, our method can compute the all-
frequency shadows and reflections that have more details
than PRT, especially in the high-frequency parts.

Comparison with ReSTIR PT. We compare the results
of our method with ReSTIR PT in the VeachAjar, Vehicle,
MatBalls, and ZeroDay scenes, as shown in Figure 5 and
Figure 6. All the materials in the scenes are glossy. Besides,
the Vehicle (car shell), Matballs (cyan ball), and ZeroDay
(floor and canons) scenes have the clear coat effect.

Different from ReSTIR PT, the results of our method are
basically noise-free by the benefit of ray tracing and the
convolution of BRDFs and lighting caching without sam-
pling. Our results have no color bias. The results of Re-
STIR PT have an obvious color bias, especially on objects
with a clear coat and low-frequency BRDFs (e.g., the car
shell). Because it is limited to the shift mapping strategies
of the path reuse. At runtime, the time cost of our method
is less than ReSTIR PT with 1-3 spp in the test scenes.

Comparison with DDGI. We compare the indirect illu-
mination results of our method with DDGI [5] in the Table
scene, as shown in Figure 7. The Table scene has two dif-
fuse materials and an environment map. We precompute the
irradiance at 400,000 points, and the caching of DDGI con-
tains 25 × 25 × 25 light probes. With the equal time cost



Figure 7. Comparison of the indirect illumination between DDGI [5] and our method on the Table scene.

Figure 8. Time cost during runtime using our method. Note that
we compute global illumination with irradiance instead of the con-
volution of BRDFs and lighting caching in the BisroPart scene.

at runtime, our method has less caching storage (22.47 MB)
than DDGI (30.52 MB). Besides, our results preserve richer
indirect lighting details than DDGI during rendering.

7.2. Performance and storage

We show the performance measures of our method in Ta-
ble 3 for different test scenes. Our method takes up about
17 ms per frame at runtime in all test scenes, with almost no
quality loss compared with the reference. But our method
requires up to several hours of precomputation time. For-
tunately, as long as the scene does not change (with static
objects and lighting), the precomputation only needs to do
once.

Table 3 also shows the storage of cached information and
runtime memory of our method. In precomputation stage,
the storage of lighting caching is influenced by the geom-
etry complexity of the meshes, which directly determines
the points number. Besides, it is also affected by the com-
plexity of the lighting distribution at the points. Such as
the VeachAjar scene, both the geometry and light distribu-
tion are complex. Thus a large number of points are needed
to store the lighting information. The storage of BRDFs

caching is mainly determined by the number of glossy ma-
terials and the distribution complexity of the BRDFs, which
is related to their roughness. The scene with diffuse ma-
terials (e.g., the BistoPart scene) has less storage than the
scene with glossy materials (e.g., the Dragon scene). The
main memory and GPU memory at runtime depend mainly
on the total storage of BRDFs and lighting caching.

Figure 8 shows our method’s time cost of ray trac-
ing, convolution, and others. The others include V-Buffer
computing, primary ray shooting, intersecting, etc. The
VeachAjar scene only contains an area light source behind
the door. The other scenes all have an environment map.
For the Vehicle and ZeroDay scenes, we additionally pro-
vide the delta lights. In Figure 8, the scenes of Dragon,
BistroPart, and VeachAjar have no time cost of ray tracing.
Because we compute the global illumination for non-delta
lights with BRDFs and lighting caching instead of ray trac-
ing. When computing the convolution, the GPU parallelism
is influenced by the different traversal depths of the coef-
ficient quadtrees, which depend on the BRDF roughness.
The roughness values of the materials in the MatBalls scene
cover a large range from 0.2 to 0.8, which makes the traver-
sal difficult, so the MatBalls scene’s convolution of BRDFs
and lighting caching takes up the largest time cost.

7.3. Parameter analysis

Varying number of points. We generate point clouds
with different points number for the Dragon scene and show

Table 4. Performance measures of our method with different points
number in the Dragon scene.

Points Precomputation of lighting Runtime

Time (h) Storage (MB) Time cost (ms) MSE

81,579 4 582 11.9 1.2e-4
50,320 1.83 314 11.3 2.1e-4
33,762 1 176 11.2 2.4e-4
19,396 0.5 93.4 11.1 3.6e-4

9,698 0.32 46.9 10.8 6.0e-4



the performance measures of our method in Table 4. With
more points, the caching storage of lighting increases sig-
nificantly, leading to more time cost during rendering. How-
ever, the quality of our results has also been improved, while
the MSE between our results and the references gets lower.

Varying roughness. In Figure 5, we show the results of
five material balls with varying roughness values (0.2, 0.4,
0.6, 0.8, and 0.8 with a clear coat effect) in the MatBalls
scene. Our method obtains the same results as the offline
renderer in a wide roughness range with the 17.8 ms time
cost at runtime.

7.4. Limitations and discussions

We recognize two limitations. First, to simplify the
query of BRDFs, we discretize the ωo in the hemispheri-
cal space and compute the distribution of BRDFs with ωi.
This inevitably leads to a lot of storage. We consider or-
ganizing ωo and ωi from a four-dimensional perspective to
obtain a more compact representation. Second, for BRDFs
defined with textures, the excessive number of colors in the
texture map results in a huge number of BRDFs, which lead
to large caching storage.

8. Conclusion and future work

In this paper, we have presented a new hybrid real-time
global illumination method that combines ray tracing and
the convolution of BRDFs and lighting caching. During the
precomputation, we offer a point clouds generator to com-
pute the points that conform to the Poisson distribution, a
new wavelet compression structure in the quadtree form for
BRDFs and cached radiance, and a compact spatial hierar-
chy for lighting caching. At runtime, our method has re-
sults close to the offline renderer in only 17 ms based on
various optimizations, such as octree-accelerated searching
and quadtree-accelerated convolutions. It can compute all-
frequency shadows and reflections in static scenes, which is
noise-free. As for scenes with diffuse materials, our method
is almost 6 times faster than PRT and has less caching stor-
age at runtime. It is suitable for applications that allow static
lighting and geometric scenes, primarily virtual exhibitions.

In the future, we will combine deep learning to provide
a more compact representation and avoid the interpolation
for lighting and BRDFs. Furthermore, our approach might
be a good proxy for path guiding.
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