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Abstract

In this paper, we present emotion-aware music driven
movie montage, a novel paradigm for the challenging
task of generating movie montages. Specifically, given a
movie and a piece of music as the guidance, our method
aims to generate a montage out of the movie that is emo-
tionally consistent with the music. Unlike previous work
such as video summarization, this task requires not only
video content understanding, but also emotion analysis
of both the input movie and music. To this end, we pro-
pose a two-stage framework, including a learning based
module for prediction of emotion similarity and an op-
timization based module for selection and composition
of candidate movie shots. The core of our method is to
align and estimate emotional similarity between music
clips and movie shots in a multi-modal latent space via
contrastive learning. Subsequently, the montage gen-
eration is modeled as a joint optimization of emotion
similarity and additional constraints such as scene-level
story completeness and shot-level rhythm synchroniza-
tion. We conduct both qualitative and quantitative eval-
uations to demonstrate that our method can generate
emotionally consistent montages and outperforms alter-
native baselines.

Keywords: Movie montage, emotion analysis, audio-
visual modalities, contrastive learning.

1. Introduction

In recent years, with the rapid growth of social network
and mobile applications, it has become increasingly popular
and important to create high-quality short videos and mon-
tages. As one of the best resources for montages, movies
are often cut and composed into shorter versions accompa-
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nied by a piece of background music, to obtain the trailers,
previews and/or highlights of the original ones. However,
existing montage editing tools typically rely on the users to
manually pick shots from the movie and align with the mu-
sic, which is tedious and time consuming. It remains diffi-
cult for non-professional users to generate a movie montage
of satisfactory quality to match the rhythm and emotion of
the music, with the additional constraint that the selected
shots provide a reasonable and comprehensible summary of
the original content or story.

As machine learning technologies emerge and advance,
several methods have been proposed in the past few years
for automatic generation of montages, ranging from video
summarization [22] to emotion-oriented music video gener-
ation [14, 16]. However, the former mainly focuses on the
content of the video itself, ignoring the correlation with any
input music, while the latter has difficulty in understanding
and handling long videos.

Walter Scott Murch, one of the most famous movie edi-
tors, has summarized the Rule of Six for film editing, includ-
ing emotion, story, thythm, eye trace, 2D plane of screen,
and 3D space of action [21], which have different values
in terms of importance for the final cut. Among these six
elements, emotion is the most important one and has an
importance factor of 51%, while story and rhythm corre-
spond to a factor of 23% and 10%, respectively. Inspired
by Murch’s Rule of Six, we propose emotion-aware music
driven movie montage, a method to automatically gener-
ate a montage from an input movie with a piece of user-
specified music as the guidance. Specifically, we compose
the output montage by taking the most important three el-
ements for film editing into account to meet the following
requirements:

Emotional consistency. The shots that are used to com-
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Figure 1. Emotion score based music-driven movie montage. When editing the same input movie with different background music, the
corresponding emotion scores are completely different, and thus the final movie montages guided by different music are also distinct.

pose the output montage are emotionally consistent
with the input music.

Story completeness. The montage needs to present a story
that is relatively complete and comprehensible.

Rhythm synchronization. The visual and audio content of
the montage should have synchronized rhythms.

To achieve the above goals, we adopt a two-stage frame-
work. In the first stage, we build a network to align multi-
modal signals of music, text, and image in the emotion
space based on CLIP and contrastive learning [26]. In the
second stage, we formulate the task of composing montages
as an optimization problem and generate the output using
a knapsack based solver. Specifically, we divide the input
movie at both the scene level and the shot level. The output
montage is generated by maximizing the emotional similar-
ity between scenes/shots and the input music. We ensure
that the story in the montage is comprehensible by adding
constraints on the number of selected scenes. Furthermore,
we align selected shots with bars of the input music using
quantified duration so that the rhythm of both the visual and
audio signals is synchronized.

As illustrated in Figure 1, given a movie as a candidate,
we can choose different shot combinations to form a mon-
tage result according to the user-supplied emotional music.
The changing emotion score in the movie will be used as a
significant indicator to select the target shots.

In summary, our main contributions are as follows:

* We present a novel method for montage generation
from an input movie and a user-specified music clip
based on well-established rules for film editing.

* We propose a two-stage framework to generate output
movie montages, by formulating the generation task as
a constrained optimization problem.

* We conduct qualitative and quantitative evaluations
to demonstrate that our method leads to high-quality
emotionally consistent montages and outperforms al-
ternative baselines.

2. Related Work

Music-driven video generation. The purpose of music
video generation is to combine music and video to enhance
entertainment quality and emotional resonance. Most pre-
vious methods [36, 12] only considered the relationship be-
tween low-level acoustic features and visual features while
ignoring semantic constraints. Liao et al. [13] cut the in-
put video to synchronize the music rhythm and generated
audio-visually consistent results. To narrow the semantic
gap between low-level acoustic features and human percep-
tion, some methods [33, 14, 16] tried to map the two into the
emotion space and made the audience have a good match
in their emotional perception when watching the generated
music video. Lin et al. [15] proposed an emotion-based
pseudo-song prediction and matching framework. And Lin
et al. [17] considered the continuity of video content while
matching music and video. Gross et al. [4] generated mu-
sic videos by using features of video color histogram, key
changes in music and genre. However, these methods are
rarely concerned with long sequence videos, so when feed-
ing videos that are much longer than the audio time, those
methods ignore the relevance of video content while ensur-
ing emotional consistency, so the generated results often do
not have any storyline. To address this issue, we propose
an algorithm to select shots that enhance the storytelling of
videos while maintaining emotional consistency.

Video summarization. Video summarization refers to the
task of generating summaries by stitching together impor-
tant contents of a video. Early approaches mainly used



unsupervised methods [18, 20] to generate video sum-
maries due to lack of useful datasets. After the creation
of some manually collected datasets [31, 6], several super-
vised methods have emerged [39]. However, when users
browse videos, they always try to find something specific.
Therefore, Sharghi et al. [29] proposed the Query-Focused
Video Summarization (QFVS) dataset, allowing video sum-
maries to find specific shots through a query to generate re-
sults, making the results more user-friendly. After the in-
troduction of CLIP [26], Narasimhan et al. [22] proposed
a single framework for solving general and query-focused
video summarization in both unsupervised and supervised
methods by combining CLIP and video summarization.
Movie trailer generation is one of the main applications of
video summarization work, which attracted the attention of
many researchers. Existing methods usually exploit shal-
low audio-visual features [8, 35, 25, 30], but these methods
usually only focus on information about the movie itself.
However, music is an integral part of video editing, that can
improve the viewing experience of the final result. Thus, we
use music as guidance to generate an emotion-aware movie
montage.

Emotion analysis of music and videos. The emotions
associated with music and video have been well-studied.
It has been suggested that emotions are one of the main
reasons why people engage in music [9], and psychologi-
cal research has shown that people also have emotional re-
sponses to visual stimuli [3]. Therefore, it is a very natural
way to connect video and music through emotion. Cate-
gorical and dimensional representations have been used to
represent emotion in music [10]. Discrete categorical la-
bels include terms like excited, relaxation, sad, etc. One
study found that the number of emotion categories did not
reflect the richness of emotion that humans perceive, or that
the taxonomy is inherently ambiguous [9]. Therefore, some
other works used dimensional labels in the two-dimensional
plane of valence and arousal to represent music [28]. This
continuous representation has no classification problems,
but it is difficult to distinguish some mental and emotional
concepts. Similar to music, emotions associated with im-
ages and videos are also represented by categories [38] and
dimensions [19]. Baveye et al. [1] expressed the features
of movie scenes in the valence-arousal space. Hanjalic et
al. [7] introduced dominance as an additional dimension to
characterize the emotion of videos.

3. Method

In this section, we formally introduce our pipeline for
emotion-aware movie montage generation. We first revisit
the general setting of montage generation and then extend
it into an emotion-aware constrained optimization problem.
As demonstrated in Figure 2, there are two key components

in our framework, including (1) multi-modal emotion latent
space alignment, and (2) emotion score based shots selec-
tion.

3.1. Problem Statement

Our goal is to generate a montage given the user-
specified music x™ and a long movie xV. Following the
common practice for montage generation, we divide the
movie xV into a set of scenes & = {ey,e9,...,e,,} and
each scene can be split into multiple shots. We denote all
the shots as a shot set S = {s1, s2, ..., 8, } and use a map-
ping function 7(s;) = e; to record the relationship between
scenes and shots. Similarly, the input music x™ is split into
a series of bars B = {by, ba,...b;}. Then the goal of mon-
tage generation is to select a subset of shots R from & and
associate each bar to a movie shot. In other words, montage
generation requires (1) a shot indicator function 14(s;), de-
termining which shots are selected and (2) a mapping func-
tion ¢(by) = s; to present the relationship between shots
and bars. This task is in general an under-constrained prob-
lem, and hence additional constrains C = {c1,ca,...,cq}
are required to limit the feasible solutions. Valid constraints
include the total number of selected scenes and rhythm syn-
chronization between shots and bars.

In this work, we add emotion-aware constraints for the
shot selection task. Our key insight is to introduce an emo-
tion measurement function M(s;, x™), which can be used
to evaluate the consistency between each shot and the whole
music. With M, we can formulate the optimization target
such that the selected subset of shots R can construct a mon-
tage by maximizing the emotional consistency between the
audio and visual signals, as shown below:

R = argmaxZM(si,xm)ls(si), s.t. C. (1)

v i=1

To solve the proposed optimization problem, we further
develop a two-stage paradigm to learn the required func-
tions. Specifically, we adopt a CLIP-based multi-modal
alignment approach for emotion latent representation learn-
ing and use it as M(s;,x™). The optimization of scenes
and shots selection can be modeled as a knapsack problem
given the constrains C. The shot indicator function 14(s;)
and shot-bar mapping function ¢(by) = s; can be obtained
via a deterministic knapsack solver. We will provide details
in following sections.

3.2. Multi-Modal Emotion Latent Space Alignment

The first stage of our pipeline is to learn an emotion
measurement function M between movie shots and music.
It requires embedding and alignment of signs from differ-
ent modalities in the emotion space. Inspired by Audio-
CLIP [5], we train three encoders (E™, Et, EY) of different
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Figure 2. Illustration of our framework. (a) In the first stage, we construct an emotion space by aligning the latent representation of multiple
modalities. (b) In the second stage, we select and compose several emotion-related shots from the candidates using our emotion-aware

knapsack based optimization solver.

modalities (music, text and image) to produce matched rep-
resentations, as shown in Figure 2(a). Specifically, given
a tuple of music, text, and image (x™, x*, x1) as the in-
put, we use the three encoders to obtain a set of latent rep-
resentations (f™, ft, f'). The purpose of introducing text
modality is to use it as an anchor to improve classification
accuracy. We initialize the encoders with the pretrained Au-
dioCLIP model and further optimize joint audio-text-visual
representations via contrastive learning procedure [26].

Contrastive constraints for multi-modal emotions. The
pretrained AudioCLIP model gives a good embedding
space for features from different modalities, we further
align the feature space and make it emotion-aware. Specifi-
cally, for arbitrary feature pair (f¢, £*), where a, b are from
different modalities, we aim to align the distribution of f¢,
f® if they correspond to the same emotion, and push away
otherwise.

Towards this end, we first define an emotion indicator
for different modalities. As demonstrated in Pandeya et
al. [24], emotions of audio and visual signals can be mea-
sured together in the 2D valence-arousal space, which pro-
vides a reasonable indicator to compare the differences of
both modalities. Thus, we follow the settings in [24] and di-
vide emotion space into six categories to cover the emotion
space of daily communications, i.e., excited, fear, neutral,
relaxation, sad, and tension.

For each iteration of the network training stage, we build
three 6 x 6 modality constraint matrices. Taking image-
music modalities as an example, we denote a music feature
and an image feature either as a positive pair (f™+, fit)
which will be placed on the diagonal of the matrix if they
have same emotion indicator, or as negative examples fi~
and ™~ which will be placed on the off-diagonal of that.

We use the cross entropy loss L¢ g to push the convergence
of emotion space between two specific modalities in the ma-
trix diagonal. The detailed image-music contrastive loss is
as follows:

ACirrmge:music = ECE(S(i+7m+)7 1)
+ Lop(SHH™)0) )
+ Lop(ST™H,0).

where 1 represents a full one vector, and O denotes a zero
vector. .S is emotional consistency score we use to eval-
uate the distance between different modalities, defined as
follows:

o< fh >

Slb) = =" =
€[] - [1£2]

3)

We compute the constraints Licat image aNd Licat music
for text-image modalities and text-music modalities in the
same way.

Emotion classification constraints. In order to further
improve discriminability of emotion features, we add a fully
connected layer after the image and music encoder to clas-
sify the emotion categories, which enhances the linearity of
latent emotion space. The text information is used as a tag
to influence feature space construction. More concretely, a
text prompt feature £* will be reshaped to a one-hot vector
Cheqst as the target. We denote the image linear classifi-
cation layer as F! and the music linear classification layer
as F™. These classification layers learn to discriminate the
emotion categories of image and music by the cross-entropy
loss. Therefore, the final classification constraint is formu-



lated as:
Lcls = ‘CCE (]Fi(fi)a Cte.’rt)

mem “)
+ l:CE(IF (f )7 Ctezt)-
Total loss. Our full objective loss function can be written
as follows:

ACtotal = £7Lmage,music + ‘Ctext,music

4)
+ Eteatt,image + Oé»ccls~

where « is a parameter to balance different loss terms.

After the training stage, we apply the image encoder
E! on each shot to get the image feature set F! =
{fi £l ... fl}. Since each frame in a single shot is sim-
ilar, we represent the content of a single shot by picking
an intermediate frame x! in the shot interval. Meanwhile,
the trained music encoder E™ is used to extract features
of the input music x™. We collect all the emotion consis-
tency scores for each shot and the whole music to form a
set of emotion scores ) = {S;i’m), Séi’m), e Sfli’m)} as
the original value of M(s;, x™).

3.3. Emotion Score Based Shot Selection

Given the learned emotion score function M, our next
step is to select candidate shots which yield maximum emo-
tion score w.r.t the optimization target in Eq 1. Following
Walter Murch’s montage criterion [37], we use two con-
straints as C to limit the solution space: (1) scene-based
story completeness constraint to improve the causality of
montage; (2) shot-based audio-visual rhythm synchroniza-
tion constraint to guarantee audio-visual harmonious de-
gree of montage. The shot indicator function 14(s;) will
be obtained during optimization with these constrains.

Scene-level constraint for story completeness. Our key
observation is that the less changes in character and envi-
ronment, the easier it would be for audiences to understand
the storyline. Therefore, a high aggregation degree of scene
can provide a better story completeness. Intuitively, we can
improve the story completeness by limiting the number of
scenes to be involved.

Hence, we define a function 1.(e;) to indicate whether a
scene is selected. A scene is denoted as selected when one
of the shots belonging to it is picked:

]]-e(e') — 1’ if Zi,T(Si):ej ]15(31‘) > 0, (6)
- 0, otherwise.

Furthermore, we denote IN,, as the maximum number of se-
lected scenes, and take it as an upper bound on the sum of
1.(e;), formulated as:

m

Z 1.(e;) < N.. (7

Shot-level constraint for rhythm synchronization. Em-
pirically, the audiences feel more harmonious if the shot and
music rthythm of a montage is changed synchronously. Here
the music rhythm is defined as the the duration of bars. We
can model such rhythm synchronization constraint by es-
tablishing a mapping relationship between shots and bars.
Specifically, we require each music bar should correspond
to a shot and each shot should contain at least one complete
music bar.

To achieve this, we first quantify the duration of both
shot and bar. Since the variation of music bar duration is
small, we take the average continuous bar duration tZ’b as
the unit of discrete time, noted as ti’b. Then for each shot
of movie, we obtain the discrete shot duration t?’s by ex-
actly dividing the continuous shot duration ¢;** with tz’b.
We further require that the sum of discrete selected shot du-
ration is equal to the sum of all discrete bar duration Ny,
which is formulated as follows:

n l
Dt 1(si) = >ty =N, (8)
=1 k=1

Final optimization formula. We define the complete op-
timization problem as:

R = argmax Y M(s;, x™)Ly(s,),

v i=1

syt 14(s;) = No, 9

3.4. Emotion-Aware Knapsack Solver

To tackle the above optimization problem, we design
an emotion-aware multi-dimensional knapsack solver with
the proposed constraints. Specifically, we define three at-
tributes belonging to shot s; according to the optimization
formula. The first one is a weighted emotion score p;. To
further enhance the importance of scene, for each Si(i’m),
we adjust the value by adding the average emotion score of
the scene which the shot belongs to and form the weighted
emotion score set P = {p1,p2,...pn}. Each item in P is
formulated as:

n

1 (i,m)
T E S,
doie1 Ut (si) = ¢;)

i,7(s:)=¢;

pi = Sl-(i’m) +
(10)

where 1(-) is a boolean indicator function, when the con-
dition (-) holds, it returns 1, and 0 otherwise. The second



attribute is the discrete shot length tf’s, used to ensure the
visual-audio rhythm synchronization constraint in Eq 8. Af-
ter traversing each item, we obtain the discrete shot dura-
tion set 745 = {t%* ¢3* _ ¢ds} The third attribute is
the scene number constraint score g; corresponding to Eq 7.
We define a step function relying on the subscripts of scene
to which the shot belongs, used to classify different scene
categories:

¢ = J, ej = 1(s3). (11)
We denote @ = {q1, o, ---, qn } as the set of scene number

constraint scores. The three attribute sets will be respec-
tively regarded as individual factors in the knapsack solver.

Algorithm 1 Hard scene constraint knapsack solver

Input: P,Q,T%* set, and n, N,, N, as capacity.
Output: The maximum emotion score [P, the picked shot
index set R.

1: fori: 1 — ndo

2. forj:1— Nydo

3: fork:1 — N, do

4 if qi # qi—1 then

5 (i, 7, k, 1) = max((i—1,j —t>*, k—1,0)+

Di,s (Z - 17.] - t;l’sa k— 13 1) +pl)

6: (4,4,k,0) «+ max((i — 1,4,k,0),(i —
1,7k, 1))

7: else

8: (i, 7, k, 1) = max((i—1,j —t**, k—1,0)+
pi,(i—l,j—tj’s,ki,l)—l—pi,(i—1,j,k‘,1))

9: (4,4,k,0) < (i — 1,4,k,0)

10: end if

11: end for

12:  end for

13: end for

14: P + max((n, Ny, N, 1), (n, Ny, N, 0))
15: R < Backtrack(P)
16: return P, R

Hard scene constraint knapsack solver. We denote
(1,4, k, z) as the basic state, which represents the maximum
emotion score when exactly k scenes are selected, the sum
of the discrete duration of shot is j and the first ¢ shots are
iterated over. z means whether the scene to which the i-th
shot belongs is selected. We display the detailed state tran-
sition equation in Algorithm 1. Considering whether the
current state is on the boundary of the scene (q; # ¢;—1),
four possible state transition paths need to be discussed sep-
arately. When the user queries a specific upper bound on the
number of scenarios IN., the maximum emotion score IP can
be quickly looked up. Meanwhile, Backtrack(-) method,
as the shot indicator function 14(s;), will trace a legal path

in inverse order and return a possible index set of shots R.
Then, we can obtain the mapping function ¢ (b ) by match-
ing selected shots and bars of music in chronological order.

set( |2 2 (2 |2 33 ) <=2

(a) The implementation of hard scene constraint.

v

- 12 12 1/6 1/6 1/6 1/6 1/6 1/6 13 1/3 1/3

12 + 16 16 16 16 [1/6 + 13 13 <=2

(b) The implementation of soft scene constraint.
Figure 3. The hard and soft scene constraints. (a) The sum of

weights of all picked shots is limited. (b) The number of scenes
that picked shots belong to is constrained.

The hard scene constraint requires that the total number
of selected scenes is less than an upper bound. As illus-
trated in Figure 3(a), we constrain the capacity of the set of
scenes to which selected shots belong. The Algorithm 1 in
the main paper displays the details of hard scene constraint
knapsack. We iterate through all possible states with a triple
loop which contains three core factors. In each state tran-
sition, the current state will obtain the maximum emotion
score from some legal substates. Specifically, four different
state transition cases need to be discussed:

1. For ¢; and ¢;—; belong to the different scenes, and
choose the scene of i-th shot belong to (z = 1). The
current state locates at a scene boundary, and the sub-
state must reduce one scene number. Two valid sub-
states whether to select the previous scene need to be
considered.

2. For g; and g;_1 belong to the different scenes, but not
choose the scene of i-th shot belong to (z = 0). The
scene number will not reduced in the substate. We also
need to consider two possible sub-states, whether to
choose the previous scene.

3. For ¢; and g;_1 belong to the same scene, and choose
the scene of ¢-th shot belong to (z = 1). If pick the
i-th shot, there are two possible states, the first one
(i—1,5— tf’s, k — 1,0) means that a new scene will
be added in the i-th position, another one (i — 1,5 —
tf’s, k, 1) means that new scenes will not be added. On



the contrary, if the ¢-th shot is not selected, the scene
of i-th shot belongs must be chosen before this state,
so the (i — 1,4, k, 1) state is the only choice.

4. For ¢q; and ¢;_; belong to the same scene, but not
choose the scene of i-th shot belong to (z = 0). The
scene of the i-th shot belong to cannot be selected in
the substate.

Soft scene constraint knapsack solver. As illustrated in
Figure 3(b), soft scene constraint knapsack solver assigns
corresponding scene constraint weight for each shot and
limits the sum of weights for all selected shots. Before start-
ing optimization, we multiply all scene constraint weights
by a magnification constant and round them down to ensure
each weight is an integer.

Fixing the number of scenes may result in the failure
to obtaining the highest sum of emotion scores. Thus, we
loosen the restriction in Eq 7. Instead of limiting the upper
bound of the sum of selected scenes, we constrain that the
sum of the inverse of the number of shots in the scene to
which the selected shots belongs is less than IN.:

§:Za1

) — T(Si))ls(Si) <N.. (12)

where 1(-) is a standard indicator, when the equation is es-
tablished, the function value is 1, otherwise it is 0.

Then, we reconstruct the soft scene number constraint
score set as Q = {qi,qa, ..., n }» where each item of that
set is formulated as:

T () = ;) 7 T(si).  (13)

In this condition, Algorithm 1 will degenerate into a vanilla
three-dimensional knapsack solver. We assume a basic state
(4,4, k), which stores the maximum emotion score when
traversing to i-th shot constrained by the sum of picked
scene weight j and the sum of picked discrete shot dura-
tion k. During optimization, the state (i, 7, k) will visit all
(i—1,5— tf’s, k — q;) states, and pick the maximum value
to transfer. We get the same results as above.

At last, when the function of searching best solution
15(s;) has been obtained, we discard the part where the
shot is longer than the bar to align duration, concatenate all
selected shots in chronological order and append the given
music according to the ¢(by) to get the final montage. In
general, we provide two knapsack-based deterministic opti-
mization schemes to select the shot with high emotion rele-
vance from abundant candidate shots.

4. Experiments
4.1. Dataset

The music video dataset [24] is used to train our model.
This dataset focuses on multimodal emotion classification
task, utilizing audio and visual information to discriminate
the category of music video. In training stage, 4788 sam-
ples are used, including videos of 843 excited, 828 fear, 678
neutral, 1057 relaxation, 730 sad, and 652 tension emotions.
In each batch of training, we randomly pick a frame from
video as the input of image encoder, and use the full mu-
sic to encode the audio feature. For text modality, we use
fixed six text prompts. Finally, we test the generated results
on a test set of 300 samples, where each emotion category
contains 50 videos.

The original data in this dataset that we use has consis-
tent and rich emotions. Concretely, the consistency repre-
sents the raw materials convey the same emotion signal in
the visual and audio modalities. For example, the “excited”
contains positive emotions with bright hued scenes and the
corresponding music has light rhythm and pleasant chords.
Meanwhile, the richness of emotion means that each cat-
egory in the dataset covers various fine-grained emotions.
For example, “excited” includes happy, joy, love, and ex-
cited, while “fear” includes scary, disgust, terror, and so on.

4.2. Experimental Setup

For visual modality, we extract the shot of video by
TransNet v2 [32] and obtain the scene segmentation bound-
ary by Rao et al. [27]. For audio modality, we split the bar
of music by Madmom library [2]. We train our model for
50 epochs with the Adam optimizer [1 1] on a single Nvidia
RTX 3090. The learning rate is 0.0001 and the batch size
is 6. Meanwhile, we set the trade-off o as 1. In the op-
timization stage, we denote Ours(h) as the montage results
generated by using hard scene constraint, and Ours(s) as the
ones generated by using soft constraint. The scene number
constraint for both methods is 5.

To comprehensively compare the differences between
various types of movies and music in the montage task,
in evaluation phrase, we choose 11 movies covering action
(e.g., Léon), love (e.g., Titanic), science fiction (e.g., Incep-
tion), comedy (e.g., The Grand Budapest Hotel) and fear
(e.g., Train to Busan) emotions. 16 pieces of music with
distinct emotions are used as background songs.
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Figure 4. Montage results generated using by our framework
driven by music with different emotions.

4.3. Qualitative Evaluations

In this section, we show some qualitative results from
visual-audio aspect. To directly evaluate the quality of mon-
tage, Figure 4 shows some visualized results that frames are
picked from the montage generated by our method. For-
rest Gum, as an example, is clipped by various music with
different emotions. The representative pictures with strong
emotions are shown in each row. Apparently, some opti-
mistic scenes (excited or relaxation) with bright light are
selected by delighted music. On the other side, the painful
scenes (fear or sad) are often accompanied by crying and
dark atmosphere. To some extent, the results demonstrate
the audio-visual emotion relevance of our framework.

Ablation study. To explore the impact of each compo-
nent in our solvers on audience preferences, we ablate three
key factors in Eq 9, including emotional consistency, story
completeness, and rhythm synchronization, to make a 30-
second montage with fixed music. For the user study, we
select 5 movies and generate 5 montages for each movie by
our models and the baseline (ablated) models. We also in-
vite an expert to make a montage for each movie under the
same conditions. Finally, we get 30 montages and invite
36 investigators to rate them between 1 to 5, considering
four aspects: 1) the degree of audio-visual emotional con-
sistency; 2) the degree of story completeness; 3) the degree
of audio-visual rthythm synchronization; 4) the overall qual-
ity of the montage.

Table 1 shows the average rating statistics. Apart from
the results from expert as upper bound, Ours (h) achieves
the highest rating in story completeness, rhythm synchro-
nization and overall evaluation under full constraints. With
a movie of about 2 hours as a benchmark, our method only
takes 20 minutes to process a montage, but it takes an expert
2-3 days to process a 30-second video. Further, by relaxing
the constraint of the scenes, Ours (s) outperforms on emo-

tional consistency than Ours (h) but slightly decreases in
other metrics due to the loss of overall coherence. When
emotion factor is not considered (w/o emotion), there is a
significant drop in all ratings, proving the importance of
audio-visual emotional consistency for montages. Similar-
ity, despite the selection of the largest emotion score, the
lack of a story completeness constraint (w/o story) will limit
the overall quality of montages. Due to people’s sensitivity
to audio-visual rhythm synchronization, the last factor (w/o
rhythm) gets almost the worst score in most aspects.

Table 1. Results of ablation study.
Rhythm

Emotional Story

Method . Overall
consistency  completeness sync.
Ours (h) 3.574 3.624 3.616 3.783
Ours (s) 3.672 3.148 3.438 3.502
w/0 emotion 3.026 3.146 3412 3.105
w/o story 3.384 3.140 3.460 3.328
w/o thythm 3.182 3.044 3.124 3.138
Expert 3.938 3.886 3.966 4.037

Table 2. Qualitative comparisons with other methods.

Method Em(?tlonal Story Rhythm Overall
consistency completeness  sync.

Linetal. [17] 3.690 3.723 3.178 3.401

Ours 3.782 4.101 3.678 3.987

Expert 3.835 3.948 4.024 4.103

Qualitative comparisons with other methods. To our
knowledge, the proposed framework is the first to achieve
music-driven movie montage, lacking of comparable meth-
ods and open source codes. Lin et al. [17] is the most sim-
ilar work with ours, which firstly recommends a piece of
matched music from a fixed music database according the
user-supplied video, then obtains the final montage by se-
lecting shots under cost-based constraints. Although the in-
put is not exactly consistent, the output of that whole system
is the same as ours, therefore, we set it as a baseline. To fur-
ther prove the effectiveness of our approach, we invite the
expert to clip the montages under the same conditions.

In this study, we make montages of lengths between
three and five minutes with a piece of music from the user-
specified video about 15 minutes. Finally, we produce 5
montages and invite 40 investigators to participate this ex-
periment. These participants receive the same questions as
the user study. They vote each montage between 1 to 5 from
emotional consistency, story completeness and rhythm syn-
chronization and overall aspect. Table 2 demonstrate our
result, compared with Lin et al. [17], we achieve significant
superiority on all evaluation metrics. In particular, since we
explicitly consider the influencing factors of film editing,
we achieve large improvements in story completeness and
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Figure 5. The percentage of most possible emotions for movie montages guided by two random emotional music. Six examples are
displayed, which consist of the guided music, the montage frame and the emotion probability map voted by investigators.

rhythm synchronization, and can even achieve scores that
are competitive with expert results.

Arbitrary music driven movie montage. To reflect the
disparity guided by different music, we conduct a user study
to explore the audio-visual emotional consistency of our ap-
proach. For comparison, we select different pieces of emo-
tional music to drive movie clips, and each movie will be
edited by two random emotions. In this experiment, inves-
tigators need to answer two questions: 1) What emotions
do you feel from the movie montage? 2) How strong the
emotion you feeling? Considering that the proportion of
emotions of diverse people is different, we allow the partic-
ipants to choose multiple emotions for each movie montage
and give a score from 1 to 10 about what is the emotion
degree in the montage. Finally, we receive a total of 46
valid questionnaires. As shown in Figure 5, in each row, we
display the voted percentage of each emotion category for
a single movie driven by two pieces of music with differ-
ent emotions. For each piece of music, we draw the nor-
malized degree of relevance that the investigators voted, the
red word means the highest probability category. By ob-
serving the results, we achieve the distinct differences in all
six emotions. The relaxation is the easiest category to tell
due to the beautiful landscape and bright scene are often
appeared. The excited and tension become the most confu-
sion category on account of a large amount of similar facial
expressions and body movements in both emotions.

4.4. Quantitative Evaluations

The confusion matrix of emotion classification. We ap-
ply the music video emotion classification accuracy to as-
sess the performance of our model. We validate on the test
set by using confusion matrix as a visual evaluation method,
which counts the number of samples in classes that are con-

fused with each other. As shown in Figure 6, our model per-
forms well on categories of “Fear”, “Relaxation” and “Ex-
cited”. However, “Neutral” is highly confused with other
classes, because the data of this category are similar to other
emotions.

Table 3. Statistics of the accuracy and F1-score.

Acc.(%) F1(%)
Audio Visual Audio Visual

Pandeya et al. [23] 74.0 74.0 73.0 73.0

Method

AudioCLIP [5] 18.3 34.0 12.6 329
Wav2CLIP [34] 16.3 12.7 4.7 11.5
Ours w cls 82.0 69.7 82.0 70.0
Ours w/o cls 76.7 67.7 76.9 67.7

Ours w/o text-enc 75.3 63.2 75.1 63.2
Ours w/o pretrain ~ 69.0 56.8 69.2 56.6

Neutral
40

Tension

30
Sad

True label

Fear r20

Relaxation
r10

Excited

Neutral Tension Sad Fear Relaxation Excited

Predicted label

Figure 6. The confusion matrix of emotion classification.



Statistics of the accuracy and F1l-score. We compare
with other methods in terms of Top-1 accuracy (Acc.) and
F1-Score (F}) to prove the discriminability of our emo-
tion space by feeding signals in different modalities. We
select Pandeya et al. [23], vanilla AudioCLIP [5], and
Wav2CLIP [34] as baselines. The results are shown in Ta-
ble 3, where “Ours w cls” and “Ours w/o cls” correspond
to training models with and without classifier, respectively.
“Ours w/o text-enc* means to remove the text encoder and
do not use the text modality to enhance the feature. And,
“Ours w/o pretrain“ means the encoder trained from scratch.
We demonstrate the effectiveness of our full framework by
comparing the classification performance of encoders under
various conditions. We achieve the best Top-1 accuracy and
F1-Score on the emotion classification task of music videos.
The AudioCLIP and Wav2CLIP completely lost the ability
to classify video emotions due to the constraint of original
pretrained dataset. Compared to [23], we also achieve the
highest performance in the audio modality.

4.5. Video Demo

To demonstrate the effectiveness of our framework, we
provide a video demo that consists of movie montages
guided by various pieces of emotional music. Two specific
tasks are presented in the video.

The first task is to generate movie montages driven by
different pieces of emotional music for a single movie.
We list two different movies, including “Forrest Gump”
and “Leon”. For the same movie, we process it with our
pipeline, adding a piece of 30-second emotional music, such
as “Forrest Gump” edited by relaxation and neutral music
and “Leon” with excited and tension music. Apparently,
we can easily observe the difference in the montage results.
For example, the beautiful landscape (i.e., sea and forest)
frames are mainly picked in the montage when a music with
relaxation emotion is used as guidance. On the contrary,
with a piece of neutral music, the movie montage often con-
tains static pictures, for example, the expressionless man
sitting on the chair. Based on our solver, we successfully
select the suitable set of movie shots to create a montage,
which leads to the disparity.

The second task in our demo is to create the montage
using the corresponding theme song of the movie. Two
movies, “Mulan” and “The Grand Budapest Hotel”, are
used as raw materials. In this case, we show our framework
can create a montage that fits the overall mood and rhythm
of the movie according to the theme song.

5. Conclusion

In this paper, we present a novel emotion-aware music-
driven movie montage task, which raises a challenge of re-
trieving and recombining shots in a long movie based on
a user-specified music clip. We formally define it as an

optimization problem and propose a two-stage framework
which consists of a learning based module for prediction
of emotion similarity and an optimization based module for
selection and composition of candidate movie shots. In the
first stage, we train a three-modality CLIP based model by
a contrastive loss to select candidate shots. In the second
stage, inspired by Murch’s montage criterion [21], we de-
sign an emotion-aware optimization solver under a scene-
level constraint for story completeness and a shot-level con-
straint for audio-visual rhythm synchronization to search
optional schemes. By qualitative and quantitative evalua-
tions, we demonstrate our method can generate emotionally
consistent montages and outperforms alternative baselines.
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